]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Implementation of a FE class based on the PolynomialsP polynomial space.
authorRalf Hartmann <Ralf.Hartmann@dlr.de>
Tue, 9 Mar 2004 16:07:28 +0000 (16:07 +0000)
committerRalf Hartmann <Ralf.Hartmann@dlr.de>
Tue, 9 Mar 2004 16:07:28 +0000 (16:07 +0000)
git-svn-id: https://svn.dealii.org/trunk@8701 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/include/fe/fe_dgp_monomial.h [new file with mode: 0644]
deal.II/deal.II/source/fe/fe_dgp_monomial.cc [new file with mode: 0644]

diff --git a/deal.II/deal.II/include/fe/fe_dgp_monomial.h b/deal.II/deal.II/include/fe/fe_dgp_monomial.h
new file mode 100644 (file)
index 0000000..8e19bf2
--- /dev/null
@@ -0,0 +1,456 @@
+//----------------------------------------------------------------
+//    $Id$
+//    Version: $Name$
+//
+//    Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 by the deal.II authors
+//
+//    This file is subject to QPL and may not be  distributed
+//    without copyright and license information. Please refer
+//    to the file deal.II/doc/license.html for the  text  and
+//    further information on this license.
+//
+//---------------------------------------------------------------
+#ifndef __deal2__fe_dgp_monomial_h
+#define __deal2__fe_dgp_monomial_h
+
+#include <base/config.h>
+#include <base/polynomials_p.h>
+#include <grid/geometry_info.h>
+#include <fe/fe.h>
+
+template <int dim> class MappingQ;
+
+
+/*!@addtogroup fe */
+/*@{*/
+
+/**
+ * Discontinuous finite elements based on monomials of degree up to
+ * <tt>k</tt>
+ *
+ * This finite element makes use of the @ref{PolynomialsP} class which
+ * implements $d$-dimensional polynomials of degree $k$ based the
+ * @ref{Polynomials::Monomial} and the @ref{PolynomialSpace} classes.
+ *
+ * @author Ralf Hartmann, 2004
+ */
+template <int dim>
+class FE_DGPMonomial : public FiniteElement<dim>
+{
+  public:
+                                    /**
+                                     * Constructor for the polynomial
+                                     * space of degree @p{k}.
+                                     */
+    FE_DGPMonomial (const unsigned int k);
+    
+                                    /**
+                                     * Return a string that uniquely
+                                     * identifies a finite
+                                     * element. This class returns
+                                     * @p{FE_DGPMonomial<dim>(degree)}, with
+                                     * @p{dim} and @p{degree}
+                                     * replaced by appropriate
+                                     * values.
+                                     */
+    virtual std::string get_name () const;
+
+                                    /**
+                                     * Return the value of the
+                                     * @p{i}th shape function at the
+                                     * point @p{p}. See the
+                                     * @ref{FiniteElementBase} base
+                                     * class for more information
+                                     * about the semantics of this
+                                     * function.
+                                     */
+    virtual double shape_value (const unsigned int i,
+                               const Point<dim> &p) const;
+
+                                    /**
+                                     * Return the value of the
+                                     * @p{component}th vector
+                                     * component of the @p{i}th shape
+                                     * function at the point
+                                     * @p{p}. See the
+                                     * @ref{FiniteElementBase} base
+                                     * class for more information
+                                     * about the semantics of this
+                                     * function.
+                                     *
+                                     * Since this element is scalar,
+                                     * the returned value is the same
+                                     * as if the function without the
+                                     * @p{_component} suffix were
+                                     * called, provided that the
+                                     * specified component is zero.
+                                     */
+    virtual double shape_value_component (const unsigned int i,
+                                         const Point<dim> &p,
+                                         const unsigned int component) const;
+    
+                                    /**
+                                     * Return the gradient of the
+                                     * @p{i}th shape function at the
+                                     * point @p{p}. See the
+                                     * @ref{FiniteElementBase} base
+                                     * class for more information
+                                     * about the semantics of this
+                                     * function.
+                                     */
+    virtual Tensor<1,dim> shape_grad (const unsigned int  i,
+                                     const Point<dim>   &p) const;
+
+                                    /**
+                                     * Return the gradient of the
+                                     * @p{component}th vector
+                                     * component of the @p{i}th shape
+                                     * function at the point
+                                     * @p{p}. See the
+                                     * @ref{FiniteElementBase} base
+                                     * class for more information
+                                     * about the semantics of this
+                                     * function.
+                                     *
+                                     * Since this element is scalar,
+                                     * the returned value is the same
+                                     * as if the function without the
+                                     * @p{_component} suffix were
+                                     * called, provided that the
+                                     * specified component is zero.
+                                     */
+    virtual Tensor<1,dim> shape_grad_component (const unsigned int i,
+                                               const Point<dim> &p,
+                                               const unsigned int component) const;
+
+                                    /**
+                                     * Return the tensor of second
+                                     * derivatives of the @p{i}th
+                                     * shape function at point @p{p}
+                                     * on the unit cell.  See the
+                                     * @ref{FiniteElementBase} base
+                                     * class for more information
+                                     * about the semantics of this
+                                     * function.
