]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Doc for doxygen
authorguido <guido@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 9 Jan 2004 12:21:14 +0000 (12:21 +0000)
committerguido <guido@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 9 Jan 2004 12:21:14 +0000 (12:21 +0000)
git-svn-id: https://svn.dealii.org/trunk@8294 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/base/include/base/polynomial_space.h

index a361da56374fdd0e32239ed54187259f7a153dc1..b837533f08dc4bbcc76bc112f6505e0191d09fdb 100644 (file)
@@ -2,7 +2,7 @@
 //    $Id$
 //    Version: $Name$
 //
-//    Copyright (C) 2000, 2001, 2002, 2003 by the deal.II authors
+//    Copyright (C) 2000, 2001, 2002, 2003, 2004 by the deal.II authors
 //
 //    This file is subject to QPL and may not be  distributed
 //    without copyright and license information. Please refer
  * Representation of the space of polynomials of degree at most n in
  * higher dimensions.
  *
- * Given a vector of @p{n} one-dimensional polynomials @p{P0} to @p{Pn},
- * where @p{Pi} has degree @p{i}, this class generates all polynomials
- * of the form @p{ Pijk(x,y,z) = Pi(x)Pj(y)Pk(z)}, where the sum of
- * @p{i}, @p{j} and @p{k} is less than or equal @p{n}.
+ * Given a vector of <i>n</i> one-dimensional polynomials
+ * <i>P<sub>0</sub></i> to <i>P<sub>n</sub></i>, where
+ * <i>P<sub>i</sub></i> has degree <i>i</i>, this class generates all
+ * polynomials of the form <i> P<sub>ijk</sub>(x,y,z) =
+ * P<sub>i</sub>(x)P<sub>j</sub>(y)P<sub>k</sub>(z)</i>, where the sum
+ * of <i>i</i>, <i>j</i> and <i>k</i> is less than or equal <i>n</i>.
  *
  * @author Guido Kanschat, 2002, Wolfgang Bangerth, 2003
  */
@@ -40,19 +42,18 @@ class PolynomialSpace
 {
   public:
                                     /**
-                                     * Constructor. @p{pols} is a
+                                     * Constructor. <tt>pols</tt> is a
                                      * vector of pointers to
                                      * one-dimensional polynomials
-                                     * and will be copied into the
-                                     * member variable
-                                     * @p{polynomials}.  The static
+                                     * and will be copied into a
+                                     * private member variable. The static
                                      * type of the template argument
-                                     * @p{pols} needs to be
+                                     * <tt>pols</tt> needs to be
                                      * convertible to
-                                     * @p{Polynomial<double>},
+                                     * Polynomials::Polynomial@<double@>,
                                      * i.e. should usually be a
                                      * derived class of
-                                     * @p{Polynomial<double>}.
+                                     * Polynomials::Polynomial@<double@>.
                                      */
     template <class Pol>
     PolynomialSpace (const std::vector<Pol> &pols);
@@ -61,11 +62,11 @@ class PolynomialSpace
                                      * Computes the value and the
                                      * first and second derivatives
                                      * of each polynomial at
-                                     * @p{unit_point}.
+                                     * <tt>unit_point</tt>.
                                      *
                                      * The size of the vectors must
-                                     * either be equal @p{0} or equal
-                                     * @p{n()}.  In the first case,
+                                     * either be equal 0 or equal
+                                     * n(). In the first case,
                                      * the function will not compute
                                      * these values, i.e. you
                                      * indicate what you want to have
@@ -76,9 +77,9 @@ class PolynomialSpace
                                      * derivatives of all polynomials
                                      * then use this function, rather
                                      * than using any of the
-                                     * @p{compute_value},
-                                     * @p{compute_grad} or
-                                     * @p{compute_grad_grad}
+                                     * compute_value(),
+                                     * compute_grad() or
+                                     * compute_grad_grad()
                                      * functions, see below, in a
                                      * loop over all polynomials.
                                      */
@@ -89,31 +90,31 @@ class PolynomialSpace
     
