/**
* Tensor product of given polynomials.
*
- * @author Ralf Hartmann, 2000
+ * Given a vector of @{n} one-dimensional polynomials @{P1} to @{Pn},
+ * this class generates @p{n} to the power of @p{dim} polynomials of
+ * the form @p{ Qijk(x,y,z) = Pi(x)Pj(y)Pk(z)}.
+ *
+ * @author Ralf Hartmann, 2000, documentation Guido Kanschat
*/
template <int dim>
class TensorProductPolynomials
public:
/**
* Constructor. @p{pols} is a
- * vector of 1d polynomial
- * functions. For polynomials of
- * order @p{p} there should be
- * @p{p+1} polynomials.
+ * vector of pointers to
+ * one-dimensional polynomials.
*/
TensorProductPolynomials(const vector<SmartPointer<Polynomial> > &pols);
/**
- * Calculates the shape values
- * and shape grads at the
+ * Calculates the polynomials
+ * and their derivatives at
* @p{unit_point}.
+ *
+ * The vectors must either have
+ * length @p{0} or number of
+ * polynomials. In the first
+ * case, the function will not
+ * compute these values.
*/
void shape_values_and_grads(const Point<dim> &unit_point,
vector<double> &values,