]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Add step-32, a parallelized version of step-31.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Wed, 3 Sep 2008 12:52:45 +0000 (12:52 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Wed, 3 Sep 2008 12:52:45 +0000 (12:52 +0000)
git-svn-id: https://svn.dealii.org/trunk@16727 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-22/Makefile
deal.II/examples/step-22/step-22.cc
deal.II/examples/step-32/Makefile [new file with mode: 0644]
deal.II/examples/step-32/doc/intro.dox [new file with mode: 0644]
deal.II/examples/step-32/doc/results.dox [new file with mode: 0644]
deal.II/examples/step-32/step-31.cc [new file with mode: 0644]
deal.II/examples/step-4/Makefile

index a4436031f68feb0de71ea835e3ee817a8881283a..dbee705c634611a376ec1e60c7c07a1f0dadbeba 100644 (file)
@@ -14,7 +14,7 @@ target = $(basename $(shell echo step-*.cc))
 # run-time checking of parameters and internal states is performed, so
 # you should set this value to `on' while you develop your program,
 # and to `off' when running production computations.
-debug-mode = on
+debug-mode = off
 
 
 # As third field, we need to give the path to the top-level deal.II
index d95e4919745e502aa5ba9679d8e15e9e646e4755..e65e55cfbbc8eae108c1aa8efb68a62bd8b4022c 100644 (file)
@@ -221,7 +221,10 @@ BoundaryValues<dim>::value (const Point<dim>  &p,
          ExcIndexRange (component, 0, this->n_components));
   
   if (component == 0)
-    return (p[0] < 0 ? -1 : (p[0] > 0 ? 1 : 0));
+    if (p[1] < 0)
+      return (p[0] < -0.5 ? -1 : (p[0] > -0.5 ? 1 : 0));
+    else
+      return (p[0] < 0.5 ? -1 : (p[0] > 0.5 ? 1 : 0));      
   return 0;
 }
 
@@ -1201,7 +1204,7 @@ StokesProblem<dim>::output_results (const unsigned int refinement_cycle)  const
            << ".vtk";
 
   std::ofstream output (filename.str().c_str());
-  data_out.write_vtk (output);
+  data_out.write_gmv (output);
 }
 
 
@@ -1272,13 +1275,14 @@ void StokesProblem<dim>::run ()
   {
     std::vector<unsigned int> subdivisions (dim, 1);
     subdivisions[0] = 4;
+    subdivisions[1] = 4;
 
     const Point<dim> bottom_left = (dim == 2 ?
                                    Point<dim>(-2,-1) :
-                                   Point<dim>(-2,0,-1));
+                                   Point<dim>(-2,-2,-1));
     const Point<dim> top_right   = (dim == 2 ?
                                    Point<dim>(2,0) :
-                                   Point<dim>(2,1,0));
+                                   Point<dim>(2,2,0));
     
     GridGenerator::subdivided_hyper_rectangle (triangulation,
                                               subdivisions,
diff --git a/deal.II/examples/step-32/Makefile b/deal.II/examples/step-32/Makefile
new file mode 100644 (file)
index 0000000..7c05bcb
--- /dev/null
@@ -0,0 +1,188 @@
+# $Id: Makefile,v 1.4 2006/02/10 17:53:05 wolf Exp $
+
+
+# For the small projects Makefile, you basically need to fill in only
+# four fields.
+#
+# The first is the name of the application. It is assumed that the
+# application name is the same as the base file name of the single C++
+# file from which the application is generated.
+target = $(basename $(shell echo step-*.cc))
+
+# The second field determines whether you want to run your program in
+# debug or optimized mode. The latter is significantly faster, but no
+# run-time checking of parameters and internal states is performed, so
+# you should set this value to `on' while you develop your program,
+# and to `off' when running production computations.
+debug-mode = on
+
+
+# As third field, we need to give the path to the top-level deal.II
+# directory. You need to adjust this to your needs. Since this path is
+# probably the most often needed one in the Makefile internals, it is
+# designated by a single-character variable, since that can be
+# reference using $D only, i.e. without the parentheses that are
+# required for most other parameters, as e.g. in $(target).
+D = ../../
+
+
+# The last field specifies the names of data and other files that
+# shall be deleted when calling `make clean'. Object and backup files,
+# executables and the like are removed anyway. Here, we give a list of
+# files in the various output formats that deal.II supports.
+clean-up-files = *gmv *gnuplot *gpl *eps *pov *vtk
+
+
+
+
+#
+#
+# Usually, you will not need to change anything beyond this point.
+#
+#
+# The next statement tell the `make' program where to find the
+# deal.II top level directory and to include the file with the global
+# settings
+include $D/common/Make.global_options
+
+################################################################ 
+# This example program will only work if Trilinos is installed. If this
+# is not the case, then simply redefine the main targets to to nothing
+ifneq ($(USE_CONTRIB_TRILINOS),yes)
+default run clean:
+       @echo
+       @echo "===========================================================" 
+       @echo "=   This program cannot be compiled without Trilinos. Make="
+       @echo "=   sure you have Trilinos installed and detected during  ="
+       @echo "=   configuration of deal.II                              ="
+       @echo "==========================================================="
+       @echo
+
+else
+#
+################################################################
+
+
+
+
+# Since the whole project consists of only one file, we need not
+# consider difficult dependencies. We only have to declare the
+# libraries which we want to link to the object file, and there need
+# to be two sets of libraries: one for the debug mode version of the
+# application and one for the optimized mode. Here we have selected
+# the versions for 2d. Note that the order in which the libraries are
+# given here is important and that your applications won't link
+# properly if they are given in another order.
+#
+# You may need to augment the lists of libraries when compiling your
+# program for other dimensions, or when using third party libraries
+libs.g   = $(lib-deal2-2d.g) \
+          $(lib-deal2-3d.g) \
+          $(lib-lac.g)      \
+           $(lib-base.g)
+libs.o   = $(lib-deal2-2d.o) \
+          $(lib-deal2-3d.o) \
+          $(lib-lac.o)      \
+           $(lib-base.o)
+
+
+# We now use the variable defined above which switch between debug and
+# optimized mode to select the set of libraries to link with. Included
+# in the list of libraries is the name of the object file which we
+# will produce from the single C++ file. Note that by default we use
+# the extension .g.o for object files compiled in debug mode and .o for
+# object files in optimized mode (or whatever the local default on your
+# system is instead of .o).
+ifeq ($(debug-mode),on)
+  libraries = $(target).g.$(OBJEXT) $(libs.g)
+else
+  libraries = $(target).$(OBJEXT) $(libs.o)
+endif
+
+
+# Now comes the first production rule: how to link the single object
+# file produced from the single C++ file into the executable. Since
+# this is the first rule in the Makefile, it is the one `make' selects
+# if you call it without arguments.
+$(target) : $(libraries)
+       @echo ============================ Linking $@
+       @$(CXX) -o $@$(EXEEXT) $^ $(LIBS) $(LDFLAGS)
+
+
+# To make running the application somewhat independent of the actual
+# program name, we usually declare a rule `run' which simply runs the
+# program. You can then run it by typing `make run'. This is also
+# useful if you want to call the executable with arguments which do
+# not change frequently. You may then want to add them to the
+# following rule:
+run: $(target)
+       @echo ============================ Running $<
+       @./$(target)$(EXEEXT)
+
+
+
+# As a last rule to the `make' program, we define what to do when
+# cleaning up a directory. This usually involves deleting object files
+# and other automatically created files such as the executable itself,
+# backup files, and data files. Since the latter are not usually quite
+# diverse, you needed to declare them at the top of this file.
+clean:
+       -rm -f *.$(OBJEXT) *~ Makefile.dep $(target)$(EXEEXT) $(clean-up-files)
+
+
+# Since we have not yet stated how to make an object file from a C++
+# file, we should do so now. Since the many flags passed to the
+# compiler are usually not of much interest, we suppress the actual
+# command line using the `at' sign in the first column of the rules
+# and write the string indicating what we do instead.
+./%.g.$(OBJEXT) :
+       @echo ==============debug========= $(<F)
+       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
+./%.$(OBJEXT) :
+       @echo ==============optimized===== $(<F)
+       @$(CXX) $(CXXFLAGS.o) -c $< -o $@
+
+
+# A rule made to ensure that UMFPACK is indeed configured
+ifeq ($(USE_CONTRIB_UMFPACK),yes)
+UMFPACK-check:
+else
+UMFPACK-check:
+       @echo "This program can only be run if deal.II is configured with UMFPACK support"
+       @false
+endif
+
+
+
+# The following statement tells make that the rules `run' and `clean'
+# are not expected to produce files of the same name as Makefile rules
+# usually do.
+.PHONY: run clean UMFPACK-check
+
+
+# Finally there is a rule which you normally need not care much about:
+# since the executable depends on some include files from the library,
+# besides the C++ application file of course, it is necessary to
+# re-generate the executable when one of the files it depends on has
+# changed. The following rule to created a dependency file
+# `Makefile.dep', which `make' uses to determine when to regenerate
+# the executable. This file is automagically remade whenever needed,
+# i.e. whenever one of the cc-/h-files changed. Make detects whether
+# to remake this file upon inclusion at the bottom of this file.
+#
+# If the creation of Makefile.dep fails, blow it away and fail
+Makefile.dep: $(target).cc Makefile \
+              $(shell echo $D/*/include/*/*.h)
+       @echo ============================ Remaking $@
+       @$D/common/scripts/make_dependencies  $(INCLUDE) -B. $(target).cc \
+               > $@ \
+         || (rm -f $@ ; false)
+       @if test -s $@ ; then : else rm $@ ; fi
+
+
+# To make the dependencies known to `make', we finally have to include
+# them:
+include Makefile.dep
+
+
+endif  # USE_CONTRIB_TRILINOS
diff --git a/deal.II/examples/step-32/doc/intro.dox b/deal.II/examples/step-32/doc/intro.dox
new file mode 100644 (file)
index 0000000..33ce876
--- /dev/null
@@ -0,0 +1,914 @@
+<br>
+
+<i>This program was contributed by Martin Kronbichler and Wolfgang
+Bangerth. 
+<br>
+This material is based upon work partly supported by the National
+Science Foundation under Award No. EAR-0426271 and The California Institute of 
+Technology. Any opinions, findings, and conclusions or recommendations
+expressed in this publication are those of the author and do not
+necessarily reflect the views of the National Science Foundation or of The
+California Institute of Technology.
+</i>
+
+
+<a name="Intro"></a>
+<h1>Introduction</h1>
+
+<h3>The Boussinesq equations</h3>
+
+This program deals with an interesting physical problem: how does a
+fluid (i.e. a liquid or gas) behave if it experiences differences in
+buoyancy caused by temperature differences? It is clear that those
+parts of the fluid that are hotter (and therefore lighter) are going
+to rise up and those that are cooler (and denser) are going to sink
+down with gravity.
+
+In cases where the fluid moves slowly enough such that inertia effects
+can be neglected, the equations that describe such behavior are the
+Boussinesq equations that read as follows:
+@f{eqnarray*}
+  -\nabla \cdot \eta \varepsilon ({\mathbf u}) + \nabla p &=& 
+  \mathrm{Ra} \; T \mathbf{g},
+  \\
+  \nabla \cdot {\mathbf u} &=& 0,
+  \\
+  \frac{\partial T}{\partial t}
+  +
+  {\mathbf u} \cdot \nabla T
+  -
+  \nabla \cdot \kappa \nabla T &=& \gamma.
+@f}
+These equations fall into the class of vector-valued problems (a
+toplevel overview of this topic can be found in the @ref vector_valued module).
+Here, <b>u</b> is the velocity field, <i>p</i> the pressure, and <i>T</i>
+the temperature of the fluid. $\varepsilon ({\mathbf u}) = \frac 12
+[(\nabla{\mathbf u}) + (\nabla {\mathbf u})^T]$ is the symmetric
+gradient of the velocity. As can be seen, velocity and pressure
+solve a Stokes equation describing the motion of an incompressible
+fluid, an equation we have previously considered in @ref step_22 "step-22"; we
+will draw extensively on the experience we have gained in that program, in
+particular with regard to efficient linear Stokes solvers. 
+
+The forcing term of the fluid motion is the buoyancy of the
+fluid, expressed as the product of the Rayleigh number $\mathrm{Ra}$,
+the temperature <i>T</i> and the gravity vector <b>g</b>. (A possibly
+more intuitive formulation would use $\mathrm{Ra} \; (T-\bar T)
+\mathbf{g}$ as right hand side where $\bar T$ is the average
+temperature, and the right hand side then describes the forces due to
+local deviations from the average density; this formulation is
+entirely equivalent if the gravity vector results from a gravity
+potential $\phi$, i.e. $\mathbf{g}=-\nabla\phi$, and yields the exact
+same solution except for the pressure which will now be $p+\mathrm{Ra}
+\;\bar T \phi$.)
+
+While the first two equations describe how the fluid reacts to
+temperature differences by moving around, the third equation states
+how the fluid motion affects the temperature field: it is an advection
+diffusion equation, i.e. the temperature is attached to the fluid
+particles and advected along in the flow field, with an additional
+diffusion (heat conduction) term. In many applications, the diffusion
+coefficient is fairly small, and the temperature equation is in fact
+transport, not diffusion dominated and therefore in character more hyperbolic
+than elliptic; we will have to take this into account when developing a stable
+discretization. 
+
+In the equations above, the term $\gamma$ on the right hand side denotes the
+heat sources and may be a spatially and temporally varying function. $\eta$
+and $\kappa$ denote the viscosity and diffusivity coefficients, which we assume
+constant for this tutorial program. The more general case when $\eta$ depends on
+the temperature is an important factor in physical applications: Most materials
+become more fluid as they get hotter (i.e., $\eta$ decreases with <i>T</i>);
+sometimes, as in the case of rock minerals at temperatures close to their
+melting point, $\eta$ may change by orders of magnitude over the typical range
+of temperatures.
+
+$\mathrm{Ra}$, called the <a
+href="http://en.wikipedia.org/wiki/Rayleigh_number">Rayleigh
+number</a>, is a dimensionless number that describes the ratio of heat
+transport due to convection induced by buoyancy changes from
+temperature differences, and of heat transport due to thermal
+diffusion. A small Rayleigh number implies that buoyancy is not strong
+relative to viscosity and fluid motion <b>u</b> is slow enough so
+that heat diffusion $\kappa\Delta T$ is the dominant heat transport
+term. On the other hand, a fluid with a high Rayleigh number will show
+vigorous convection that dominates heat conduction. 