+                                     */
+    virtual Tensor<2,dim> shape_grad_grad (const unsigned int  i,
+                                          const Point<dim> &p) const;
+    
+                                    /**
+                                     * Return the second derivative
+                                     * of the @p{component}th vector
+                                     * component of the @p{i}th shape
+                                     * function at the point
+                                     * @p{p}. See the
+                                     * @ref{FiniteElementBase} base
+                                     * class for more information
+                                     * about the semantics of this
+                                     * function.
+                                     *
+                                     * Since this element is scalar,
+                                     * the returned value is the same
+                                     * as if the function without the
+                                     * @p{_component} suffix were
+                                     * called, provided that the
+                                     * specified component is zero.
+                                     */
+    virtual Tensor<2,dim> shape_grad_grad_component (const unsigned int i,
+                                                    const Point<dim> &p,
+                                                    const unsigned int component) const;
+
+                                    /**
+                                     * Return the polynomial degree
+                                     * of this finite element,
+                                     * i.e. the value passed to the
+                                     * constructor.
+                                     */
+    unsigned int get_degree () const;
+    
+                                    /**
+                                     * Return the matrix
+                                     * interpolating from the given
+                                     * finite element to the present
+                                     * one. The size of the matrix is
+                                     * then @p{dofs_per_cell} times
+                                     * @p{source.dofs_per_cell}.
+                                     *
+                                     * These matrices are only
+                                     * available if the source
+                                     * element is also a @p{FE_Q}
+                                     * element. Otherwise, an
+                                     * exception of type
+                                     * @ref{FiniteElementBase<dim>::ExcInterpolationNotImplemented}
+                                     * is thrown.
+                                     */
+    virtual void
+    get_interpolation_matrix (const FiniteElementBase<dim> &source,
+                             FullMatrix<double>           &matrix) const;
+
+                                    /**
+                                     * Number of base elements in a
+                                     * mixed discretization. Since
+                                     * this is a scalar element,
+                                     * return one.
+                                     */
+    virtual unsigned int n_base_elements () const;
+    
+                                    /**
+                                     * Access to base element
+                                     * objects. Since this element is
+                                     * scalar, @p{base_element(0)} is
+                                     * @p{this}, and all other
+                                     * indices throw an error.
+                                     */
+    virtual const FiniteElement<dim> &
+    base_element (const unsigned int index) const;
+
+                                     /**
+                                      * Multiplicity of base element
+                                      * @p{index}. Since this is a
+                                      * scalar element,
+                                      * @p{element_multiplicity(0)}
+                                      * returns one, and all other
+                                      * indices will throw an error.
+                                      */
+    virtual unsigned int element_multiplicity (const unsigned int index) const;
+    
+                                    /**
+                                     * Check for non-zero values on a face.
+                                     *
+                                     * This function returns
+                                     * @p{true}, if the shape
+                                     * function @p{shape_index} has
+                                     * non-zero values on the face
+                                     * @p{face_index}.
+                                     *
+                                     * Implementation of the
+                                     * interface in
+                                     * @ref{FiniteElement}
+                                     */
+    virtual bool has_support_on_face (const unsigned int shape_index,
+                                     const unsigned int face_index) const;
+
+                                    /**
+                                     * Determine an estimate for the
+                                     * memory consumption (in bytes)
+                                     * of this object.
+                                     *
+                                     * This function is made virtual,
+                                     * since finite element objects
+                                     * are usually accessed through
+                                     * pointers to their base class,
+                                     * rather than the class itself.
+                                     */
+    virtual unsigned int memory_consumption () const;
+
+  protected:
+
+                                    /**
+                                     * @p{clone} function instead of
+                                     * a copy constructor.
+                                     *
+                                     * This function is needed by the
+                                     * constructors of @p{FESystem}.
+                                     */
+    virtual FiniteElement<dim> *clone() const;
+  
+                                    /**
+                                     * Prepare internal data
+                                     * structures and fill in values
+                                     * independent of the cell.
+                                     */
+    virtual
+    typename Mapping<dim>::InternalDataBase *
+    get_data (const UpdateFlags,
+             const Mapping<dim>& mapping,
+             const Quadrature<dim>& quadrature) const ;
+
+                                    /**
+                                     * Implementation of the same
+                                     * function in
+                                     * @ref{FiniteElement}.
+                                     */
+    virtual void
+    fill_fe_values (const Mapping<dim> &mapping,
+                   const typename DoFHandler<dim>::cell_iterator &cell,
+                   const Quadrature<dim>                &quadrature,
+                   typename Mapping<dim>::InternalDataBase      &mapping_internal,
+                   typename Mapping<dim>::InternalDataBase      &fe_internal,
+                   FEValuesData<dim>& data) const;
+    
+                                    /**
+                                     * Implementation of the same
+                                     * function in
+                                     * @ref{FiniteElement}.
