]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Fix a bug in the documentation.
authorbangerth <bangerth@0785d39b-7218-0410-832d-ea1e28bc413d>
Thu, 16 Jul 2009 23:51:01 +0000 (23:51 +0000)
committerbangerth <bangerth@0785d39b-7218-0410-832d-ea1e28bc413d>
Thu, 16 Jul 2009 23:51:01 +0000 (23:51 +0000)
git-svn-id: https://svn.dealii.org/trunk@19106 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/base/include/base/geometry_info.h

index c1ad6a5e1680f3e3a4c7ddb92b544fa6056aac72..b5ed5ba9c1675979722f18d905c223ea8dd74623 100644 (file)
@@ -2065,47 +2065,41 @@ struct GeometryInfo
                                      * element to the element
                                      * described by the vertices.
                                      *
-                                     * For example, if
-                                     * dim==spacedim==2, then the
-                                     * alternating form is a scalar
-                                     * (because spacedim-dim=0) and
-                                     * its value equals $\mathbf
-                                     * v_1\wedge \mathbf v_2=\mathbf
-                                     * v_1\cdot\mathbf v_2$. If
-                                     * dim==spacedim==3, then the
-                                     * result is again a scalar with
-                                     * value $\mathbf v_1\wedge
-                                     * \mathbf v_2 \wedge \mathbf v_3
-                                     * = (\mathbf v_1\times \mathbf
-                                     * v_2)\cdot \mathbf v_3$, where
-                                     * $\mathbf v_1, \mathbf v_2,
-                                     * \mathbf v_3$ are the images of
-                                     * the unit vectors at a vertex
-                                     * of the unit dim-dimensional
-                                     * cell under transformation to
-                                     * the dim-dimensional cell in
-                                     * spacedim-dimensional space. In
-                                     * both cases, i.e. for dim==2 or
-                                     * 3, the result happens to equal
-                                     * the determinant of the
-                                     * Jacobian of the mapping from
-                                     * reference cell to cell in real
-                                     * space. Note that it is the
-                                     * actual determinant, not its
-                                     * absolute value as often used
-                                     * in transforming integrals from
-                                     * one coordinate system to
-                                     * another. In particular, if the
-                                     * object specified by the
-                                     * vertices is a parallelogram
-                                     * (i.e. a linear transformation
-                                     * of the reference cell) then
-                                     * the computed values are the
-                                     * same at all vertices and equal
-                                     * the (signed) area of the cell;
-                                     * similarly, for
-                                     * parallel-epipeds, it is the
-                                     * volume of the cell.
+                                     * For example, if dim==spacedim==2, then
+                                     * the alternating form is a scalar
+                                     * (because spacedim-dim=0) and its value
+                                     * equals $\mathbf v_1\wedge \mathbf
+                                     * v_2=\mathbf v_1^\perp \cdot\mathbf
+                                     * v_2$, where $\mathbf v_1^\perp$ is a
+                                     * vector that is rotated to the right by
+                                     * 90 degrees from $\mathbf v_1$. If
+                                     * dim==spacedim==3, then the result is
+                                     * again a scalar with value $\mathbf
+                                     * v_1\wedge \mathbf v_2 \wedge \mathbf
+                                     * v_3 = (\mathbf v_1\times \mathbf
+                                     * v_2)\cdot \mathbf v_3$, where $\mathbf
+                                     * v_1, \mathbf v_2, \mathbf v_3$ are the
+                                     * images of the unit vectors at a vertex
+                                     * of the unit dim-dimensional cell under
+                                     * transformation to the dim-dimensional
+                                     * cell in spacedim-dimensional space. In
+                                     * both cases, i.e. for dim==2 or 3, the
+                                     * result happens to equal the
+                                     * determinant of the Jacobian of the
+                                     * mapping from reference cell to cell in
+                                     * real space. Note that it is the actual
+                                     * determinant, not its absolute value as
+                                     * often used in transforming integrals
+                                     * from one coordinate system to
+                                     * another. In particular, if the object
+                                     * specified by the vertices is a
+                                     * parallelogram (i.e. a linear
+                                     * transformation of the reference cell)
+                                     * then the computed values are the same
+                                     * at all vertices and equal the (signed)
+                                     * area of the cell; similarly, for
+                                     * parallel-epipeds, it is the volume of
+                                     * the cell.
                                      *
                                      * This function is used in order to
                                      * determine how distorted a cell is (see

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.