+
+For most fluids for which we are interested in computing thermal
+convection, the Rayleigh number is very large, often $10^6$ or
+larger. From the structure of the equations, we see that this will
+lead to large pressure differences and large velocities. Consequently,
+the convection term in the convection-diffusion equation for <i>T</i> will
+also be very large and an accurate solution of this equation will
+require us to choose small time steps. Problems with large Rayleigh
+numbers are therefore hard to solve numerically for similar reasons
+that make solving the <a
+href="http://en.wikipedia.org/wiki/Navier-stokes_equations">Navier-Stokes
+equations</a> hard to solve when the <a
+href="http://en.wikipedia.org/wiki/Reynolds_number">Reynolds number
+$\mathrm{Re}$</a> is large.
+
+Note that a large Rayleigh number does not necessarily involve large
+velocities in absolute terms. For example, the Rayleigh number in the
+earth mantle has a Rayleigh number larger than $10^6$. Yet the
+velocities are small: the material is in fact solid rock but it is so
+hot and under pressure that it can flow very slowly, on the order of
+at most a few centimeters per year. Nevertheless, this can lead to
+mixing over time scales of many million years, a time scale much
+shorter than for the same amount of heat to be distributed by thermal
+conductivity and a time scale of relevance to affect the evolution of the
+earth's interior and surface structure.
+
+
+
+<h3>%Boundary and initial conditions</h3>
+
+Since the Boussinesq equations are derived under the assumption that inertia
+of the fluid's motion does not play a role, the flow field is at each time
+entirely determined by buoyancy difference at that time, not by the flow field
+at previous times. This is reflected by the fact that the first two equations
+above are the steady state Stokes equation that do not contain a time
+derivative. Consequently, we do not need initial conditions for either
+velocities or pressure. On the other hand, the temperature field does satisfy
+an equation with a time derivative, so we need initial conditions for <i>T</i>.
+
+As for boundary conditions: if $\kappa>0$ then the temperature
+satisfies a second order differential equation that requires
+boundary data all around the boundary for all times. These can either be a
+prescribed boundary temperature $T|_{\partial\Omega}=T_b$ (Dirichlet boundary
+conditions), or a prescribed thermal flux $\mathbf{n}\cdot\kappa\nabla
+T|_{\partial\Omega}=\phi$; in this program, we will use an insulated boundary
+condition, i.e. prescribe no thermal flux: $\phi=0$. 
+
+Similarly, the velocity field requires us to pose boundary conditions. These
+may be no-slip no-flux conditions <b>u</b>=0 on $\partial\Omega$ if the fluid
+sticks to the boundary, or no normal flux conditions $\mathbf n \cdot \mathbf
+u = 0$ if the fluid can flow along but not across the boundary, or any number
+of other conditions that are physically reasonable. In this program, we will
+use no normal flux conditions.
+
+
+<h3>Solution approach</h3>
+
+Like the equations solved in @ref step_21 "step-21", we here have a
+system of differential-algebraic equations (DAE): with respect to the time
+variable, only the temperature equation is a differential equation
+whereas the Stokes system for <b>u</b> and <i>p</i> has no
+time-derivatives and is therefore of the sort of an algebraic
+constraint that has to hold at each time instant. The main difference
+to @ref step_21 "step-21" is that the algebraic constraint there was a
+mixed Laplace system of the form
+@f{eqnarray*}
+  \mathbf u + {\mathbf K}\lambda \nabla p &=& 0, \\
+  \nabla\cdot \mathbf u &=& f,
+@f}
+where now we have a Stokes system
+@f{eqnarray*}
+  -\nabla \cdot \eta \varepsilon ({\mathbf u}) + \nabla p &=& f, \\
+  \nabla\cdot \mathbf u &=& 0,
+@f}
+where $\nabla \cdot \eta \varepsilon (\cdot)$ is an operator similar to the
+Laplacian $\Delta$ applied to a vector field.
+
+Given the similarity to what we have done in @ref step_21 "step-21",
+it may not come as a surprise that we choose a similar approach,
+although we will have to make adjustments for the change in operator
+in the top-left corner of the differential operator. 
+
+
+<h4>Time stepping</h4>
+
+The structure of the problem as a DAE allows us to use the same
+strategy as we have already used in @ref step_21 "step-21", i.e. we
+use a time lag scheme: first solve the Stokes equations for velocity and
+pressure using the temperature field from the previous time step, then
+with the new velocities update the temperature field for the current
+time step. In other words, in time step <i>n</i> we first solve the Stokes
+system
+@f{eqnarray*}
+  -\nabla \cdot \eta \varepsilon ({\mathbf u}^n) + \nabla p^n &=& 
+  \mathrm{Ra} \; T^{n-1} \mathbf{g},
+  \\
+  \nabla \cdot {\mathbf u}^n &=& 0,
+@f}
+and then the temperature equation with the so-computed velocity field 
+${\mathbf u}^n$. In contrast to @ref step_21 "step-21", we'll use a
+higher order time stepping scheme here, namely the <a 
+href="http://en.wikipedia.org/wiki/Backward_differentiation_formula">Backward
+Differentiation Formula scheme of order 2 (BDF-2 in short)</a> that
+replaces the time derivative $\frac{\partial T}{\partial t}$ by the (one-sided)
+difference quotient $\frac{\frac 32 T^{n}-2T^{n-1}+\frac 12 T^{n-2}}{k}$ with
+<i>k</i> the time step size.
+
+This gives the discretized-in-time temperature equation
+@f{eqnarray*}
+  \frac 32 T^n
+  -
+  k\nabla \cdot \kappa \nabla T^n 
+  &=& 
+  2 T^{n-1}
+  -
+  \frac 12 T^{n-2}
+  -
+  k{\mathbf u}^n \cdot \nabla (2T^{n-1}-T^{n-2})
+  +
+  k\gamma.
+@f}
+Note how the temperature equation is
+solved semi-explicitly: diffusion is treated implicitly whereas
+advection is treated explicitly using the just-computed velocity
+field but only previously computed temperature fields. The
+temperature terms appearing in the advection term are forward
+projected to the current time:
+$T^n \approx T^{n-1} + k_n
+\frac{\partial T}{\partial t} \approx T^{n-1} + k_n
+\frac{T^{n-1}-T^{n-2}}{k_n} = 2T^{n-1}-T^{n-2}$. We need this projection
+for maintaining the order of accuracy of the BDF-2 scheme. In other words, the
+temperature fields we use in the explicit right hand side are first
+order approximations of the current temperature field &mdash; not
+quite an explicit time stepping scheme, but by character not too far
+away either.
+
+The introduction of the temperature extrapolation limits the time step
+by a <a href="http://en.wikipedia.org/wiki/Courant–Friedrichs–Lewy_condition">
+Courant-Friedrichs-Lewy (CFL) condition</a> just like it was in 
+@ref step_21 "step-21". (We wouldn't have had that stability condition if
+we treated the advection term implicitly since the BDF-2 scheme is A-stable, 
+at the price that we needed to build a new temperature matrix at each time 
+step.) We will discuss the exact choice of time step in the <a
+href="#Results">results section</a>, but for the moment of importance is that 
+this CFL condition means that the time step
+size <i>k</i> may change from time step to time step, and that we have to
+modify the above formula slightly. If $k_n,k_{n-1}$ are the time steps
+sizes of the current and previous time step, then we use the
+approximations 
+$\frac{\partial T}{\partial t} \approx
+ \frac 1{k_n}
+ \left(
+       \frac{2k_n+k_{n-1}}{k_n+k_{n-1}} T^{n} 
+       -
+       \frac{k_n+k_{n-1}}{k_{n-1}}T^{n-1} 
+       +
+       \frac{k_n^2}{k_{n-1}(k_n+k_{n-1})} T^{n-2}
+ \right)$
+and
+$T^n \approx 
+   T^{n-1} + k_n \frac{\partial T}{\partial t} 
+   \approx
+   T^{n-1} + k_n
+   \frac{T^{n-1}-T^{n-2}}{k_{n-1}}
+   =
+   \left(1+\frac{k_n}{k_{n-1}}\right)T^{n-1}-\frac{k_n}{k_{n-1}}T^{n-2}$,
+and above equation is generalized as follows:
+@f{eqnarray*}
+  \frac{2k_n+k_{n-1}}{k_n+k_{n-1}} T^n
+  -
+  k_n\nabla \cdot \kappa \nabla T^n 
+  &=& 
+  \frac{k_n+k_{n-1}}{k_{n-1}} T^{n-1}
+  -
+  \frac{k_n^2}{k_{n-1}(k_n+k_{n-1})} T^{n-2}
+  -
+  k_n{\mathbf u}^n \cdot \nabla \left[
+    \left(1+\frac{k_n}{k_{n-1}}\right)T^{n-1}-\frac{k_n}{k_{n-1}}T^{n-2}
+  \right]
+  +
+  k_n\gamma.
+@f}
+That's not an easy to read equation, but will provide us with the
+desired higher order accuracy. As a consistency check, it is easy to
+verify that it reduces to the same equation as above if $k_n=k_{n-1}$.
+
+As a final remark we note that the choice of a higher order time
+stepping scheme of course forces us to keep more time steps in memory;
+in particular, we here will need to have $T^{n-2}$ around, a vector
+that we could previously discard. This seems like a nuisance that we
+were able to avoid previously by using only a first order time
+stepping scheme, but as we will see below when discussing the topic of
+stabilization, we will need this vector anyway and so keeping it
+around for time discretization is essentially for free and gives us
+the opportunity to use a higher order scheme.
+
+
+<h4>Weak form and space discretization for the Stokes part</h4>
+
+Like solving the mixed Laplace equations, solving the Stokes equations
+requires us to choose particular pairs of finite elements for
+velocities and pressure variables. Because this has already been discussed in
+@ref step_22 "step-22", we only cover this topic briefly:
+Here, we use the
+stable pair $Q_{p+1}^d \times Q_p, p\ge 1$. These are continuous
+elements, so we can form the weak form of the Stokes equation without
+problem by integrating by parts and substituting continuous functions
+by their discrete counterparts:
+@f{eqnarray*}
+  (\nabla {\mathbf v}_h, \eta \varepsilon ({\mathbf u}^n_h))
+  -
+  (\nabla \cdot {\mathbf v}_h, p^n_h) 
+  &=& 
+  ({\mathbf v}_h, \mathrm{Ra} \; T^{n-1}_h \mathbf{g}),
+  \\
+  (q_h, \nabla \cdot {\mathbf u}^n_h) &=& 0,
+@f}
+for all test functions $\mathbf v_h, q_h$. The first term of the first
+equation is considered as the inner product between tensors, i.e.
+$(\nabla {\mathbf v}_h, \eta \varepsilon ({\mathbf u}^n_h))_\Omega
+ = \int_\Omega \sum_{i,j=1}^d [\nabla {\mathbf v}_h]_{ij}
+           \eta [\varepsilon ({\mathbf u}^n_h)]_{ij}\, dx$.
+Because the second tensor in this product is symmetric, the
+anti-symmetric component of $\nabla {\mathbf v}_h$ plays no role and
+it leads to the entirely same form if we use the symmetric gradient of
+$\mathbf v_h$ instead. Consequently, the formulation we consider and
+that we implement is
+@f{eqnarray*}
+  (\varepsilon({\mathbf v}_h), \eta \varepsilon ({\mathbf u}^n_h))
+  -
+  (\nabla \cdot {\mathbf v}_h, p^n_h) 
+  &=& 
+  ({\mathbf v}_h, \mathrm{Ra} \; T^{n-1}_h \mathbf{g}),
+  \\
+  (q_h, \nabla \cdot {\mathbf u}^n_h) &=& 0.
+@f}
+
+This is exactly the same as what we already discussed in 
+@ref step_22 "step-22" and there is not much more to say about this here.
+
+
+<h4>Stabilization, weak form and space discretization for the temperature equation</h4>
+
+The more interesting question is what to do with the temperature
+advection-diffusion equation. By default, not all discretizations of
+this equation are equally stable unless we either do something like
+upwinding, stabilization, or all of this. One way to achieve this is
+to use discontinuous elements (i.e. the FE_DGQ class that we used, for
+example, in the discretization of the transport equation in 
+@ref step_12 "step-12", or in discretizing the pressure in 
+@ref step_20 "step-20" and @ref step_21 "step-21") and to define a
+flux at the interface between cells that takes into account
+upwinding. If we had a pure advection problem this would probably be
+the simplest way to go. However, here we have some diffusion as well,
+and the discretization of the Laplace operator with discontinuous
+elements is cumbersome because of the significant number of additional
+terms that need to be integrated on each face between
+cells. Discontinuous elements also have the drawback that the use of
+numerical fluxes introduces an additional numerical diffusion that
+acts everywhere, whereas we would really like to minimize the effect
+of numerical diffusion to a minimum and only apply it where it is
+necessary to stabilize the scheme.
+
+A better alternative is therefore to add some nonlinear viscosity to
+the model. Essentially, what this does is to transform the temperature
+equation from the form 
+@f{eqnarray*}
+  \frac{\partial T}{\partial t}
+  +
+  {\mathbf u} \cdot \nabla T
+  -
+  \nabla \cdot \kappa \nabla T &=& \gamma
+@f}
+to something like
+@f{eqnarray*}
+  \frac{\partial T}{\partial t}
+  +
+  {\mathbf u} \cdot \nabla T
+  -
+  \nabla \cdot (\kappa+\nu(T)) \nabla T &=& \gamma,
+@f}
+where $\nu(T)$ is an addition viscosity (diffusion) term that only
+acts in the vicinity of shocks and other discontinuities. $\nu(T)$ is
+chosen in such a way that if <i>T</i> satisfies the original equations, the
+additional viscosity is zero.