+                                     */
+    virtual void
+    fill_fe_face_values (const Mapping<dim> &mapping,
+                        const typename DoFHandler<dim>::cell_iterator &cell,
+                        const unsigned int                    face_no,
+                        const Quadrature<dim-1>                &quadrature,
+                        typename Mapping<dim>::InternalDataBase      &mapping_internal,
+                        typename Mapping<dim>::InternalDataBase      &fe_internal,
+                        FEValuesData<dim>& data) const ;
+    
+                                    /**
+                                     * Implementation of the same
+                                     * function in
+                                     * @ref{FiniteElement}.
+                                     */
+    virtual void
+    fill_fe_subface_values (const Mapping<dim> &mapping,
+                           const typename DoFHandler<dim>::cell_iterator &cell,
+                           const unsigned int                    face_no,
+                           const unsigned int                    sub_no,
+                           const Quadrature<dim-1>                &quadrature,
+                           typename Mapping<dim>::InternalDataBase      &mapping_internal,
+                           typename Mapping<dim>::InternalDataBase      &fe_internal,
+                           FEValuesData<dim>& data) const ;
+
+  private:
+    
+                                    /**
+                                     * Only for internal use. Its
+                                     * full name is
+                                     * @p{get_dofs_per_object_vector}
+                                     * function and it creates the
+                                     * @p{dofs_per_object} vector that is
+                                     * needed within the constructor to
+                                     * be passed to the constructor of
+                                     * @p{FiniteElementData}.
+                                     */
+    static std::vector<unsigned int> get_dpo_vector(unsigned int degree);
+
+                                    /**
+                                     * Initialize the embedding
+                                     * matrices. Called from the
+                                     * constructor.
+                                     */
+    void initialize_embedding ();
+
+                                    /**
+                                     * Initialize the restriction
+                                     * matrices. Called from the
+                                     * constructor.
+                                     */
+    void initialize_restriction ();
+    
+                                    /**
+                                     * Given a set of flags indicating
+                                     * what quantities are requested
+                                     * from a @p{FEValues} object,
+                                     * return which of these can be
+                                     * precomputed once and for
+                                     * all. Often, the values of
+                                     * shape function at quadrature
+                                     * points can be precomputed, for
+                                     * example, in which case the
+                                     * return value of this function
+                                     * would be the logical and of
+                                     * the input @p{flags} and
+                                     * @p{update_values}.
+                                     *
+                                     * For the present kind of finite
+                                     * element, this is exactly the
+                                     * case.
+                                     */
+    virtual UpdateFlags update_once (const UpdateFlags flags) const;
+  
+                                    /**
+                                     * This is the opposite to the
+                                     * above function: given a set of
+                                     * flags indicating what we want
+                                     * to know, return which of these
+                                     * need to be computed each time
+                                     * we visit a new cell.
+                                     *
+                                     * If for the computation of one
+                                     * quantity something else is
+                                     * also required (for example, we
+                                     * often need the covariant
+                                     * transformation when gradients
+                                     * need to be computed), include
+                                     * this in the result as well.
+                                     */
+    virtual UpdateFlags update_each (const UpdateFlags flags) const;
+
+                                    /**
+                                     * Pointer to an object
+                                     * representing the polynomial
+                                     * space <tt>P_k</tt>.
+                                     */
+    const PolynomialsP<dim> polynomial_space;
+
+                                    /**
+                                     * Fields of cell-independent data.
+                                     *
+                                     * For information about the
+                                     * general purpose of this class,
+                                     * see the documentation of the
+                                     * base class.
+                                     */
+    class InternalData : public FiniteElementBase<dim>::InternalDataBase
+    {
+      public:
+                                        /**
+                                         * Array with shape function
+                                         * values in quadrature
+                                         * points. There is one
+                                         * row for each shape
+                                         * function, containing
+                                         * values for each quadrature
+                                         * point.
+                                         *
+                                         * In this array, we store
+                                         * the values of the shape
+                                         * function in the quadrature
+                                         * points on the unit
+                                         * cell. Since these values
+                                         * do not change under
+                                         * transformation to the real
+                                         * cell, we only need to copy
+                                         * them over when visiting a
+                                         * concrete cell.
+                                         */
+       Table<2,double> shape_values;
+       
+                                        /**
+                                         * Array with shape function
+                                         * gradients in quadrature
+                                         * points. There is one
+                                         * row for each shape
+                                         * function, containing
+                                         * values for each quadrature
+                                         * point.
+                                         *
+                                         * We store the gradients in
+                                         * the quadrature points on
+                                         * the unit cell. We then
+                                         * only have to apply the
+                                         * transformation (which is a
+                                         * matrix-vector
+                                         * multiplication) when
+                                         * visiting an actual cell.
+                                         */                                  
+       Table<2,Tensor<1,dim> > shape_gradients;
+    };
+
+                                    /**
+                                     * Allows @p{MappingQ} class
+                                     * access to build_renumbering
+                                     * function.