                                     /**
                                      * Computes the value of the
-                                     * @p{i}th polynomial at
-                                     * @p{unit_point}.
+                                     * <tt>i</tt>th polynomial at
+                                     * <tt>unit_point</tt>.
                                      *
-                                     * Consider using @p{compute} instead.
+                                     * Consider using compute() instead.
                                      */
     double compute_value (const unsigned int i,
                          const Point<dim> &p) const;
 
                                     /**
                                      * Computes the gradient of the
-                                     * @p{i}th polynomial at
-                                     * @p{unit_point}.
+                                     * <tt>i</tt>th polynomial at
+                                     * <tt>unit_point</tt>.
                                      *
-                                     * Consider using @p{compute} instead.
+                                     * Consider using compute() instead.
                                      */
     Tensor<1,dim> compute_grad (const unsigned int i,
                                const Point<dim> &p) const;
 
                                     /**
                                      * Computes the second derivative
-                                     * (grad_grad) of the @p{i}th
+                                     * (grad_grad) of the <tt>i</tt>th
                                      * polynomial at
-                                     * @p{unit_point}.
+                                     * <tt>unit_point</tt>.
                                      *
-                                     * Consider using @p{compute} instead.
+                                     * Consider using compute() instead.
                                      */
     Tensor<2,dim> compute_grad_grad (const unsigned int i,
                                      const Point<dim> &p) const;
@@ -122,12 +123,12 @@ class PolynomialSpace
                                      * Return the number of
                                      * polynomials spanning the space
                                      * represented by this
-                                     * class. Here, if @p{N} is the
+                                     * class. Here, if <tt>N</tt> is the
                                      * number of one-dimensional
                                      * polynomials given, then the
                                      * result of this function is
-                                     * @p{N} in 1d, @p{N(N+1)/2} in
-                                     * 2d, and @p{N(N+1)(N+2)/6 in
+                                     * <i>N</i> in 1d, <i>N(N+1)/2</i> in
+                                     * 2d, and <i>N(N+1)(N+2)/6</i> in
                                      * 3d.
                                      */
     unsigned int n () const;
@@ -154,7 +155,7 @@ class PolynomialSpace
            
   private:
                                     /**
-                                     * Copy of the vector @p{pols} of
+                                     * Copy of the vector <tt>pols</tt> of
                                      * polynomials given to the
                                      * constructor.
                                      */
@@ -162,7 +163,7 @@ class PolynomialSpace
 
                                     /**
                                      * Store the precomputed value
-                                     * which the @p{n()} function
+                                     * which the <tt>n()</tt> function
                                      * returns.
                                      */
     const unsigned int n_pols;
@@ -170,11 +171,11 @@ class PolynomialSpace
                                     /**
                                      * Compute numbers in x, y and z
                                      * direction. Given an index
-                                     * @p{n} in the d-dimensional
+                                     * <tt>n</tt> in the d-dimensional
                                      * polynomial space, compute the
                                      * indices i,j,k such that
-                                     * @p{p_n(x,y,z) =
-                                     * p_i(x)p_j(y)p_k(z)}.
+                                     * <i>p<sub>n</sub>(x,y,z) =
+                                     * p<sub>i</sub>(x)p<sub>j</sub>(y)p<sub>k</sub>(z)</i>.
                                      */
     void compute_index (const unsigned int n,
                         unsigned int      (&index)[dim]) const;
@@ -187,6 +188,7 @@ class PolynomialSpace
     static unsigned int compute_n_pols (const unsigned int n);
 };
 
+/// @if NoDoc
 
 /* -------------- declaration of explicit specializations --- */
 
@@ -232,6 +234,6 @@ PolynomialSpace<dim>::degree() const
   return polynomials.size();
 }
 
-  
+/// @endif  
 
 #endif

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.