+
+To achieve this, the literature contains a number of approaches. We
+will here follow one developed by Guermond and Popov that builds on a
+suitably defined residual and a limiting procedure for the additional
+viscosity. To this end, let us define a residual $R_\alpha(T)$ as follows:
+@f{eqnarray*}
+  R_\alpha(T)
+  =
+  \left(
+  \frac{\partial T}{\partial t}
+  +
+  {\mathbf u} \cdot \nabla T
+  -
+  \nabla \cdot \kappa \nabla T - \gamma
+  \right)
+  T^{\alpha-1}
+@f}
+where we will later choose the stabilization exponent $\alpha$ from
+within the range $[1,2]$. Note that $R_\alpha(T)$ will be zero if $T$
+satisfies the temperature equation, since then the term in parentheses
+will be zero. Multiplying terms out, we get the following, entirely
+equivalent form:
+@f{eqnarray*}
+  R_\alpha(T)
+  =
+  \frac 1\alpha
+  \frac{\partial (T^\alpha)}{\partial t}
+  +
+  \frac 1\alpha
+  {\mathbf u} \cdot \nabla (T^\alpha)
+  -
+  \frac 1\alpha
+  \nabla \cdot \kappa \nabla (T^\alpha)
+  +
+  \kappa(\alpha-1)
+  T^{\alpha-2} |\nabla T|^\alpha
+  - 
+  \gamma
+  T^{\alpha-1}
+@f}
+
+With this residual, we can now define the artificial viscosity as
+a piecewise constant function defined on each cell $K$ with diameter
+$h_K$ separately as
+follows:
+@f{eqnarray*}
+  \nu_\alpha(T)|_K
+  =
+  \beta
+  \|\mathbf{u}\|_{L^\infty(K)}
+  \min\left\{
+    h_K,
+    h_K^\alpha
+    \frac{\|R_\alpha(T)\|_{L^\infty(K)}}{c(\mathbf{u},T)}
+  \right\}
+@f}
+
+Here, $\beta$ is a stabilization constant (a dimensional analysis
+reveals that it is unitless and therefore independent of scaling; we will
+discuss its choice in the <a href="#Results">results section</a>) and
+$c(\mathbf{u},T)$ is a normalization constant that must have units
+$\frac{m^{\alpha-1}K^\alpha}{s}$. We will choose it as
+$c(\mathbf{u},T) = 
+ c_R\ \|\mathbf{u}\|_{L^\infty(\Omega)} \ \mathrm{var}(T)
+ \ |\mathrm{diam}(\Omega)|^{\alpha-2}$,
+where $\mathrm{var}(T)=\max_\Omega T - \min_\Omega T$ is the range of present
+temperature values (remember that buoyancy is driven by temperature
+variations, not the absolute temperature) and $c_R$ is a dimensionless
+constant. To understand why this method works consider this: If on a particular
+cell $K$ the temperature field is smooth, then we expect the residual
+to be small there (in fact to be on the order of ${\cal O}(h_K)$) and
+the stabilization term that injects artificial diffusion will there be
+of size $h_K^{\alpha+1}$ &mdash; i.e. rather small, just as we hope it to
+be when no additional diffusion is necessary. On the other hand, if we
+are on or close to a discontinuity of the temperature field, then the
+residual will be large; the minimum operation in the definition of
+$\nu_\alpha(T)$ will then ensure that the stabilization has size $h_K$
+&mdash; the optimal amount of artificial viscosity to ensure stability of
+the scheme.
+
+It is certainly a good questions whether this scheme really works?
+Computations by Guermond and Popov have shown that this form of
+stabilization actually performs much better than most of the other
+stabilization schemes that are around (for example streamline
+diffusion, to name only the simplest one). Furthermore, for $\alpha\in
+[1,2)$ they can even prove that it produces better convergence orders
+for the linear transport equation than for example streamline
+diffusion. For $\alpha=2$, no theoretical results are currently
+available, but numerical tests indicate that the results
+are considerably better than for $\alpha=1$.
+
+A more practical question is how to introduce this artificial
+diffusion into the equations we would like to solve. Note that the
+numerical viscosity $\nu(T)$ is temperature-dependent, so the equation
+we want to solve is nonlinear in <i>T</i> &mdash; not what one desires from a
+simple method to stabilize an equation, and even less so if we realize
+that $\nu(T)$ is non-differentiable in <i>T</i>. However, there is no
+reason to despair: we still have to discretize in time and we can
+treat the term explicitly.
+
+In the definition of the stabilization parameter, we approximate the time
+derivative by $\frac{\partial T}{\partial t} \approx 
+\frac{T^{n-1}-T^{n-2}}{k^{n-1}}$. This approximation makes only use
+of available time data and this is the reason why we need to store data of two 
+previous time steps (which enabled us to use the BDF-2 scheme without
+additional storage cost). We could now simply evaluate the rest of the
+terms at $t_{n-1}$, but then the discrete residual would be nothing else than
+a backward Euler approximation, which is only first order accurate. So, in
+case of smooth solutions, the residual would be still of the order <i>h</i>, 
+despite the second order time accuracy in the outer BDF-2 scheme and the 
+spatial FE discretization. This is certainly not what we want to have
+(in fact, we desired to have small residuals in regions where the solution
+behaves nicely), so a bit more care is needed. The key to this problem
+is to observe that the first derivative as we constructed it is actually 
+centered at $t_{n-\frac{3}{2}}$. We get the desired second order accurate
+residual calculation if we evaluate all spatial terms at $t_{n-\frac{3}{2}}$
+by using the approximation $\frac 12 T^{n-1}+\frac 12 T^{n-2}$, which means
+that we calculate the nonlinear viscosity as a function of this
+intermediate temperature, $\nu_\alpha = 
+\nu_\alpha\left(\frac 12 T^{n-1}+\frac 12 T^{n-2}\right)$. Note that this
+evaluation of the residual is nothing else than a Crank-Nicholson scheme,
+so we can be sure that now everything is alright. One might wonder whether
+it is a problem that the numerical viscosity now is not evaluated at 
+time <i>n</i> (as opposed to the rest of the equation). However, this offset
+is uncritical: For smooth solutions, $\nu_\alpha$ will vary continuously,
+so the error in time offset is <i>k</i> times smaller than the nonlinear
+viscosity itself, i.e., it is a small higher order contribution that is 
+left out. That's fine because the term itself is already at the level of
+discretization error in smooth regions.
+
+Using the BDF-2 scheme introduced above,
+this yields for the simpler case of uniform time steps of size <i>k</i>:
+@f{eqnarray*}
+  \frac 32 T^n
+  -
+  k\nabla \cdot \kappa \nabla T^n 
+  &=& 
+  2 T^{n-1}
+  -
+  \frac 12 T^{n-2}
+  \\
+  &&
+  +
+  k\nabla \cdot 
+  \left[
+    \nu_\alpha\left(\frac 12 T^{n-1}+\frac 12 T^{n-2}\right) 
+    \ \nabla (2T^{n-1}-T^{n-2})
+  \right]
+  \\
+  &&
+  -
+  k{\mathbf u}^n \cdot \nabla (2T^{n-1}-T^{n-2})
+  \\
+  &&
+  +
+  k\gamma.
+@f}
+On the left side of this equation remains the term from the time
+derivative and the original (physical) diffusion which we treat
+implicitly (this is actually a nice term: the matrices that result
+from the left hand side are the mass matrix and a multiple of the
+Laplace matrix &mdash; both are positive definite and if the time step
+size <i>k</i> is small, the sum is simple to invert). On the right hand
+side, the terms in the first line result from the time derivative; in
+the second line is the artificial diffusion at time $t_{n-\frac
+32}$; the third line contains the
+advection term, and the fourth the sources. Note that the
+artificial diffusion operates on the extrapolated
+temperature at the current time in the same way as we have discussed
+the advection works in the section on time stepping.
+
+The form for non-uniform time steps that we will have to use in
+reality is a bit more complicated (which is why we showed the simpler
+form above first) and reads:
+@f{eqnarray*}
+  \frac{2k_n+k_{n-1}}{k_n+k_{n-1}} T^n
+  -
+  k_n\nabla \cdot \kappa \nabla T^n 
+  &=& 
+  \frac{k_n+k_{n-1}}{k_{n-1}} T^{n-1}
+  -
+  \frac{k_n^2}{k_{n-1}(k_n+k_{n-1})} T^{n-2}
+  \\
+  &&
+  +
+  k_n\nabla \cdot 
+  \left[
+    \nu_\alpha\left(\frac 12 T^{n-1}+\frac 12 T^{n-2}\right) 
+    \ \nabla  \left[
+    \left(1+\frac{k_n}{k_{n-1}}\right)T^{n-1}-\frac{k_n}{k_{n-1}}T^{n-2}
+  \right]
+  \right]
+  \\
+  &&
+  -
+  k_n{\mathbf u}^n \cdot \nabla \left[
+    \left(1+\frac{k_n}{k_{n-1}}\right)T^{n-1}-\frac{k_n}{k_{n-1}}T^{n-2}
+  \right]
+  \\
+  &&
+  +
+  k_n\gamma.
+@f}
+
+After settling all these issues, the weak form follows naturally from
+the strong form shown in the last equation, and we immediately arrive
+at the weak form of the discretized equations:
+@f{eqnarray*}
+  \frac{2k_n+k_{n-1}}{k_n+k_{n-1}} (\tau_h,T_h^n)
+  +
+  k_n (\nabla \tau_h, \kappa \nabla T_h^n)
+  &=& 
+  \biggl(\tau_h, 
+  \frac{k_n+k_{n-1}}{k_{n-1}} T_h^{n-1}
+  -
+  \frac{k_n^2}{k_{n-1}(k_n+k_{n-1})} T_h^{n-2}
+  \\
+  &&\qquad\qquad
+  -
+  k_n{\mathbf u}_h^n \cdot \nabla \left[
+    \left(1+\frac{k_n}{k_{n-1}}\right)T^{n-1}-\frac{k_n}{k_{n-1}}T^{n-2}
+  \right]
+  +
+  k_n\gamma \biggr)
+  \\
+  &&
+  -
+  k_n \left(\nabla \tau_h, 
+    \nu_\alpha\left(\frac 12 T_h^{n-1}+\frac 12 T_h^{n-2}\right) 
+    \ \nabla \left[
+    \left(1+\frac{k_n}{k_{n-1}}\right)T^{n-1}-\frac{k_n}{k_{n-1}}T^{n-2}
+  \right]
+  \right)
+@f}
+for all discrete test functions $\tau_h$. Here, the diffusion term has been
+integrated by parts, and we have used that we will impose no thermal flux,
+$\mathbf{n}\cdot\kappa\nabla T|_{\partial\Omega}=0$.
+
+This then results in a
+matrix equation of form
+@f{eqnarray*}
+  \left( \frac{2k_n+k_{n-1}}{k_n+k_{n-1}} M+k_n A_T\right) T_h^n = F(U_h^n,T_h^{n-1},T_h^{n-2}),
+@f}
+which given the structure of matrix on the left (the sum of two
+positive definite matrices) is easily solved using the Conjugate
+Gradient method.
+
+
+
+<h4>Linear solvers</h4>
+
+As explained above, our approach to solving the joint system for
+velocities/pressure on the one hand and temperature on the other is to use an
+operator splitting where we first solve the Stokes system for the velocities
+and pressures using the old temperature field, and then solve for the new
+temperature field using the just computed velocity field. 
+
+
+<h5>Linear solvers for the Stokes problem</h5>
+
+Solving the linear equations coming from the Stokes system has been
+discussed in great detail in @ref step_22 "step-22". In particular, in
+the results section of that program, we have discussed a number of
+alternative linear solver strategies that turned out to be more
+efficient than the original approach. The best alternative
+identified there we to use a GMRES solver preconditioned by a block
+matrix involving the Schur complement. Specifically, the Stokes
+operator leads to a block structured matrix
+@f{eqnarray*}
+  \left(\begin{array}{cc}
+    A & B^T \\ B & 0
+  \end{array}\right)
+@f}
+and as discussed there a good preconditioner is
+@f{eqnarray*}
+  P^{-1}
+  = 
+  \left(\begin{array}{cc}
+    A^{-1} & 0 \\ S^{-1} B A^{-1} & -S^{-1}
+  \end{array}\right)
+@f}
+where <i>S</i> is the Schur complement of the Stokes operator
+$S=B^TA^{-1}B$. Of course, this preconditioner is not useful because we
+can't form the various inverses of matrices, but we can use the
+following as a preconditioner:
+@f{eqnarray*}
+  \tilde P^{-1}
+  = 
+  \left(\begin{array}{cc}
+    \tilde A^{-1} & 0 \\ \tilde S^{-1} B \tilde A^{-1} & -\tilde S^{-1}
+  \end{array}\right)
+@f}
+where $\tilde A^{-1},\tilde S^{-1}$ are approximations to the inverse
+matrices. In particular, it turned out that <i>S</i> is spectrally
+equivalent to the mass matrix and consequently replacing $\tilde
+S^{-1}$ by a CG solver applied to the mass matrix on the pressure
+space was a good choice.
+
+It was more complicated to come up with a good replacement $\tilde
+A^{-1}$, which corresponds to the discretized symmetric Laplacian of
+the vector-valued velocity field, i.e. 
+$A_{ij} = (\varepsilon {\mathbf v}_i, \eta \varepsilon ({\mathbf
+v}_j))$.
+In @ref step_22 "step-22" we used a sparse LU decomposition (using the
+SparseDirectUMFPACK class) of <i>A</i> for $\tilde A^{-1}$ &mdash; the
+perfect preconditioner &mdash; in 2d, but for 3d memory and compute
+time is not usually sufficient to actually compute this decomposition;
+consequently, we only use an incomplete LU decomposition (ILU, using
+the SparseILU class) in 3d.
+
+For this program, we would like to go a bit further. To this end, note
+that the symmetrized bilinear form on vector fields, 
+$(\varepsilon {\mathbf v}_i, \eta \varepsilon ({\mathbf v}_j))$
+is not too far away from the nonsymmetrized version,
+$(\nabla {\mathbf v}_i, \eta \nabla {\mathbf v}_j)
+= \sum_{k,l=1}^d 
+  (\partial_k ({\mathbf v}_i)_l, \eta \partial_k ({\mathbf v}_j)_l)
+$. The latter,
+however, has the advantage that the <code>dim</code> vector components
+of the test functions are not coupled (well, almost, see below),
+i.e. the resulting matrix is block-diagonal: one block for each vector
+component, and each of these blocks is equal to the Laplace matrix for
+this vector component. So assuming we order degrees of freedom in such
+a way that first all <i>x</i>-components of the velocity are numbered, then
+the <i>y</i>-components, and then the <i>z</i>-components, then the matrix
+$\hat A$ that is associated with this slightly different bilinear form has
+the form
+@f{eqnarray*}
+  \hat A =
+  \left(\begin{array}{ccc}
+    A_s & 0 & 0 \\ 0 & A_s & 0 \\ 0 & 0 & A_s
+  \end{array}\right)
+@f}
+where $A_s$ is a Laplace matrix of size equal to the number of shape functions
+associated with each component of the vector-valued velocity. With this
+matrix, one could be tempted to define our preconditioner for the
+velocity matrix <i>A</i> as follows:
+@f{eqnarray*}
+  \tilde A^{-1} =
+  \left(\begin{array}{ccc}
+    \tilde A_s^{-1} & 0 & 0 \\
+    0 & \tilde A_s^{-1} & 0 \\ 
+    0 & 0 & \tilde A_s^{-1}
+  \end{array}\right),
+@f}
+where $\tilde A_s^{-1}$ is a preconditioner for the Laplace matrix &mdash;
+something where we know very well how to build good preconditioners! 