+                                     */
+    friend class MappingQ<dim>;
+};
+
+/*@}*/
+
+template <int dim>
+inline unsigned int
+FE_DGPMonomial<dim>::get_degree () const
+{
+  return polynomial_space.degree();
+}
+
+
+#endif
diff --git a/deal.II/deal.II/source/fe/fe_dgp_monomial.cc b/deal.II/deal.II/source/fe/fe_dgp_monomial.cc
new file mode 100644 (file)
index 0000000..4bac467
--- /dev/null
@@ -0,0 +1,713 @@
+//----------------------------------------------------------------
+//    $Id$
+//    Version: $Name$
+//
+//    Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 by the deal.II authors
+//
+//    This file is subject to QPL and may not be  distributed
+//    without copyright and license information. Please refer
+//    to the file deal.II/doc/license.html for the  text  and
+//    further information on this license.
+//
+//----------------------------------------------------------------
+
+#include <base/quadrature.h>
+#include <grid/tria.h>
+#include <grid/tria_iterator.h>
+#include <dofs/dof_accessor.h>
+#include <fe/fe.h>
+#include <fe/mapping.h>
+#include <fe/fe_dgp_monomial.h>
+#include <fe/fe_values.h>
+
+#ifdef HAVE_STD_STRINGSTREAM
+#  include <sstream>
+#else
+#  include <strstream>
+#endif
+
+
+// TEST
+#include <base/polynomial.h>
+
+
+
+// namespace for some functions that are used in this file.
+namespace 
+{
+                                  // storage of hand-chosen support
+                                  // points
+                                  //
+                                  // For dim=2, dofs_per_cell of
+                                  // FE_DGPMonomial(k) is given by
+                                  // 0.5(k+1)(k+2), i.e.
+                                  // 
+                                  // k    0  1  2  3  4  5  6  7
+                                  // dofs 1  3  6 10 15 21 28 36
+                                  // 
+                                  // indirect access of unit points:
+                                  // the points for degree k are
+                                  // located at
+                                  //
+                                  // points[start_index[k]..start_index[k+1]-1]
+  const unsigned int start_index2d[6]={0,1,4,10,20,35};
+  const double points2d[35][2]=
+  {{0,0},
+   {0,0},{1,0},{0,1},
+   {0,0},{1,0},{0,1},{1,1},{0.5,0},{0,0.5},
+   {0,0},{1,0},{0,1},{1,1},{1./3.,0},{2./3.,0},{0,1./3.},{0,2./3.},{0.5,1},{1,0.5},
+   {0,0},{1,0},{0,1},{1,1},{0.25,0},{0.5,0},{0.75,0},{0,0.25},{0,0.5},{0,0.75},{1./3.,1},{2./3.,1},{1,1./3.},{1,2./3.},{0.5,0.5}
+  };
+
+                                  //
+                                  // For dim=3, dofs_per_cell of
+                                  // FE_DGPMonomial(k) is given by
+                                  // 1./6.(k+1)(k+2)(k+3), i.e.
+                                  // 
+                                  // k    0  1  2  3  4  5  6   7
+                                  // dofs 1  4 10 20 35 56 84 120
+  const unsigned int start_index3d[6]={0,1,5,15/*,35*/};
+  const double points3d[35][3]=
+  {{0,0,0},
+   {0,0,0},{1,0,0},{0,1,0},{0,0,1},
+   {0,0,0},{1,0,0},{0,1,0},{0,0,1},{0.5,0,0},{0,0.5,0},{0,0,0.5},{1,1,0},{1,0,1},{0,1,1}
+  };
+
+  
+  template<int dim>
+  void generate_unit_points (const unsigned int,
+                            vector<Point<dim> > &);
+
+  template <>
+  void generate_unit_points (const unsigned int,
+                            vector<Point<1> > &)
+  {
+    Assert(false, ExcNotImplemented());
+  }
+  
+  
+  template <>
+  void generate_unit_points (const unsigned int k,
+                            vector<Point<2> > &p)
+  {
+    Assert(k<=4, ExcNotImplemented());
+    Assert(p.size()==start_index2d[k+1]-start_index2d[k], ExcInternalError());
+    for (unsigned int i=0; i<p.size(); ++i)
+      {
+       p[i](0)=points2d[start_index2d[k]+i][0];
+       p[i](1)=points2d[start_index2d[k]+i][1];
+      }
+  }
+  
+  template <>
+  void generate_unit_points (const unsigned int k,
+                            vector<Point<3> > &p)
+  {
+    Assert(k<=2, ExcNotImplemented());
+    Assert(p.size()==start_index3d[k+1]-start_index3d[k], ExcInternalError());
+    for (unsigned int i=0; i<p.size(); ++i)
+      {
+       p[i](0)=points3d[start_index3d[k]+i][0];
+       p[i](1)=points3d[start_index3d[k]+i][1];
+       p[i](2)=points3d[start_index3d[k]+i][2];
+      }
+  }  
+}
+
+
+
+template <int dim>
+FE_DGPMonomial<dim>::FE_DGPMonomial (const unsigned int degree)
+               :
+               FiniteElement<dim> (FiniteElementData<dim>(get_dpo_vector(degree), 1, degree),
+                                   std::vector<bool>(FiniteElementData<dim>(get_dpo_vector(degree), 1, degree).dofs_per_cell,true),
+                                   std::vector<std::vector<bool> >(FiniteElementData<dim>(get_dpo_vector(degree), 1, degree).dofs_per_cell,
+                                                                   std::vector<bool>(1,true))),