+
+In reality, the story is not quite as simple: To make the matrix
+$\tilde A$ definite, we need to make the individual blocks $\tilde
+A_s$ definite by applying boundary conditions. One can try to do so by
+applying Dirichlet boundary conditions all around the boundary, and
+then the so-defined preconditioner $\tilde A^{-1}$ turns out to be a
+good preconditioner for <i>A</i> if the latter matrix results from a Stokes
+problem where we also have Dirichlet boundary conditions on the
+velocity components all around the domain, i.e. if we enforce <b>u</b>=0. 
+
+Unfortunately, this "if" is an "if and only if": in the program below
+we will want to use no-flux boundary conditions of the form $\mathbf u
+\cdot \mathbf n = 0$ (i.e. flow parallel to the boundary is allowed,
+but no flux through the boundary). In this case, it turns out that the
+block diagonal matrix defined above is not a good preconditioner
+because it neglects the coupling of components at the boundary. A
+better way to do things is therefore if we build the matrix $\hat A$
+as the vector Laplace matrix $\hat A_{ij} = (\nabla {\mathbf v}_i,
+\eta \nabla {\mathbf v}_j)$ and then apply the same boundary condition
+as we applied to <i>A</i>. If this is Dirichlet boundary conditions all
+around the domain, the $\hat A$ will decouple to three diagonal blocks
+as above, and if the boundary conditions are of the form $\mathbf u
+\cdot \mathbf n = 0$ then this will introduce a coupling of degrees of
+freedom at the boundary but only there. This, in fact, turns out to be
+a much better preconditioner than the one introduced above, and has
+almost all the benefits of what we hoped to get.
+
+
+To sum this whole story up, we can observe:
+<ul>
+  <li> Compared to building a preconditioner from the original matrix <i>A</i>
+  resulting from the symmetric gradient as we did in @ref step_22 "step-22",
+  we have to expect that the preconditioner based on the Laplace bilinear form
+  performs worse since it does not take into account the coupling between
+  vector components.
+
+  <li>On the other hand, preconditioners for the Laplace matrix are typically
+  more mature and perform better than ones for vector problems. For example,
+  at the time of this writing, Algebraic Multigrid (AMG) algorithms are very
+  well developed for scalar problems, but not so for vector problems.
+
+  <li>In building this preconditioner, we will have to build up the
+  matrix $\hat A$ and its preconditioner. While this means that we
+  have to store an additional matrix we didn't need before, the
+  preconditioner $\tilde A_s^{-1}$ is likely going to need much less
+  memory than storing a preconditioner for the coupled matrix
+  <i>A</i>. This is because the matrix $A_s$ has only a third of the
+  entries per row for all rows corresponding to interior degrees of
+  freedom, and contains coupling between vector components only on
+  those parts of the boundary where the boundary conditions introduce
+  such a coupling. Storing the matrix is therefore comparatively
+  cheap, and we can expect that computing and storing the
+  preconditioner $\tilde A_s$ will also be much cheaper compared to
+  doing so for the fully coupled matrix.
+</ul>
+
+
+
+<h5>Linear solvers for the temperature equation</h5>
+
+This is the easy part: The matrix for the temperature equation has the form
+$\alpha M + \beta A$, where $M,A$ are mass and stiffness matrices on the
+temperature space, and $\alpha,\beta$ are constants related the time stepping
+scheme and the current and previous time step. This being the sum of a
+symmetric positive definite and a symmetric positive semidefinite matrix, the
+result is also symmetric positive definite. Furthermore, $\frac\beta\alpha$ is
+a number proportional to the time step, and so becomes small whenever the mesh
+is fine, damping the effect of the then ill-conditioned stiffness matrix.
+
+As a consequence, inverting this matrix with the Conjugate Gradient algorithm,
+using a simple preconditioner, is trivial and very cheap compared to inverting
+the Stokes matrix.
+
+
+
+<h3>Implementation details</h3>
+
+One of the things worth explaining up front about the program below is the use
+of two different DoFHandler objects. If one looks at the structure of the
+equations above and the scheme for their solution, one realizes that there is
+little commonality that keeps the Stokes part and the temperature part
+together. In all previous tutorial programs in which we have discussed @ref
+vector_valued "vector-valued problems" we have always only used a single
+finite element with several vector components, and a single DoFHandler object.
+Sometimes, we have substructured the resulting matrix into blocks to
+facilitate particular solver schemes; this was, for example, the case in the
+@ref step_22 "step-22" program for the Stokes equations upon which the current
+program is based.
+
+We could of course do the same here. The linear system that we would get would
+look like this:
+@f{eqnarray*}
+  \left(\begin{array}{ccc}
+    A & B^T & 0 \\ B & 0 &0 \\ C & 0 & K
+  \end{array}\right)
+  \left(\begin{array}{ccc}
+    U^n \\ P^n \\ T^n
+  \end{array}\right)
+  =
+  \left(\begin{array}{ccc}
+    F_U(T^{n-1}) \\ 0 \\ F_T(U^n,T^{n-1},T^{n-1})
+  \end{array}\right).
+@f}
+The problem with this is: We never use the whole matrix at the same time. In
+fact, it never really exists at the same time: As explained above, $K$ and
+$F_T$ depend on the already computed solution $U^n$, in the first case through
+the time step (that depends on $U^n$ because it has to satisfy a CFL
+condition). So we can only assemble it once we've already solved the top left
+$2\times 2$ block Stokes system, and once we've moved on to the temperature
+equation we don't need the Stokes part any more. Furthermore, we don't
+actually build the matrix $C$: Because by the time we get to the temperature
+equation we already know $U^n$, and because we have to assemble the right hand
+side $F_T$ at this time anyway, we simply move the term $CU^n$ to the right
+hand side and assemble it along with all the other terms there. What this
+means is that there does not remain a part of the matrix where temperature
+variables and Stokes variables couple, and so a global enumeration of all
+degrees of freedom is no longer important: It is enough if we have an
+enumeration of all Stokes degrees of freedom, and of all temperature degrees
+of freedom independently.
+
+In essence, there is consequently not much use in putting <i>everything</i>
+into a block matrix (though there are of course the same good reasons to do so
+for the $2\times 2$ Stokes part), or, for that matter, in putting everything
+into the same DoFHandler object.
+
+But are there <i>downsides</i> to doing so? These exist, though they may not
+be obvious at first. The main problem is that if we need to create one global
+finite element that contains velocity, pressure, and temperature shape
+functions, and use this to initialize the DoFHandler. But we also use this
+finite element object to initialize all FEValues or FEFaceValues objects that
+we use. This may not appear to be that big a deal, but imagine what happens
+when, for example, we evaluate the residual
+$
+  R_\alpha(T)
+  =
+  \left(
+  \frac{\partial T}{\partial t}
+  +
+  {\mathbf u} \cdot \nabla T
+  -
+  \nabla \cdot \kappa \nabla T - \gamma
+  \right)
+  T^{\alpha-1}
+$
+that we need to compute the artificial viscosity $\nu_\alpha(T)|_K$.  For
+this, we need the Laplacian of the temperature, which we compute using the
+tensor of second derivatives (Hessians) of the shape functions (we have to
+give the <code>update_hessians</code> flag to the FEValues object for
+this). Now, if we have a finite that contains the shape functions for
+velocities, pressures, and temperatures, that means that we have to compute
+the Hessians of <i>all</i> shape functions, including the many higher order
+shape functions for the velocities. That's a lot of computations that we don't
+need, and indeed if one were to do that (as we had in an early version of the
+program), assembling the right hand side took about a quarter of the overall
+compute time.
+
+So what we will do is to use two different finite element objects, one for the
+Stokes components and one for the temperatures. With this come two different
+DoFHandlers, two sparsity patterns and two matrices for the Stokes and
+temperature parts, etc. And whenever we have to assemble something that
+contains both temperature and Stokes shape functions (in particular the right
+hand sides of Stokes and temperature equations), then we use two FEValues
+objects initialized with two cell iterators that we walk in parallel through
+the two DoFHandler objects associated with the same Triangulation object; for
+these two FEValues objects, we use of course the same quadrature objects so
+that we can iterate over the same set of quadrature points, but each FEValues
+object will get update flags only according to what it actually needs to
+compute. In particular, when we compute the residual as above, we only ask for
+the values of the Stokes shape functions, but also the Hessians of the
+temperature shape functions &mdash; much cheaper indeed, and as it turns out:
+assembling the right hand side of the temperature equation is now a component
+of the program that is hardly measurable.
+
+With these changes, timing the program yields that only the following
+operations are relevant for the overall run time: 
+<ul>
+  <li>Solving the Stokes system: 72% of the run time.
+  <li>Assembling the Stokes preconditioner and computing the algebraic
+      multigrid hierarchy using the Trilinos ML package: 11% of the
+      run time.
+  <li>The function <code>BoussinesqFlowProblem::setup_dofs</code>: 7%
+      of overall run time.
+  <li>Assembling the Stokes and temperature right hand side vectors as
+      well as assembling the matrices: 7%.
+</ul>
+In essence this means that all bottlenecks apart from the algebraic
+multigrid have been removed.
diff --git a/deal.II/examples/step-32/doc/results.dox b/deal.II/examples/step-32/doc/results.dox
new file mode 100644 (file)
index 0000000..6a2f055
--- /dev/null
@@ -0,0 +1,275 @@
+<h1>Results</h1>
+
+
+
+<h3> Numerical experiments to determine optimal parameters </h3>
+
+The program as is has three parameters that we don't have much of a
+theoretical handle on how to choose in an optimal way. These are:
+<ul>
+  <li>The time step must satisfy a CFL condition
+      $k\le \min_K \frac{c_kh_K}{\|\mathbf{u}\|_{L^\infty(K)}}$. Here, $c_k$ is 
+      dimensionless, but what is the right value?
+  <li>In the computation of the artificial viscosity,
+@f{eqnarray*}
+  \nu_\alpha(T)|_K
+  =
+  \beta
+  \|\mathbf{u}\|_{L^\infty(K)}
+  \min\left\{
+    h_K,
+    h_K^\alpha
+    \frac{\|R_\alpha(T)\|_{L^\infty(K)}}{c(\mathbf{u},T)}
+  \right\},
+@f}
+      with $c(\mathbf{u},T) = 
+      c_R\ \|\mathbf{u}\|_{L^\infty(\Omega)} \ \mathrm{var}(T)
+      \ |\mathrm{diam}(\Omega)|^{\alpha-2}$.
+      Here, the choice of the dimensionless numbers $\beta,c_R$ is of
+      interest.
+</ul>
+In all of these cases, we will have to expect that the correct choice of each
+value depends on that of the others, and most likely also on the space
+dimension and polynomial degree of the finite element used for the
+temperature. Below we'll discuss a few numerical experiments to choose
+constants. 
+
+
+<h4> Choosing <i>c<sub>k</sub></i> and &beta; </h4>
+
+These two constants are definitely linked in some way. The reason is easy to
+see: In the case of a pure advection problem, 
+$\frac{\partial T}{\partial t} + \mathbf{u}\cdot\nabla T = \gamma$, any
+explicit scheme has to satisfy a CFL condition of the form 
+$k\le \min_K \frac{c_k^a h_K}{\|\mathbf{u}\|_{L^\infty(K)}}$. On the other hand,
+for a pure diffusion problem, 
+$\frac{\partial T}{\partial t} + \nu \Delta T = \gamma$,
+explicit schemes need to satisfy a condition
+$k\le \min_K \frac{c_k^d h_K^2}{\nu}$. So given the form of $\nu$ above, an
+advection diffusion problem like the one we have to solve here will result in
+a condition of the form
+$
+k\le \min_K \min \left\{
+  \frac{c_k^a h_K}{\|\mathbf{u}\|_{L^\infty(K)}},
+  \frac{c_k^d h_K^2}{\beta \|mathbf{u}\|_{L^\infty(K)} h_K}\right\}
+  =
+  \min_K \left( \min \left\{
+  c_k^a,
+  \frac{c_k^d}{\beta}\right\}
+  \frac{h_K}{\|\mathbf{u}\|_{L^\infty(K)}} \right)
+$.
+It follows that we have to face the fact that we might want to choose $\beta$
+larger to improve the stability of the numerical scheme (by increasing the
+amount of artificial diffusion), but we have to pay a price in the form of
+smaller, and consequently more time steps. In practice, one would therefore
+like to choose $\beta$ as small as possible to keep the transport problem
+sufficiently stabilized while at the same time trying to choose the time step
+as large as possible to reduce the overall amount of work.
+
+The find the right balance, the only way is to do a few computational
+experiments. Here's what we did: We modified the program slightly to allow
+less mesh refinement (so we don't always have to wait that long) and to choose 
+$
+  \nu(T)|_K
+  =
+  \beta
+  \|\mathbf{u}\|_{L^\infty(K)} h_K
+$ to eliminate the effect of of the constant $c_R$. We then run the program
+for different values $c_k,\beta$ and observe maximal and minimal temperatures
+in the domain. What we expect to see is this: If we choose the time step too
+big (i.e. choose a $c_k$ bigger than theoretically allowed) then we will get
+exponential growth of the temperature. If we choose $\beta$ too small, then
+the transport stabilization becomes insufficient and the solution will show
+significant oscillations but not exponential growth. 
+
+
+<h5>Results for Q<sub>1</sub> elements</h5>
+
+Here is what we get for
+$\beta=0.01, \beta=0.1$, and $\beta=0.5$, different choices of $c_k$, and
+bilinear elements (<code>temperature_degree=1</code>) in 2d:
+
+<table align="center" border="1" cellspacing="3" cellpadding="3">
+  <tr>
+    <td>
+        @image html "step-33.timestep.q1.beta=0.01.png" "" width=4cm
+    </td>
+    <td>
+        @image html "step-33.timestep.q1.beta=0.03.png" "" width=4cm
+    </td>
+  </tr>
+
+  <tr>
+    <td>
+        @image html "step-33.timestep.q1.beta=0.1.png" "" width=4cm
+    </td>
+    <td>
+        @image html "step-33.timestep.q1.beta=0.5.png" "" width=4cm
+    </td>
+  </tr>
+</table>
+
+The way to interpret these graphs goes like this: for $\beta=0.01$ and
+$c_k=\frac 12,\frac 14$, we see exponential growth or at least large
+variations, but if we choose 
+$k=\frac 18\frac{h_K}{\|\mathbf{u}\|_{L^\infty(K)}}$ 
+or smaller, then the scheme is 
+stable though a bit wobbly. For more artificial diffusion, we can choose 
+$k=\frac 14\frac{h_K}{\|\mathbf{u}\|_{L^\infty(K)}}$ 
+or smaller for $\beta=0.03$,
+$k=\frac 13\frac{h_K}{\|\mathbf{u}\|_{L^\infty(K)}}$ 
+or smaller for $\beta=0.1$, and again need
+$k=\frac 1{15}\frac{h_K}{\|\mathbf{u}\|_{L^\infty(K)}}$ 
+for $\beta=0.5$ (this time because much diffusion requires a small time
+step). 
+
+So how to choose? If we were simply interested in a large time step, then we
+would go with $\beta=0.1$ and
+$k=\frac 13\frac{h_K}{\|\mathbf{u}\|_{L^\infty(K)}}$.
+On the other hand, we're also interested in accuracy and here it may be of
+interest to actually investigate what these curves show. To this end note that
+we start with a zero temperature and that our sources are positive &mdash; so
+we would intuitively expect that the temperature can never drop below
+zero. But it does, a consequence of Gibb's phenomenon when using continuous
+elements to approximate a discontinuous solution. We can therefore see that
+choosing $\beta$ too small is bad: too little artificial diffusion leads to
+over- and undershoots that aren't diffused away. On the other hand, for large
+$\beta$, the minimum temperature drops below zero at the beginning but then
+quickly diffuses back to zero. 
+
+On the other hand, let's also look at the maximum temperature. Watching the
+movie of the solution, we see that initially the fluid is at rest. The source
+keeps heating the same volume of fluid whose temperature increases linearly at
+the beginning until its buoyancy is able to move it upwards. The hottest part
+of the fluid is therefore transported away from the solution and fluid taking
+its place is heated for only a short time before being moved out of the source
+region, therefore remaining cooler than the initial bubble. If $\kappa=0$
+(in the program it is nonzero but very small) then the hottest part of the
+fluid should be advected along with the flow with its temperature
+constant. That's what we can see in the graphs with the smallest $\beta$: Once
+the maximum temperature is reached, it hardly changes any more. On the other
+hand, the larger the artificial diffusion, the more the hot spot is
+diffused. Note that for this criterion, the time step size does not play a
+significant role.
+
+So to sum up, likely the best choice would appear to be $\beta=0.03$
+and $k=\frac 14\frac{h_K}{\|\mathbf{u}\|_{L^\infty(K)}}$. The curve is
+a bit wobbly, but overall pictures looks pretty reasonable with the
+exception of some over and undershoots close to the start time due to
+Gibb's phenomenon.
+
+
+<h5>Results for Q<sub>2</sub> elements</h5>
+
+One can repeat the same sequence of experiments for higher order
+elements as well. Here are the graphs for bi-quadratic shape functions
+(<code>temperature_degree=2</code>) for the temperature, while we
+retain the $Q_2/Q_1$ stable Taylor-Hood element for the Stokes system:
+
+<table align="center" border="1" cellspacing="3" cellpadding="3">
+  <tr>
+    <td>
+        @image html "step-33.timestep.q2.beta=0.01.png" "" width=4cm
+    </td>
+    <td>
+        @image html "step-33.timestep.q2.beta=0.03.png" "" width=4cm
+    </td>
+  </tr>
+
+  <tr>
+    <td>
+        @image html "step-33.timestep.q2.beta=0.1.png" "" width=4cm
+    </td>
+  </tr>
+</table>
+
+Again, small values of $\beta$ lead to less diffusion but we have to
+choose the time step very small to keep things under control. Too
+large values of $\beta$ make for more diffusion, but again require
+small time steps. The best value would appear to be $\beta=0.03$, as
+for the $Q_1$ element, and the we have to choose 
+$k=\frac 18\frac{h_K}{\|\mathbf{u}\|_{L^\infty(K)}}$ &mdash; exactly
+half the size for the $Q_1$ element, a fact that may not be surprising
+if we state the CFL condition as the requirement that the time step be
+small enough so that the distance transport advects in each time step
+is no longer than one <i>grid point</i> away (which for $Q_1$ elements
+is $h_K$, but for $Q_2$ elements is $h_K/2$).
+
+
+<h5>Results for 3d</h5>
+
+One can repeat these experiments in 3d and find the optimal time step
+for each value of $\beta$ and find the best value of $\beta$. What one
+finds is that for the same $\beta$ already used in 2d, the time steps
+needs to be a bit small, by around a factor of 1.2 or so. This is
+easily explained: the time step restriction is 
+$k=\min_K \frac{ch_K}{\|\mathbf{u}\|_{L^\infty(K)}}$ where $h_K$ is
+the <i>diameter</i> of the cell. However, what is really needed is the
+distance between mesh points, which is $\frac{h_K}{\sqrt{d}}$. So a
+more appropriate form would be
+$k=\min_K \frac{ch_K}{\|\mathbf{u}\|_{L^\infty(K)}\sqrt{d}}$.
+
+The second find is that one needs to choose $\beta$ slightly bigger
+(about $\beta=0.05$ or so). This then again reduces the time step we
+can take.
+
+
+
+
+<h5>Conclusions</h5>
+
+Concluding, $\beta=0.03$ appears to be a good choice for the
+stabilization parameter in 2d, and $\beta=0.05$ in 3d. In a dimension
+independent way, we can model this as $\beta=0.015d$. As we have seen
+in the sections above, in 2d
+$k=\frac 14 \frac 1{q_T}\frac{h_K}{\|\mathbf{u}\|_{L^\infty(K)}}$
+is an appropriate time step, where $q_T$ is the polynomial degree of
+the temperature shape functions (in the program, this corresponds to
+the variable <code>temperature_degree</code>). To reconcile this with
+the findings in 3d for the same $\beta$, we could write this as
+$k=\frac 1{2\sqrt{2}\sqrt{d}} \frac
+1{q_T}\frac{h_K}{\|\mathbf{u}\|_{L^\infty(K)}}$
+but this doesn't take into account that we also have to increase
+$\beta$ in 3d. The final form that takes all these factors in reads as
+follows:
+@f{eqnarray*}
+  k =
+  \frac 1{2\sqrt{2}} \frac 1{\sqrt{d}}
+  \frac 2d
+  \frac 1{q_T}
+  \frac{h_K}{\|\mathbf{u}\|_{L^\infty(K)}}
+  =
+  \frac 1{d\sqrt{2}\sqrt{d}}
+  \frac 1{q_T}
+  \frac{h_K}{\|\mathbf{u}\|_{L^\infty(K)}}.
+@f}
+In the first form (in the center of the equation), $\frac
+1{2\sqrt{2}}$ is a universal constant, $\frac 1{\sqrt{d}}$
+is the factor that accounts for the difference between cell diameter
+and grid point separation,
+$\frac 2d$ accounts for the increase in $\beta$ with space dimension,
+$\frac 1{q_T}$ accounts for the distance between grid points for
+higher order elements, and $\frac{h_K}{\|\mathbf{u}\|_{L^\infty(K)}}$
+for the local speed of transport relative to the cell size. This is
+the formula that we use in the program.
+
+As for the question of whether to use $Q_1$ or $Q_2$ elements for the
+temperature, the following considerations may be useful: First,
+solving the temperature equation is hardly a factor in the overall
+scheme since almost the entire compute time goes into solving the
+Stokes system in each time step. Higher order elements for the
+temperature equation are therefore not a significant drawback. On the
+other hand, if one compares the size of the over- and undershoots the
+solution produces due to the discontinuous source description, one
+notices that for the choice of $\beta$ and $k$ as above, the $Q_1$
+solution dips down to around $-0.47$, whereas the $Q_2$ solution only
+goes to $-0.13$ (remember that the exact solution should never become
+negative at all. This means that the $Q_2$ solution is significantly
+more accurate; the program therefore uses these higher order elements,
+despite the penalty we pay in terms of smaller time steps.
+
+
+<h3> Possible extensions </h3>
+
+Parallelization -> step-33
+
diff --git a/deal.II/examples/step-32/step-31.cc b/deal.II/examples/step-32/step-31.cc
new file mode 100644 (file)
index 0000000..2936194
--- /dev/null
@@ -0,0 +1,2116 @@
+/* $Id$ */
+/* Author: Wolfgang Bangerth, Texas A&M University, 2007 */
+
+/*    $Id$       */
+/*                                                                */
+/*    Copyright (C) 2007, 2008 by the deal.II authors */
+/*                                                                */
+/*    This file is subject to QPL and may not be  distributed     */
+/*    without copyright and license information. Please refer     */
+/*    to the file deal.II/doc/license.html for the  text  and     */
+/*    further information on this license.                        */
+
+                                // @sect3{Include files}
+
+                                // We include the functionality
+                                // of these well-known deal.II
+                                // library files and some C++
+                                // header files.
+#include <base/quadrature_lib.h>
+#include <base/logstream.h>
+#include <base/function.h>
+#include <base/utilities.h>
+
+#include <lac/full_matrix.h>
+#include <lac/solver_gmres.h>
+#include <lac/solver_cg.h>
+#include <lac/trilinos_block_vector.h>
+#include <lac/trilinos_sparse_matrix.h>
+#include <lac/trilinos_block_sparse_matrix.h>
+#include <lac/trilinos_precondition.h>
+#include <lac/trilinos_precondition_amg.h>
+
+#include <grid/tria.h>
+#include <grid/grid_generator.h>
+#include <grid/tria_accessor.h>
+#include <grid/tria_iterator.h>
+#include <grid/tria_boundary_lib.h>
+#include <grid/grid_tools.h>
+#include <grid/grid_refinement.h>
+
+#include <dofs/dof_handler.h>
+#include <dofs/dof_renumbering.h>
+#include <dofs/dof_accessor.h>
+#include <dofs/dof_tools.h>
+#include <dofs/dof_constraints.h>
+
+#include <fe/fe_q.h>
+#include <fe/fe_system.h>
+#include <fe/fe_values.h>
+#include <fe/mapping_q1.h>
+
+#include <numerics/vectors.h>
+#include <numerics/matrices.h>
+#include <numerics/data_out.h>
+#include <numerics/error_estimator.h>
+#include <numerics/solution_transfer.h>
+
+#include <Epetra_SerialComm.h>
+#include <Epetra_Map.h>
+
+#include <fstream>
+#include <sstream>
+
+
+                                // Next, we import all deal.II
+                                // names into global namespace
+using namespace dealii;
+
+
+                                // @sect3{Equation data}
+
+                                // Again, the next stage in the program
+                                // is the definition of the equation 
+                                // data, that is, the various
+                                // boundary conditions, the right hand
+                                // side and the initial condition (remember
+                                // that we're about to solve a time-
+                                // dependent system). The basic strategy
+                                // for this definition is the same as in
+                                // step-22. Regarding the details, though,
+                                // there are some differences.
+
+                                // The first
+                                // thing is that we don't set any boundary
+                                // conditions on the velocity, as is
+                                // explained in the introduction. So
+                                // what is left are two conditions for
+                                // pressure <i>p</i> and temperature
+                                // <i>T</i>.
+
+                                // Secondly, we set an initial
+                                // condition for all problem variables,
+                                // i.e., for <b>u</b>, <i>p</i> and <i>T</i>,
+                                // so the function has <i>dim+2</i>
+                                // components.
+                                // In this case, we choose a very simple
+                                // test case, where everything is zero.
+
+                                // @sect4{Boundary values}
+namespace EquationData
+{
+                                  // define viscosity
+  const double eta = 1;
+  const double kappa = 1e-6;
+
+  template <int dim>
+  class PressureBoundaryValues : public Function<dim>
+  {
+    public:
+      PressureBoundaryValues () : Function<dim>(1) {}
+
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+  };
+
+
+  template <int dim>
+  double
+  PressureBoundaryValues<dim>::value (const Point<dim>  &/*p*/,
+                                     const unsigned int /*component*/) const
+  {
+    return 0;
+  }
+
+
+
+
+
+                                  // @sect4{Initial values}
+  template <int dim>
+  class TemperatureInitialValues : public Function<dim>
+  {
+    public:
+      TemperatureInitialValues () : Function<dim>(1) {}
+
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+
+      virtual void vector_value (const Point<dim> &p,
+                                Vector<double>   &value) const;
+  };
+
+
+  template <int dim>
+  double
+  TemperatureInitialValues<dim>::value (const Point<dim>  &,
+                                       const unsigned int) const
+  {
+    return 0;
+  }
+
+
+  template <int dim>
+  void
+  TemperatureInitialValues<dim>::vector_value (const Point<dim> &p,
+                                              Vector<double>   &values) const
+  {
+    for (unsigned int c=0; c<this->n_components; ++c)
+      values(c) = TemperatureInitialValues<dim>::value (p, c);
+  }
+
+
+
+                                  // @sect4{Right hand side}
+                                  // 
+                                  // The last definition of this kind
+                                  // is the one for the right hand
+                                  // side function. Again, the content
+                                  // of the function is very
+                                  // basic and zero in most of the
+                                  // components, except for a source
+                                  // of temperature in some isolated
+                                  // regions near the bottom of the
+                                  // computational domain, as is explained
+                                  // in the problem description in the
+                                  // introduction.
+  template <int dim>
+  class TemperatureRightHandSide : public Function<dim>
+  {
+    public:
+      TemperatureRightHandSide () : Function<dim>(1) {}
+
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+
+      virtual void vector_value (const Point<dim> &p,
+                                Vector<double>   &value) const;
+  };
+
+
+  template <int dim>
+  double
+  TemperatureRightHandSide<dim>::value (const Point<dim>  &p,
+                                       const unsigned int /*component*/) const
+  {
+    static const Point<dim> source_centers[3]
+      = { (dim == 2 ? Point<dim>(.3,.1) : Point<dim>(.3,.5,.1)),
+         (dim == 2 ? Point<dim>(.45,.1) : Point<dim>(.45,.5,.1)),
+         (dim == 2 ? Point<dim>(.75,.1) : Point<dim>(.75,.5,.1)) };
+    static const double source_radius
+      = (dim == 2 ? 1./32 : 1./8);
+      
+    return ((source_centers[0].distance (p) < source_radius)
+           ||
+           (source_centers[1].distance (p) < source_radius)
+           ||
+           (source_centers[2].distance (p) < source_radius)
+           ?