+                                                                     polynomial_space(degree)
+{
+  Assert(polynomial_space.n()==dofs_per_cell, ExcInternalError());
+  
+                                  // DG doesn't have constraints, so
+                                  // leave them empty
+
+                                  // initialize the interpolation
+                                  // matrices
+  initialize_embedding ();
+//  initialize_restriction ();
+
+                                   // note, that these elements have
+                                   // neither support nor face-support
+                                   // points, so leave these fields
+                                   // empty
+}
+
+
+
+template <int dim>
+std::string
+FE_DGPMonomial<dim>::get_name () const
+{
+                                  // note that the
+                                  // FETools::get_fe_from_name
+                                  // function depends on the
+                                  // particular format of the string
+                                  // this function returns, so they
+                                  // have to be kept in synch
+
+#ifdef HAVE_STD_STRINGSTREAM
+  std::ostringstream namebuf;
+#else
+  std::ostrstream namebuf;
+#endif
+  
+  namebuf << "FE_DGPMonomial<" << dim << ">(" << get_degree() << ")";
+
+#ifndef HAVE_STD_STRINGSTREAM
+  namebuf << std::ends;
+#endif
+  return namebuf.str();
+}
+
+
+
+template <int dim>
+FiniteElement<dim> *
+FE_DGPMonomial<dim>::clone() const
+{
+  return new FE_DGPMonomial<dim>(get_degree());
+}
+
+
+
+template <int dim>
+double
+FE_DGPMonomial<dim>::shape_value (const unsigned int i,
+                                 const Point<dim> &p) const
+{
+  Assert (i<this->dofs_per_cell, ExcIndexRange(i, 0, this->dofs_per_cell));
+  return polynomial_space.compute_value(i, p);
+}
+
+
+
+template <int dim>
+double
+FE_DGPMonomial<dim>::shape_value_component (const unsigned int i,
+                                           const Point<dim> &p,
+                                           const unsigned int component) const
+{
+  Assert (i<this->dofs_per_cell, ExcIndexRange(i, 0, this->dofs_per_cell));
+  Assert (component == 0, ExcIndexRange (component, 0, 1));
+  return polynomial_space.compute_value(i, p);
+}
+
+
+
+template <int dim>
+Tensor<1,dim>
+FE_DGPMonomial<dim>::shape_grad (const unsigned int i,
+                                const Point<dim> &p) const
+{
+  Assert (i<this->dofs_per_cell, ExcIndexRange(i, 0, this->dofs_per_cell));
+  return polynomial_space.compute_grad(i, p);
+}
+
+
+template <int dim>
+Tensor<1,dim>
+FE_DGPMonomial<dim>::shape_grad_component (const unsigned int i,
+                                          const Point<dim> &p,
+                                          const unsigned int component) const
+{
+  Assert (i<this->dofs_per_cell, ExcIndexRange(i, 0, this->dofs_per_cell));
+  Assert (component == 0, ExcIndexRange (component, 0, 1));
+  return polynomial_space.compute_grad(i, p);
+}
+
+
+
+template <int dim>
+Tensor<2,dim>
+FE_DGPMonomial<dim>::shape_grad_grad (const unsigned int i,
+                                     const Point<dim> &p) const
+{
+  Assert (i<this->dofs_per_cell, ExcIndexRange(i, 0, this->dofs_per_cell));
+  return polynomial_space.compute_grad_grad(i, p);
+}
+
+
+
+template <int dim>
+Tensor<2,dim>
+FE_DGPMonomial<dim>::shape_grad_grad_component (const unsigned int i,
+                                               const Point<dim> &p,
+                                               const unsigned int component) const
+{
+  Assert (i<this->dofs_per_cell, ExcIndexRange(i, 0, this->dofs_per_cell));
+  Assert (component == 0, ExcIndexRange (component, 0, 1));
+  return polynomial_space.compute_grad_grad(i, p);
+}
+
+
+
+template <int dim>
+void
+FE_DGPMonomial<dim>::
+get_interpolation_matrix (const FiniteElementBase<dim> &x_source_fe,
+                         FullMatrix<double>           &interpolation_matrix) const
+{
+                                  // this is only implemented, if the
+                                  // source FE is also a
+                                  // DGPMonomial element
+  AssertThrow ((x_source_fe.get_name().find ("FE_DGPMonomial<") == 0)
+               ||
+               (dynamic_cast<const FE_DGPMonomial<dim>*>(&x_source_fe) != 0),
+               typename FiniteElementBase<dim>::
+               ExcInterpolationNotImplemented());
+  
+                                  // ok, source is a Q element, so
+                                  // we will be able to do the work
+  const FE_DGPMonomial<dim> &source_fe
+    = dynamic_cast<const FE_DGPMonomial<dim>&>(x_source_fe);
+
+  const unsigned int m=interpolation_matrix.m();
+  const unsigned int n=interpolation_matrix.n();
+  Assert (m == this->dofs_per_cell, ExcDimensionMismatch (m, this->dofs_per_cell));
+  Assert (n == source_fe.dofs_per_cell, ExcDimensionMismatch (n, source_fe.dofs_per_cell));
+
+  const unsigned int min_mn=
+    interpolation_matrix.m()<interpolation_matrix.n() ?