+           1
+           :
+           0);
+  }
+
+
+  template <int dim>
+  void
+  TemperatureRightHandSide<dim>::vector_value (const Point<dim> &p,
+                                              Vector<double>   &values) const
+  {
+    for (unsigned int c=0; c<this->n_components; ++c)
+      values(c) = TemperatureRightHandSide<dim>::value (p, c);
+  }
+}
+
+
+
+                                  // @sect3{Linear solvers and preconditioners}
+
+                                  // This section introduces some
+                                  // objects that are used for the
+                                  // solution of the linear equations of
+                                  // Stokes system that we need to
+                                  // solve in each time step. The basic
+                                  // structure is still the same as
+                                  // in step-20, where Schur complement
+                                  // based preconditioners and solvers
+                                  // have been introduced, with the 
+                                  // actual interface taken from step-22.
+namespace LinearSolvers
+{
+
+                                  // @sect4{The <code>InverseMatrix</code> class template}
+
+                                  // This class is an interface to
+                                  // calculate the action of an
+                                  // "inverted" matrix on a vector
+                                  // (using the <code>vmult</code>
+                                  // operation)
+                                  // in the same way as the corresponding
+                                  // function in step-22: when the
+                                  // product of an object of this class
+                                  // is requested, we solve a linear
+                                  // equation system with that matrix
+                                  // using the CG method, accelerated
+                                  // by a preconditioner of (templated) class
+                                  // <code>Preconditioner</code>.
+  template <class Matrix, class Preconditioner>
+  class InverseMatrix : public Subscriptor
+  {
+    public:
+      InverseMatrix (const Matrix         &m,
+                    const Preconditioner &preconditioner);
+
+
+      void vmult (TrilinosWrappers::Vector       &dst,
+                 const TrilinosWrappers::Vector &src) const;
+
+    private:
+      const SmartPointer<const Matrix> matrix;
+      const Preconditioner &preconditioner;
+  };
+
+
+  template <class Matrix, class Preconditioner>
+  InverseMatrix<Matrix,Preconditioner>::InverseMatrix (const Matrix &m,
+                                                      const Preconditioner &preconditioner)
+                 :
+                 matrix (&m),
+                 preconditioner (preconditioner)
+  {}
+
+
+
+  template <class Matrix, class Preconditioner>
+  void InverseMatrix<Matrix,Preconditioner>::vmult (
+                               TrilinosWrappers::Vector       &dst,
+                               const TrilinosWrappers::Vector &src) const
+  {
+    SolverControl solver_control (src.size(), 1e-6*src.l2_norm());
+    SolverCG<TrilinosWrappers::Vector> cg (solver_control);
+
+    dst = 0;
+
+    try
+      {
+       cg.solve (*matrix, dst, src, preconditioner);
+      }
+    catch (std::exception &e)
+      {
+       Assert (false, ExcMessage(e.what()));
+      }
+  }
+
+                                  // @sect4{Schur complement preconditioner}
+
+                                  // This is the implementation
+                                  // of the Schur complement
+                                  // preconditioner as described
+                                  // in the section on improved
+                                  // solvers in step-22.
+                                  // 
+                                  // The basic 
+                                  // concept of the preconditioner is 
+                                  // different to the solution 
+                                  // strategy used in step-20 and 
+                                  // step-22. There, the Schur
+                                  // complement was used for a 
+                                  // two-stage solution of the linear
+                                  // system. Recall that the process
+                                  // in the Schur complement solver is
+                                  // a Gaussian elimination of
+                                  // a 2x2 block matrix, where each
+                                  // block is solved iteratively. 
+                                  // Here, the idea is to let 
+                                  // an iterative solver act on the
+                                  // whole system, and to use 
+                                  // a Schur complement for 
+                                  // preconditioning. As usual when
+                                  // dealing with preconditioners, we
+                                  // don't intend to exacly set up a 
+                                  // Schur complement, but rather use
+                                  // a good approximation to the
+                                  // Schur complement for the purpose of
+                                  // preconditioning.
+                                  // 
+                                  // So the question is how we can
+                                  // obtain a good preconditioner.
+                                  // Let's have a look at the 
+                                  // preconditioner matrix <i>P</i>
+                                  // acting on the block system, built
+                                  // as
+                                  // @f{eqnarray*}
+                                  //   P^{-1}
+                                  //   = 
+                                  //   \left(\begin{array}{cc}
+                                  //     A^{-1} & 0 \\ S^{-1} B A^{-1} & -S^{-1}
+                                  //   \end{array}\right)
+                                  // @f}
+                                  // using the Schur complement 
+                                  // $S = B A^{-1} B^T$. If we apply
+                                  // this matrix in the solution of 
+                                  // a linear system, convergence of
+                                  // an iterative Krylov-based solver
+                                  // will be governed by the matrix
+                                  // @f{eqnarray*}
+                                  //   P^{-1}\left(\begin{array}{cc}
+                                  //     A & B^T \\ B & 0
+                                  //   \end{array}\right) 
+                                  //  = 
+                                  //   \left(\begin{array}{cc}
+                                  //     I & A^{-1} B^T \\ 0 & 0
+                                  //   \end{array}\right),
+                                  // @f}
+                                  // which turns out to be very simple.
+                                  // A GMRES solver based on exact
+                                  // matrices would converge in two
+                                  // iterations, since there are
+                                  // only two distinct eigenvalues.
+                                  // Such a preconditioner for the
+                                  // blocked Stokes system has been 
+                                  // proposed by Silvester and Wathen,
+                                  // Fast iterative solution of 
+                                  // stabilised Stokes systems part II. 
+                                  // Using general block preconditioners.
+                                  // (SIAM J. Numer. Anal., 31 (1994),
+                                  // pp. 1352-1367).
+                                  // 
+                                  // The deal.II users who have already
+                                  // gone through the step-20 and step-22 
+                                  // tutorials can certainly imagine
+                                  // how we're going to implement this.
+                                  // We replace the inverse matrices
+                                  // in $P^{-1}$ using the InverseMatrix
+                                  // class, and the inverse Schur 
+                                  // complement will be approximated
+                                  // by the pressure mass matrix $M_p$.
+                                  // Having this in mind, we define a
+                                  // preconditioner class with a 
+                                  // <code>vmult</code> functionality,
+                                  // which is all we need for the
+                                  // interaction with the usual solver
+                                  // functions further below in the
+                                  // program code.
+                                  // 
+                                  // First the declarations. These
+                                  // are similar to the definition of
+                                  // the Schur complement in step-20,
+                                  // with the difference that we need
+                                  // some more preconditioners in
+                                  // the constructor.
+  template <class PreconditionerA, class PreconditionerMp>
+  class BlockSchurPreconditioner : public Subscriptor
+  {
+    public:
+      BlockSchurPreconditioner (
+       const TrilinosWrappers::BlockSparseMatrix     &S,
+       const InverseMatrix<TrilinosWrappers::SparseMatrix,PreconditionerMp>  &Mpinv,
+       const PreconditionerA                         &Apreconditioner);
+
+      void vmult (TrilinosWrappers::BlockVector       &dst,
+                 const TrilinosWrappers::BlockVector &src) const;
+
+    private:
+      const SmartPointer<const TrilinosWrappers::BlockSparseMatrix> stokes_matrix;
+      const SmartPointer<const InverseMatrix<TrilinosWrappers::SparseMatrix,
+                                            PreconditionerMp > > m_inverse;
+      const PreconditionerA &a_preconditioner;
+
+      mutable TrilinosWrappers::Vector tmp;
+
+};
+
+
+
+  template <class PreconditionerA, class PreconditionerMp>
+  BlockSchurPreconditioner<PreconditionerA, PreconditionerMp>::
+  BlockSchurPreconditioner(const TrilinosWrappers::BlockSparseMatrix  &S,
+                          const InverseMatrix<TrilinosWrappers::SparseMatrix,PreconditionerMp> &Mpinv,
+                          const PreconditionerA                      &Apreconditioner)
+                 :
+                 stokes_matrix           (&S),
+                 m_inverse               (&Mpinv),
+                 a_preconditioner        (Apreconditioner),
+                 tmp                     (stokes_matrix->block(1,1).row_map)
+  {}
+
+
+                                  // This is the <code>vmult</code>
+                                  // function. We implement
+                                  // the action of $P^{-1}$ as described
+                                  // above in three successive steps.
+                                  // The first step multiplies
+                                  // the velocity vector by a 
+                                  // preconditioner of the matrix <i>A</i>.
+                                  // The resuling velocity vector
+                                  // is then multiplied by $B$ and
+                                  // subtracted from the pressure.
+                                  // This second step only acts on 
+                                  // the pressure vector and is 
+                                  // accomplished by the command
+                                  // SparseMatrix::residual. Next, 
+                                  // we change the sign in the 
+                                  // temporary pressure vector and
+                                  // finally multiply by the pressure
+                                  // mass matrix to get the final
+                                  // pressure vector.
+  template <class PreconditionerA, class PreconditionerMp>
+  void BlockSchurPreconditioner<PreconditionerA, PreconditionerMp>::vmult (
+    TrilinosWrappers::BlockVector       &dst,
+    const TrilinosWrappers::BlockVector &src) const
+  {
+    a_preconditioner.vmult (dst.block(0), src.block(0));
+    stokes_matrix->block(1,0).residual(tmp, dst.block(0), src.block(1));
+    tmp *= -1;
+    m_inverse->vmult (dst.block(1), tmp);
+  }
+}
+
+
+
+                                // @sect3{The <code>BoussinesqFlowProblem</code> class template}
+
+                                // The definition of this class is
+                                // mainly based on the step-22 tutorial
+                                // program. Most of the data types are
+                                // the same as there. However, we
+                                // deal with a time-dependent system now,
+                                // and there is temperature to take care
+                                // of as well, so we need some additional
+                                // function and variable declarations.
+                                // Furthermore, we have a slightly more
+                                // sophisticated solver we are going to
+                                // use, so there is a second pointer
+                                // to a sparse ILU for a pressure
+                                // mass matrix as well.
+template <int dim>
+class BoussinesqFlowProblem
+{
+  public:
+    BoussinesqFlowProblem ();
+    void run ();
+
+  private:
+    void setup_dofs ();
+    void assemble_stokes_preconditioner ();
+    void build_stokes_preconditioner ();
+    void assemble_stokes_system ();
+    void assemble_temperature_system ();
+    void assemble_temperature_matrix ();
+    double get_maximal_velocity () const;
+    std::pair<double,double> get_extrapolated_temperature_range () const;
+    void solve ();
+    void output_results () const;
+    void refine_mesh (const unsigned int max_grid_level);
+
+    static
+    double
+    compute_viscosity(const std::vector<double>          &old_temperature,
+                     const std::vector<double>          &old_old_temperature,
+                     const std::vector<Tensor<1,dim> >  &old_temperature_grads,
+                     const std::vector<Tensor<1,dim> >  &old_old_temperature_grads,
+                     const std::vector<Tensor<2,dim> >  &old_temperature_hessians,
+                     const std::vector<Tensor<2,dim> >  &old_old_temperature_hessians,
+                     const std::vector<Vector<double> > &present_stokes_values,
+                     const std::vector<double>          &gamma_values,
+                     const double                        global_u_infty,
+                     const double                        global_T_variation,
+                     const double                        global_Omega_diameter,
+                     const double                        cell_diameter,
+                     const double                        old_time_step);
+
+
+    Epetra_SerialComm                   trilinos_communicator;
+
+    Triangulation<dim>                  triangulation;
+
+    const unsigned int                  stokes_degree;
+    FESystem<dim>                       stokes_fe;
+    DoFHandler<dim>                     stokes_dof_handler;
+    ConstraintMatrix                    stokes_constraints;
+
+    std::vector<Epetra_Map>             stokes_partitioner;
+    TrilinosWrappers::BlockSparseMatrix stokes_matrix;
+    TrilinosWrappers::BlockSparseMatrix stokes_preconditioner_matrix;
+
+    TrilinosWrappers::BlockVector       stokes_solution;
+    TrilinosWrappers::BlockVector       stokes_rhs;
+
+
+    const unsigned int                  temperature_degree;    
+    FE_Q<dim>                           temperature_fe;
+    DoFHandler<dim>                     temperature_dof_handler;
+    ConstraintMatrix                    temperature_constraints;
+
+    Epetra_Map                          temperature_partitioner;
+    TrilinosWrappers::SparseMatrix      temperature_mass_matrix;
+    TrilinosWrappers::SparseMatrix      temperature_stiffness_matrix;
+    TrilinosWrappers::SparseMatrix      temperature_matrix;
+
+    TrilinosWrappers::Vector            temperature_solution;
+    TrilinosWrappers::Vector            old_temperature_solution;
+    TrilinosWrappers::Vector            old_old_temperature_solution;
+    TrilinosWrappers::Vector            temperature_rhs;
+
+
+    double time_step;
+    double old_time_step;
+    unsigned int timestep_number;
+
+    boost::shared_ptr<TrilinosWrappers::PreconditionAMG>  Amg_preconditioner;
+    boost::shared_ptr<TrilinosWrappers::PreconditionSSOR> Mp_preconditioner;
+
+    bool rebuild_stokes_matrix;
+    bool rebuild_temperature_matrices;
+    bool rebuild_stokes_preconditioner;
+};
+
+
+                                // @sect3{BoussinesqFlowProblem class implementation}
+
+                                // @sect4{BoussinesqFlowProblem::BoussinesqFlowProblem}
+                                // 
+                                // The constructor of this class is
+                                // an extension of the constructor
+                                // in step-22. We need to include 
+                                // the temperature in the definition
+                                // of the finite element. As discussed
+                                // in the introduction, we are going 
+                                // to use discontinuous elements 
+                                // of one degree less than for pressure
+                                // there. Moreover, we initialize
+                                // the time stepping as well as the
+                                // options for the matrix assembly 
+                                // and preconditioning.
+template <int dim>
+BoussinesqFlowProblem<dim>::BoussinesqFlowProblem ()
+                :
+               triangulation (Triangulation<dim>::maximum_smoothing),
+
+                stokes_degree (1),
+                stokes_fe (FE_Q<dim>(stokes_degree+1), dim,
+                          FE_Q<dim>(stokes_degree), 1),
+               stokes_dof_handler (triangulation),
+
+               temperature_degree (2),
+               temperature_fe (temperature_degree),
+                temperature_dof_handler (triangulation),
+
+               temperature_partitioner (0, 0, trilinos_communicator),
+
+                time_step (0),
+               old_time_step (0),
+               timestep_number (0),
+               rebuild_stokes_matrix (true),
+               rebuild_temperature_matrices (true),
+               rebuild_stokes_preconditioner (true)
+{}
+
+
+
+                                // @sect4{BoussinesqFlowProblem::get_maximal_velocity}
+template <int dim>
+double BoussinesqFlowProblem<dim>::get_maximal_velocity () const
+{
+  const QGauss<dim>  quadrature_formula(stokes_degree+2);
+  const unsigned int n_q_points = quadrature_formula.size();
+
+  FEValues<dim> fe_values (stokes_fe, quadrature_formula, update_values);
+  std::vector<Vector<double> > stokes_values(n_q_points,
+                                            Vector<double>(dim+1));
+  double max_velocity = 0;
+
+  typename DoFHandler<dim>::active_cell_iterator
+    cell = stokes_dof_handler.begin_active(),
+    endc = stokes_dof_handler.end();
+  for (; cell!=endc; ++cell)
+    {
+      fe_values.reinit (cell);
+      fe_values.get_function_values (stokes_solution, stokes_values);
+
+      for (unsigned int q=0; q<n_q_points; ++q)
+        {
+          Tensor<1,dim> velocity;
+          for (unsigned int i=0; i<dim; ++i)
+            velocity[i] = stokes_values[q](i);
+
+          max_velocity = std::max (max_velocity, velocity.norm());
+        }
+    }
+
+  return max_velocity;
+}
+
+
+
+
+                                // @sect4{BoussinesqFlowProblem::get_extrapolated_temperature_range}
+template <int dim>
+std::pair<double,double>
+BoussinesqFlowProblem<dim>::get_extrapolated_temperature_range () const
+{
+  QGauss<dim>   quadrature_formula(temperature_degree+2);
+  const unsigned int   n_q_points = quadrature_formula.size();
+
+  FEValues<dim> fe_values (temperature_fe, quadrature_formula,
+                           update_values);
+  std::vector<double> old_temperature_values(n_q_points);
+  std::vector<double> old_old_temperature_values(n_q_points);
+  
+  double min_temperature = (1. + time_step/old_time_step) *
+                          old_temperature_solution.linfty_norm()
+                          +
+                          time_step/old_time_step *
+                          old_old_temperature_solution.linfty_norm(),
+        max_temperature = -min_temperature;
+
+  typename DoFHandler<dim>::active_cell_iterator
+    cell = temperature_dof_handler.begin_active(),
+    endc = temperature_dof_handler.end();
+  for (; cell!=endc; ++cell)
+    {
+      fe_values.reinit (cell);
+      fe_values.get_function_values (old_temperature_solution, old_temperature_values);
+      fe_values.get_function_values (old_old_temperature_solution, old_old_temperature_values);
+
+      for (unsigned int q=0; q<n_q_points; ++q)
+        {
+          const double temperature = 
+           (1. + time_step/old_time_step) * old_temperature_values[q]-
+           time_step/old_time_step * old_old_temperature_values[q];
+
+          min_temperature = std::min (min_temperature, temperature);
+         max_temperature = std::max (max_temperature, temperature);
+        }
+    }
+
+  return std::make_pair(min_temperature, max_temperature);
+}
+
+
+
+template <int dim>
+double
+BoussinesqFlowProblem<dim>::
+compute_viscosity(const std::vector<double>          &old_temperature,
+                 const std::vector<double>          &old_old_temperature,
+                 const std::vector<Tensor<1,dim> >  &old_temperature_grads,
+                 const std::vector<Tensor<1,dim> >  &old_old_temperature_grads,
+                 const std::vector<Tensor<2,dim> >  &old_temperature_hessians,
+                 const std::vector<Tensor<2,dim> >  &old_old_temperature_hessians,
+                 const std::vector<Vector<double> > &present_stokes_values,
+                 const std::vector<double>          &gamma_values,
+                 const double                        global_u_infty,
+                 const double                        global_T_variation,
+                 const double                        global_Omega_diameter,
+                 const double                        cell_diameter,
+                 const double                        old_time_step)
+{
+  const double beta = 0.015 * dim;
+  const double alpha = 1;
+  
+  if (global_u_infty == 0)
+    return 5e-3 * cell_diameter;
+  
+  const unsigned int n_q_points = old_temperature.size();
+  
+                                  // Stage 1: calculate residual
+  double max_residual = 0;
+  double max_velocity = 0;
+  
+  for (unsigned int q=0; q < n_q_points; ++q)
+    {
+      Tensor<1,dim> u;
+      for (unsigned int d=0; d<dim; ++d)
+       u[d] = present_stokes_values[q](d);
+      
+      const double dT_dt = (old_temperature[q] - old_old_temperature[q])
+                          / old_time_step;
+      const double u_grad_T = u * (old_temperature_grads[q] +
+                                  old_old_temperature_grads[q]) / 2;
+      
+      const double kappa_Delta_T = EquationData::kappa
+                                  * (trace(old_temperature_hessians[q]) +
+                                     trace(old_old_temperature_hessians[q])) / 2;
+
+      const double residual
+       = std::abs((dT_dt + u_grad_T - kappa_Delta_T - gamma_values[q]) *
+                  std::pow((old_temperature[q]+old_old_temperature[q]) / 2,
+                           alpha-1.));
+
+      max_residual = std::max (residual,        max_residual);
+      max_velocity = std::max (std::sqrt (u*u), max_velocity);
+    }
+  
+  const double global_scaling = global_u_infty * global_T_variation /
+                               std::pow(global_Omega_diameter, alpha - 2.);
+
+  return (beta *
+         max_velocity *
+         std::min (cell_diameter,
+                   std::pow(cell_diameter,alpha) * max_residual / global_scaling));
+}
+
+
+
+                                // @sect4{BoussinesqFlowProblem::setup_dofs}
+                                // 
+                                // This function does the same as
+                                // in most other tutorial programs. 
+                                // As a slight difference, the 
+                                // program is called with a 
+                                // parameter <code>setup_matrices</code>
+                                // that decides whether to 
+                                // recreate the sparsity pattern
+                                // and the associated stiffness
+                                // matrix.
+                                // 
+                                // The body starts by assigning dofs on 
+                                // basis of the chosen finite element,
+                                // and then renumbers the dofs 
+                                // first using the Cuthill_McKee
+                                // algorithm (to generate a good
+                                // quality ILU during the linear
+                                // solution process) and then group
+                                // components of velocity, pressure
+                                // and temperature together. This 
+                                // happens in complete analogy to
+                                // step-22.
+                                // 
+                                // We then proceed with the generation
+                                // of the hanging node constraints
+                                // that arise from adaptive grid
+                                // refinement. Next we impose
+                                // the no-flux boundary conditions
+                                // $\vec{u}\cdot \vec{n}=0$ by adding
+                                // a respective constraint to the
+                                // hanging node constraints
+                                // matrix. The second parameter in 
+                                // the function describes the first 
+                                // of the velocity components
+                                // in the total dof vector, which is 
+                                // zero here. The parameter 
+                                // <code>no_normal_flux_boundaries</code>
+                                // sets the no flux b.c. to those
+                                // boundaries with boundary indicator
+                                // zero.
+template <int dim>
+void BoussinesqFlowProblem<dim>::setup_dofs ()
+{
+  std::vector<unsigned int> stokes_block_component (dim+1,0);
+  stokes_block_component[dim] = 1;
+  
+  {
+    stokes_dof_handler.distribute_dofs (stokes_fe);
+    DoFRenumbering::Cuthill_McKee (stokes_dof_handler);
+    DoFRenumbering::component_wise (stokes_dof_handler, stokes_block_component);
+    
+    stokes_constraints.clear ();
+    DoFTools::make_hanging_node_constraints (stokes_dof_handler,
+                                            stokes_constraints);
+    std::set<unsigned char> no_normal_flux_boundaries;
+    no_normal_flux_boundaries.insert (0);
+    VectorTools::compute_no_normal_flux_constraints (stokes_dof_handler, 0,
+                                                    no_normal_flux_boundaries,
+                                                    stokes_constraints);
+    stokes_constraints.close ();
+  }
+  {
+    temperature_dof_handler.distribute_dofs (temperature_fe);
+    DoFRenumbering::Cuthill_McKee (temperature_dof_handler);
+
+    temperature_constraints.clear ();
+    DoFTools::make_hanging_node_constraints (temperature_dof_handler,
+                                            temperature_constraints);
+    temperature_constraints.close ();
+  }
+  
+  std::vector<unsigned int> stokes_dofs_per_block (2);
+  DoFTools::count_dofs_per_block (stokes_dof_handler, stokes_dofs_per_block,
+                                 stokes_block_component);
+  
+  const unsigned int n_u = stokes_dofs_per_block[0],
+                     n_p = stokes_dofs_per_block[1],
+                    n_T = temperature_dof_handler.n_dofs();
+
+  std::cout << "Number of active cells: "
+            << triangulation.n_active_cells()
+           << " (on "
+           << triangulation.n_levels()
+           << " levels)"
+            << std::endl
+            << "Number of degrees of freedom: "
+            << n_u + n_p + n_T
+            << " (" << n_u << '+' << n_p << '+'<< n_T <<')'
+            << std::endl
+            << std::endl;
+
+
+  
+                                // The next step is to 
+                                // create the sparsity 
+                                // pattern for the system matrix 
+                                // based on the Boussinesq 
+                                // system. As in step-22, 
+                                // we choose to create the
+                                // pattern not as in the
+                                // first tutorial programs,
+                                // but by using the blocked
+                                // version of 
+                                // CompressedSetSparsityPattern.
+                                // The reason for doing this 
+                                // is mainly a memory issue,
+                                // that is, the basic procedures
+                                // consume too much memory
+                                // when used in three spatial
+                                // dimensions as we intend
+                                // to do for this program.
+                                // 
+                                // So, in case we need
+                                // to recreate the matrices,
+                                // we first release the
+                                // stiffness matrix from the
+                                // sparsity pattern and then
+                                // set up an object of the 
+                                // BlockCompressedSetSparsityPattern
+                                // consisting of three blocks. 
+                                // Each of these blocks is
+                                // initialized with the
+                                // respective number of 
+                                // degrees of freedom. 
+                                // Once the blocks are 
+                                // created, the overall size
+                                // of the sparsity pattern
+                                // is initiated by invoking 
+                                // the <code>collect_sizes()</code>
+                                // command, and then the
+                                // sparsity pattern can be
+                                // filled with information.
+                                // Then, the hanging
+                                // node constraints are applied
+                                // to the temporary sparsity
+                                // pattern, which is finally
+                                // then completed and copied
+                                // into the general sparsity
+                                // pattern structure.
+  
+                                // Observe that we use a 
+                                // coupling argument for 
+                                // telling the function
+                                // <code>make_stokes_sparsity_pattern</code>
+                                // which components actually
+                                // will hold data and which 
+                                // we're going to neglect.
+                                // 
+                                // After these actions, we 
+                                // need to reassign the 
+                                // system matrix structure to
+                                // the sparsity pattern.
+  stokes_partitioner.clear();
+  {
+    Epetra_Map map_u(n_u, 0, trilinos_communicator);
+    stokes_partitioner.push_back (map_u);
+    Epetra_Map map_p(n_p, 0, trilinos_communicator);
+    stokes_partitioner.push_back (map_p);
+  }
+  {
+    stokes_matrix.clear ();
+
+    BlockCompressedSetSparsityPattern csp (2,2);
+    csp.block(0,0).reinit (n_u, n_u);
+    csp.block(0,1).reinit (n_u, n_p);
+    csp.block(1,0).reinit (n_p, n_u);
+    csp.block(1,1).reinit (n_p, n_p);
+
+    csp.collect_sizes ();
+
+    Table<2,DoFTools::Coupling> coupling (dim+1, dim+1);
+
+                                    // build the sparsity
+                                    // pattern. note that all dim
+                                    // velocities couple with each
+                                    // other and with the pressures,
+                                    // but that there is no
+                                    // pressure-pressure coupling:
+    for (unsigned int c=0; c<dim+1; ++c)
+      for (unsigned int d=0; d<dim+1; ++d)
+       if (! ((c==dim) && (d==dim)))
+         coupling[c][d] = DoFTools::always;
+       else
+         coupling[c][d] = DoFTools::none;
+
+    DoFTools::make_sparsity_pattern (stokes_dof_handler, coupling, csp);
+    stokes_constraints.condense (csp);
+
+    BlockSparsityPattern stokes_sparsity_pattern;    
+    stokes_sparsity_pattern.copy_from (csp);
+
+    stokes_matrix.reinit (stokes_partitioner, stokes_sparsity_pattern);
+    stokes_matrix.collect_sizes();
+  }
+
+  {
+    Amg_preconditioner.reset ();
+    Mp_preconditioner.reset ();
+    stokes_preconditioner_matrix.clear ();
+
+    BlockCompressedSetSparsityPattern csp (2,2);
+    csp.block(0,0).reinit (n_u, n_u);
+    csp.block(0,1).reinit (n_u, n_p);
+    csp.block(1,0).reinit (n_p, n_u);
+    csp.block(1,1).reinit (n_p, n_p);
+      
+    csp.collect_sizes ();
+
+    Table<2,DoFTools::Coupling> coupling (dim+1, dim+1);
+    for (unsigned int c=0; c<dim+1; ++c)
+      for (unsigned int d=0; d<dim+1; ++d)
+       if (c == d)
+         coupling[c][d] = DoFTools::always;
+       else
+         coupling[c][d] = DoFTools::none;
+
+    DoFTools::make_sparsity_pattern (stokes_dof_handler, coupling, csp);
+    stokes_constraints.condense (csp);
+    
+    BlockSparsityPattern stokes_preconditioner_sparsity_pattern;
+    stokes_preconditioner_sparsity_pattern.copy_from (csp);
+
+    stokes_preconditioner_matrix.reinit (stokes_partitioner,
+                                        stokes_preconditioner_sparsity_pattern);
+    stokes_preconditioner_matrix.collect_sizes();
+  }
+
+  temperature_partitioner = Epetra_Map (n_T, 0, trilinos_communicator);
+  {
+    temperature_mass_matrix.clear ();
+    temperature_stiffness_matrix.clear ();
+    temperature_matrix.clear ();
+
+    CompressedSetSparsityPattern csp (n_T, n_T);      
+    DoFTools::make_sparsity_pattern (temperature_dof_handler, csp);
+    temperature_constraints.condense (csp);
+
+    SparsityPattern temperature_sparsity_pattern;
+    temperature_sparsity_pattern.copy_from (csp);
+
+    temperature_matrix.reinit (temperature_partitioner,
+                              temperature_sparsity_pattern);
+    temperature_mass_matrix.reinit (temperature_partitioner,
+                                   temperature_sparsity_pattern);
+    temperature_stiffness_matrix.reinit (temperature_partitioner,
+                                        temperature_sparsity_pattern);
+  }
+
+                                  // As last action in this function,
+                                  // we need to set the vectors
+                                  // for the solution, the old 
+                                  // solution (required for 
+                                  // time stepping) and the system
+                                  // right hand side to the 
+                                  // three-block structure given
+                                  // by velocity, pressure and
+                                  // temperature.