+    interpolation_matrix.m() : interpolation_matrix.n();
+
+  for (unsigned int i=0; i<min_mn; ++i)
+    interpolation_matrix(i,i)=1.;
+}
+
+
+
+template <int dim>
+void
+FE_DGPMonomial<dim>::initialize_embedding ()
+{
+  vector<Point<dim> > unit_points(this->dofs_per_cell);
+  generate_unit_points(get_degree(), unit_points);
+  
+  FullMatrix<double> cell_interpolation (this->dofs_per_cell,
+                                        this->dofs_per_cell);
+  FullMatrix<double> subcell_interpolation (this->dofs_per_cell,
+                                           this->dofs_per_cell);
+  for (unsigned int child=0; child<GeometryInfo<dim>::children_per_cell; ++child)
+    this->prolongation[child].reinit (this->dofs_per_cell,
+                                     this->dofs_per_cell);
+  for (unsigned int child=0; child<GeometryInfo<dim>::children_per_cell; ++child)
+    {
+      for (unsigned int j=0; j<this->dofs_per_cell; ++j)
+       {
+         const Point<dim> &p_subcell=unit_points[j];
+         
+         const Point<dim> p_cell =
+           GeometryInfo<dim>::child_to_cell_coordinates (p_subcell, child);
+         
+         for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+           {
+             cell_interpolation(j,i) = polynomial_space.compute_value (i, p_cell);
+             subcell_interpolation(j,i) = polynomial_space.compute_value (i, p_subcell);
+           }
+       }
+      
+                                      // then compute the embedding
+                                      // matrix for this child and
+                                      // this coordinate direction
+      subcell_interpolation.gauss_jordan ();
+      subcell_interpolation.mmult (this->prolongation[child], cell_interpolation);
+      
+                                      // cut off very small values
+      for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+       for (unsigned int j=0; j<this->dofs_per_cell; ++j)
+         if (std::fabs(this->prolongation[child](i,j)) < 2e-14*get_degree()*dim)
+           this->prolongation[child](i,j) = 0.;      
+    }
+}
+
+
+template <int dim>
+void
+FE_DGPMonomial<dim>::initialize_restriction ()
+{
+  Assert(false, ExcNotImplemented());
+}
+
+
+//----------------------------------------------------------------------
+// Auxiliary functions
+//----------------------------------------------------------------------
+
+
+template <int dim>
+std::vector<unsigned int>
+FE_DGPMonomial<dim>::get_dpo_vector(unsigned int deg)
+{
+  std::vector<unsigned int> dpo(dim+1, 0U);
+  dpo[dim] = ++deg;
+  for (unsigned int i=1;i<dim;++i)
+    {
+      dpo[dim] *= deg+i;
+      dpo[dim] /= i+1;
+    }
+  return dpo;
+}
+
+
+template <int dim>
+UpdateFlags
+FE_DGPMonomial<dim>::update_once (const UpdateFlags flags) const
+{
+                                  // for this kind of elements, only
+                                  // the values can be precomputed
+                                  // once and for all. set this flag
+                                  // if the values are requested at
+                                  // all
+  return (update_default | (flags & update_values));
+}
+
+
+template <int dim>
+UpdateFlags
+FE_DGPMonomial<dim>::update_each (const UpdateFlags flags) const
+{
+  UpdateFlags out = update_default;
+
+  if (flags & update_gradients)
+    out |= update_gradients | update_covariant_transformation;
+
+  if (flags & update_second_derivatives)
+    out |= update_second_derivatives | update_covariant_transformation;
+
+  return out;
+}
+
+
+//----------------------------------------------------------------------
+// Data field initialization
+//----------------------------------------------------------------------
+
+template <int dim>
+typename Mapping<dim>::InternalDataBase *
+FE_DGPMonomial<dim>::get_data (const UpdateFlags      update_flags,
+                              const Mapping<dim>    &mapping,
+                              const Quadrature<dim> &quadrature) const
+{
+                                  // generate a new data object
+  InternalData* data = new InternalData;
+                                  // check what needs to be
+                                  // initialized only once and what
+                                  // on every cell/face/subface we
+                                  // visit
+  data->update_once = update_once(update_flags);
+  data->update_each = update_each(update_flags);
+  data->update_flags = data->update_once | data->update_each;
+
+  const UpdateFlags flags(data->update_flags);
+  const unsigned int n_q_points = quadrature.n_quadrature_points;
+
+                                  // have some scratch arrays
+  std::vector<double> values(0);
+  std::vector<Tensor<1,dim> > grads(0);
+  std::vector<Tensor<2,dim> > grad_grads(0);
+  
+                                  // initialize fields only if really
+                                  // necessary. otherwise, don't
+                                  // allocate memory
+  if (flags & update_values)
+    {
+      values.resize (this->dofs_per_cell);
+      data->shape_values.reinit (this->dofs_per_cell,
+                                n_q_points);
+    }
+
+  if (flags & update_gradients)
+    {
+      grads.resize (this->dofs_per_cell);
+      data->shape_gradients.reinit (this->dofs_per_cell,
+                                   n_q_points);
+    }
+
+                                  // if second derivatives through
+                                  // finite differencing is required,
+                                  // then initialize some objects for
+                                  // that
+  if (flags & update_second_derivatives)
+    data->initialize_2nd (this, mapping, quadrature);
+  
+                                  // next already fill those fields
+                                  // of which we have information by
+                                  // now. note that the shape
+                                  // gradients are only those on the
+                                  // unit cell, and need to be
+                                  // transformed when visiting an
+                                  // actual cell  
+  if (flags & (update_values | update_gradients))
+    for (unsigned int i=0; i<n_q_points; ++i)
+      {
+       polynomial_space.compute(quadrature.point(i),
+                                values, grads, grad_grads);
+       for (unsigned int k=0; k<this->dofs_per_cell; ++k)
+         {
+           if (flags & update_values)
+             data->shape_values[k][i] = values[k];
+           if (flags & update_gradients)
+             data->shape_gradients[k][i] = grads[k];
+         }
+      }
+  return data;
+}
+
+
+
+//----------------------------------------------------------------------
+// Fill data of FEValues
+//----------------------------------------------------------------------
+
+template <int dim>
+void
+FE_DGPMonomial<dim>::fill_fe_values (const Mapping<dim>                   &mapping,
+                            const typename DoFHandler<dim>::cell_iterator &cell,
+                            const Quadrature<dim>                &quadrature,
+                            typename Mapping<dim>::InternalDataBase       &mapping_data,
+                            typename Mapping<dim>::InternalDataBase       &fedata,
+                            FEValuesData<dim>                    &data) const
+{
+                                  // convert data object to internal
+                                  // data for this class. fails with
+                                  // an exception if that is not
+                                  // possible
+  InternalData &fe_data = dynamic_cast<InternalData &> (fedata);
+  
+  const UpdateFlags flags(fe_data.current_update_flags());
+
+  for (unsigned int k=0; k<this->dofs_per_cell; ++k)
+    {
+      if (flags & update_values)
+       for (unsigned int i=0;i<quadrature.n_quadrature_points;++i)
+         data.shape_values(k,i) = fe_data.shape_values[k][i];
+      
+      if (flags & update_gradients)
+       {
+         Assert (data.shape_gradients[k].size() <=
+                 fe_data.shape_gradients[k].size(),
+                 ExcInternalError());
+         mapping.transform_covariant(data.shape_gradients[k].begin(),
+                                     data.shape_gradients[k].end(),
+                                     fe_data.shape_gradients[k].begin(),
+                                     mapping_data);
+       }
+    }
+  
+  if (flags & update_second_derivatives)
+    this->compute_2nd (mapping, cell,
+                       QProjector<dim>::DataSetDescriptor::cell(),
+                       mapping_data, fe_data, data);
+}
+
+
+
+template <int dim>
+void
+FE_DGPMonomial<dim>::fill_fe_face_values (const Mapping<dim>                   &mapping,
+                                 const typename DoFHandler<dim>::cell_iterator &cell,
+                                 const unsigned int                    face,
+                                 const Quadrature<dim-1>              &quadrature,
+                                 typename Mapping<dim>::InternalDataBase       &mapping_data,
+                                 typename Mapping<dim>::InternalDataBase       &fedata,
+                                 FEValuesData<dim>                    &data) const
+{
+                                  // convert data object to internal
+                                  // data for this class. fails with
+                                  // an exception if that is not
+                                  // possible
+  InternalData &fe_data = dynamic_cast<InternalData &> (fedata);
+
+                                  // offset determines which data set
+                                  // to take (all data sets for all
+                                  // faces are stored contiguously)
+  const typename QProjector<dim>::DataSetDescriptor offset
+    = (QProjector<dim>::DataSetDescriptor::
+       face (face, cell->face_orientation(face),
+             quadrature.n_quadrature_points));
+  
+  const UpdateFlags flags(fe_data.update_once | fe_data.update_each);
+
+  for (unsigned int k=0; k<this->dofs_per_cell; ++k)
+    {
+      for (unsigned int i=0;i<quadrature.n_quadrature_points;++i)
+       if (flags & update_values)
+         data.shape_values(k,i) = fe_data.shape_values[k][i+offset];
+      
+      if (flags & update_gradients)
+       {
+         Assert (data.shape_gradients[k].size() + offset <=
+                 fe_data.shape_gradients[k].size(),
+                 ExcInternalError());    
+         mapping.transform_covariant(data.shape_gradients[k].begin(),
+                                     data.shape_gradients[k].end(),
+                                     fe_data.shape_gradients[k].begin()+offset,
+                                     mapping_data);
+       };
+    }
+
+  if (flags & update_second_derivatives)
+    this->compute_2nd (mapping, cell, offset, mapping_data, fe_data, data);
+}
+
+
+
+template <int dim>
+void
+FE_DGPMonomial<dim>::fill_fe_subface_values (const Mapping<dim>                   &mapping,
+                                    const typename DoFHandler<dim>::cell_iterator &cell,
+                                    const unsigned int                    face,
+                                    const unsigned int                    subface,
+                                    const Quadrature<dim-1>              &quadrature,
+                                    typename Mapping<dim>::InternalDataBase       &mapping_data,
+                                    typename Mapping<dim>::InternalDataBase       &fedata,
+                                    FEValuesData<dim>                    &data) const
+{
+                                  // convert data object to internal
+                                  // data for this class. fails with
+                                  // an exception if that is not
+                                  // possible
+  InternalData &fe_data = dynamic_cast<InternalData &> (fedata);
+  
+                                  // offset determines which data set
+                                  // to take (all data sets for all
+                                  // sub-faces are stored contiguously)
+  const typename QProjector<dim>::DataSetDescriptor offset
+    = (QProjector<dim>::DataSetDescriptor::
+       sub_face (face, subface, cell->face_orientation(face), 
+                 quadrature.n_quadrature_points));
+
+  const UpdateFlags flags(fe_data.update_once | fe_data.update_each);
+
+  for (unsigned int k=0; k<this->dofs_per_cell; ++k)
+    {
+      for (unsigned int i=0;i<quadrature.n_quadrature_points;++i)
+       if (flags & update_values)
+         data.shape_values(k,i) = fe_data.shape_values[k][i+offset];
+      
+      if (flags & update_gradients)
+       {
+         Assert (data.shape_gradients[k].size() + offset <=
+                 fe_data.shape_gradients[k].size(),
+                 ExcInternalError());    
+         mapping.transform_covariant(data.shape_gradients[k].begin(),
+                                     data.shape_gradients[k].end(),
+                                     fe_data.shape_gradients[k].begin()+offset,
+                                     mapping_data);
+       };
+    }
+  
+  if (flags & update_second_derivatives)
+    this->compute_2nd (mapping, cell, offset, mapping_data, fe_data, data);
+}
+
+
+
+template <int dim>
+unsigned int
+FE_DGPMonomial<dim>::n_base_elements () const
+{
+  return 1;
+}
+
+
+
+template <int dim>
+const FiniteElement<dim> &
+FE_DGPMonomial<dim>::base_element (const unsigned int index) const
+{
+  Assert (index==0, ExcIndexRange(index, 0, 1));
+  return *this;
+}
+
+
+
+template <int dim>
+unsigned int
+FE_DGPMonomial<dim>::element_multiplicity (const unsigned int index) const
+{
+  Assert (index==0, ExcIndexRange(index, 0, 1));
+  return 1;
+}
+
+
+#if deal_II_dimension == 1
+
+template <>
+bool
+FE_DGPMonomial<1>::has_support_on_face (const unsigned int shape_index,
+                                       const unsigned int face_index) const
+{
+  return face_index==1 || (face_index==0 && get_degree()==0);
+}
+
+#endif
+
+#if deal_II_dimension == 2
+
+template <>
+bool
+FE_DGPMonomial<2>::has_support_on_face (const unsigned int shape_index,
+                                       const unsigned int face_index) const
+{
+  bool support_on_face=false;
+  if (face_index==1 || face_index==2)
+    support_on_face=true;
+  else
+    {
+      unsigned int degrees[2];
+      polynomial_space.directional_degrees(shape_index, degrees);
+      if ((face_index==0 && degrees[1]==0) ||
+         (face_index==3 && degrees[0]==0))
+       support_on_face=true;
+    }
+  return support_on_face;
+}
+
+#endif
+
+#if deal_II_dimension == 3
+
+template <>
+bool
+FE_DGPMonomial<3>::has_support_on_face (const unsigned int shape_index,
+                                       const unsigned int face_index) const
+{
+  bool support_on_face=false;
+  if (face_index==1 || face_index==3 || face_index==4)
+    support_on_face=true;
+  else
+    {
+      unsigned int degrees[3];
+      polynomial_space.directional_degrees(shape_index, degrees);
+      if ((face_index==0 && degrees[1]==0) ||
+         (face_index==2 && degrees[2]==0) ||
+         (face_index==5 && degrees[0]==0))
+       support_on_face=true;
+    }
+  return support_on_face;
+}
+
+#endif
+
+
+template <int dim>
+unsigned int
+FE_DGPMonomial<dim>::memory_consumption () const
+{
+  Assert (false, ExcNotImplemented ());
+  return 0;
+}
+
+
+
+template class FE_DGPMonomial<deal_II_dimension>;

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.