+  stokes_solution.reinit (stokes_partitioner);
+  stokes_rhs.reinit (stokes_partitioner);
+
+  temperature_solution.reinit (temperature_partitioner);
+  old_temperature_solution.reinit (temperature_partitioner);
+  old_old_temperature_solution.reinit (temperature_partitioner);
+
+  temperature_rhs.reinit (temperature_partitioner);
+}
+
+
+
+template <int dim>
+void
+BoussinesqFlowProblem<dim>::assemble_stokes_preconditioner ()
+{
+  stokes_preconditioner_matrix = 0;
+
+  QGauss<dim>   quadrature_formula(stokes_degree+2);
+  FEValues<dim> stokes_fe_values (stokes_fe, quadrature_formula,
+                                 update_JxW_values |
+                                 update_values |
+                                 update_gradients);
+  const unsigned int   dofs_per_cell   = stokes_fe.dofs_per_cell;
+
+  const unsigned int   n_q_points      = quadrature_formula.size();
+
+  FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
+  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+  std::vector<Tensor<2,dim> > phi_grad_u (dofs_per_cell);
+  std::vector<double>         phi_p      (dofs_per_cell);
+
+  const FEValuesExtractors::Vector velocities (0);
+  const FEValuesExtractors::Scalar pressure (dim);
+
+  typename DoFHandler<dim>::active_cell_iterator
+    cell = stokes_dof_handler.begin_active(),
+    endc = stokes_dof_handler.end();
+  for (; cell!=endc; ++cell)
+    {
+      stokes_fe_values.reinit (cell);
+      local_matrix = 0;
+
+      for (unsigned int q=0; q<n_q_points; ++q)
+       {
+         for (unsigned int k=0; k<dofs_per_cell; ++k)
+           {
+             phi_grad_u[k] = stokes_fe_values[velocities].gradient(k,q);
+             phi_p[k]      = stokes_fe_values[pressure].value (k, q);
+           }
+         
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           for (unsigned int j=0; j<dofs_per_cell; ++j)
+             local_matrix(i,j) += (scalar_product (phi_grad_u[i], phi_grad_u[j])
+                                   +
+                                   phi_p[i] * phi_p[j])
+                                  * stokes_fe_values.JxW(q);
+       }
+
+      cell->get_dof_indices (local_dof_indices);
+      stokes_constraints.distribute_local_to_global (local_matrix,
+                                                    local_dof_indices,
+                                                    stokes_preconditioner_matrix);
+    }
+  stokes_preconditioner_matrix.compress();
+}
+
+
+
+template <int dim>
+void
+BoussinesqFlowProblem<dim>::build_stokes_preconditioner ()
+{
+  if (rebuild_stokes_preconditioner == false)
+    return;
+  
+  std::cout << "   Rebuilding Stokes preconditioner..." << std::flush;
+      
+
+                                  // This last step of the assembly
+                                  // function sets up the preconditioners
+                                  // used for the solution of the
+                                  // system. We are going to use an
+                                  // ILU preconditioner for the
+                                  // velocity block (to be used
+                                  // by BlockSchurPreconditioner class)
+                                  // as well as an ILU preconditioner
+                                  // for the inversion of the 
+                                  // pressure mass matrix. Recall that
+                                  // the velocity-velocity block sits
+                                  // at position (0,0) in the 
+                                  // global system matrix, and
+                                  // the pressure mass matrix in
+                                  // (1,1). The 
+                                  // storage of these objects is
+                                  // as in step-22, that is, we
+                                  // include them using a 
+                                  // shared pointer structure from the
+                                  // boost library.
+  assemble_stokes_preconditioner ();
+      
+  Amg_preconditioner = boost::shared_ptr<TrilinosWrappers::PreconditionAMG>
+                      (new TrilinosWrappers::PreconditionAMG());
+
+  std::vector<std::vector<bool> > null_space;
+  std::vector<bool>  velocity_components (dim+1,true);
+  velocity_components[dim] = false;
+  DoFTools::extract_constant_modes (stokes_dof_handler, velocity_components, 
+                                   null_space);
+  Amg_preconditioner->initialize(stokes_preconditioner_matrix.block(0,0),
+                                true, true, null_space, false);
+
+                                  // TODO: we could throw away the (0,0)
+                                  // block here since things have been
+                                  // copied over to Trilinos. we need to
+                                  // keep the (1,1) block, though
+      
+  Mp_preconditioner = boost::shared_ptr<TrilinosWrappers::PreconditionSSOR>
+       (new TrilinosWrappers::PreconditionSSOR(
+          stokes_preconditioner_matrix.block(1,1),1.2));
+
+  std::cout << std::endl;
+
+  rebuild_stokes_preconditioner = false;
+}
+
+
+
+                                // @sect4{BoussinesqFlowProblem::assemble_stokes_system}
+                                // 
+                                // The assembly of the Boussinesq 
+                                // system is acutally a two-step
+                                // procedure. One is to create
+                                // the Stokes system matrix and
+                                // right hand side for the 
+                                // velocity-pressure system as
+                                // well as the mass matrix for
+                                // temperature, and
+                                // the second is to create the
+                                // rhight hand side for the temperature
+                                // dofs. The reason for doing this
+                                // in two steps is simply that 
+                                // the time stepping we have chosen
+                                // needs the result from the Stokes
+                                // system at the current time step
+                                // for building the right hand
+                                // side of the temperature equation.
+                                // 
+                                // This function does the 
+                                // first of these two tasks.
+                                // There are two different situations
+                                // for calling this function. The
+                                // first one is when we reset the
+                                // mesh, and both the matrix and
+                                // the right hand side have to
+                                // be generated. The second situation
+                                // only sets up the right hand
+                                // side. The reason for having 
+                                // two different accesses is that
+                                // the matrix of the Stokes system
+                                // does not change in time unless
+                                // the mesh is changed, so we can
+                                // save a considerable amount of
+                                // work by doing the full assembly
+                                // only when it is needed.
+                                // 
+                                // Regarding the technical details
+                                // of implementation, not much has
+                                // changed from step-22. We reset
+                                // matrix and vector, create 
+                                // a quadrature formula on the 
+                                // cells and one on cell faces
+                                // (for implementing Neumann 
+                                // boundary conditions). Then,
+                                // we create a respective
+                                // FEValues object for both the 
+                                // cell and the face integration.
+                                // For the the update flags of
+                                // the first, we perform the
+                                // calculations of basis function
+                                // derivatives only in
+                                // case of a full assembly, since
+                                // they are not needed otherwise,
+                                // which makes the call of
+                                // the FEValues::reinit function
+                                // further down in the program 
+                                // more efficient.
+                                // 
+                                // The declarations proceed 
+                                // with some shortcuts for 
+                                // array sizes, the creation of
+                                // the local matrix and right 
+                                // hand side as well as the
+                                // vector for the indices of
+                                // the local dofs compared to
+                                // the global system.
+template <int dim>
+void BoussinesqFlowProblem<dim>::assemble_stokes_system ()
+{
+  std::cout << "   Assembling..." << std::flush;
+
+  if (rebuild_stokes_matrix == true)
+    stokes_matrix=0;
+
+  stokes_rhs=0;
+
+  QGauss<dim>   quadrature_formula(stokes_degree+2);
+  QGauss<dim-1> face_quadrature_formula(stokes_degree+2);
+
+  FEValues<dim> stokes_fe_values (stokes_fe, quadrature_formula,
+                                 update_values    |
+                                 update_quadrature_points  |
+                                 update_JxW_values |
+                                 (rebuild_stokes_matrix == true
+                                  ?
+                                  update_gradients
+                                  :
+                                  UpdateFlags(0)));
+
+  FEValues<dim> temperature_fe_values (temperature_fe, quadrature_formula,
+                                      update_values);
+
+  FEFaceValues<dim> stokes_fe_face_values (stokes_fe, face_quadrature_formula,
+                                          update_values    | 
+                                          update_normal_vectors |
+                                          update_quadrature_points  | 
+                                          update_JxW_values);
+
+  const unsigned int   dofs_per_cell   = stokes_fe.dofs_per_cell;
+
+  const unsigned int   n_q_points      = quadrature_formula.size();
+  const unsigned int   n_face_q_points = face_quadrature_formula.size();
+
+  FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
+  Vector<double>       local_rhs (dofs_per_cell);
+
+  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+                                  // These few declarations provide
+                                  // the structures for the evaluation
+                                  // of inhomogeneous Neumann boundary
+                                  // conditions from the function
+                                  // declaration made above.
+                                  // The vector <code>old_solution_values</code>
+                                  // evaluates the solution 
+                                  // at the old time level, since
+                                  // the temperature from the
+                                  // old time level enters the 
+                                  // Stokes system as a source
+                                  // term in the momentum equation.
+                                  // 
+                                  // Then, we create a variable
+                                  // to hold the Rayleigh number,
+                                  // the measure of buoyancy.
+                                  // 
+                                  // The set of vectors we create
+                                  // next hold the evaluations of
+                                  // the basis functions that will
+                                  // be used for creating the
+                                  // matrices. This gives faster
+                                  // access to that data, which
+                                  // increases the performance
+                                  // of the assembly. See step-22 
+                                  // for details.
+                                  // 
+                                  // The last few declarations 
+                                  // are used to extract the 
+                                  // individual blocks (velocity,
+                                  // pressure, temperature) from
+                                  // the total FE system.
+  const EquationData::PressureBoundaryValues<dim> pressure_boundary_values;
+  std::vector<double>               boundary_values (n_face_q_points);
+
+  std::vector<double>               old_temperature_values(n_q_points);
+
+  const double Rayleigh_number = 10;
+
+  std::vector<Tensor<1,dim> >          phi_u       (dofs_per_cell);
+  std::vector<SymmetricTensor<2,dim> > grads_phi_u (dofs_per_cell);
+  std::vector<double>                  div_phi_u   (dofs_per_cell);
+  std::vector<double>                  phi_p       (dofs_per_cell);
+
+  const FEValuesExtractors::Vector velocities (0);
+  const FEValuesExtractors::Scalar pressure (dim);
+
+                                  // Now start the loop over
+                                  // all cells in the problem.
+                                  // The first commands are all
+                                  // very familiar, doing the
+                                  // evaluations of the element
+                                  // basis functions, resetting
+                                  // the local arrays and 
+                                  // getting the values of the
+                                  // old solution at the
+                                  // quadrature point. Then we
+                                  // are ready to loop over
+                                  // the quadrature points 
+                                  // on the cell.
+  typename DoFHandler<dim>::active_cell_iterator
+    cell = stokes_dof_handler.begin_active(),
+    endc = stokes_dof_handler.end();
+  typename DoFHandler<dim>::active_cell_iterator
+    temperature_cell = temperature_dof_handler.begin_active();
+  
+  for (; cell!=endc; ++cell, ++temperature_cell)
+    {
+      stokes_fe_values.reinit (cell);
+      temperature_fe_values.reinit (temperature_cell);
+      
+      local_matrix = 0;
+      local_rhs = 0;
+
+      temperature_fe_values.get_function_values (old_temperature_solution, old_temperature_values);
+
+      for (unsigned int q=0; q<n_q_points; ++q)
+       {
+         const double old_temperature = old_temperature_values[q];
+
+                                          // Extract the basis relevant
+                                          // terms in the inner products
+                                          // once in advance as shown
+                                          // in step-22 in order to 
+                                          // accelerate assembly.
+                                          // 
+                                          // Once this is done, we 
+                                          // start the loop over the
+                                          // rows and columns of the
+                                          // local matrix and feed
+                                          // the matrix with the relevant
+                                          // products. The right hand
+                                          // side is filled with the 
+                                          // forcing term driven by
+                                          // temperature in direction
+                                          // of gravity (which is 
+                                          // vertical in our example).
+                                          // Note that the right hand 
+                                          // side term is always generated,
+                                          // whereas the matrix 
+                                          // contributions are only
+                                          // updated when it is 
+                                          // requested by the
+                                          // <code>rebuild_matrices</code>
+                                          // flag.
+         for (unsigned int k=0; k<dofs_per_cell; ++k)
+           {
+             phi_u[k] = stokes_fe_values[velocities].value (k,q);
+             if (rebuild_stokes_matrix)
+               {
+                 grads_phi_u[k] = stokes_fe_values[velocities].symmetric_gradient(k,q);
+                 div_phi_u[k]   = stokes_fe_values[velocities].divergence (k, q);
+                 phi_p[k]       = stokes_fe_values[pressure].value (k, q);
+               }
+           }
+
+         if (rebuild_stokes_matrix)
+           for (unsigned int i=0; i<dofs_per_cell; ++i)
+             for (unsigned int j=0; j<dofs_per_cell; ++j)
+               local_matrix(i,j) += (EquationData::eta *
+                                     grads_phi_u[i] * grads_phi_u[j]
+                                     - div_phi_u[i] * phi_p[j]
+                                     - phi_p[i] * div_phi_u[j])
+                                    * stokes_fe_values.JxW(q);
+
+         const Point<dim> gravity = ( (dim == 2) ? (Point<dim> (0,1)) : 
+                                      (Point<dim> (0,0,1)) );
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           local_rhs(i) += (Rayleigh_number *
+                            gravity * phi_u[i] * old_temperature)*
+                           stokes_fe_values.JxW(q);
+       }
+
+
+                                      // Next follows the assembly 
+                                      // of the face terms, result
+                                      // from Neumann boundary 
+                                      // conditions. Since these
+                                      // terms only enter the right
+                                      // hand side vector and not
+                                      // the matrix, there is no
+                                      // substantial benefit from
+                                      // extracting the data 
+                                      // before using it, so 
+                                      // we remain in the lines 
+                                      // of step-20 at this point.
+      for (unsigned int face_no=0;
+          face_no<GeometryInfo<dim>::faces_per_cell;
+          ++face_no)
+       if (cell->at_boundary(face_no))
+         {
+           stokes_fe_face_values.reinit (cell, face_no);
+
+           pressure_boundary_values
+             .value_list (stokes_fe_face_values.get_quadrature_points(),
+                          boundary_values);
+
+           for (unsigned int q=0; q<n_face_q_points; ++q)
+             for (unsigned int i=0; i<dofs_per_cell; ++i)
+               {
+                 const Tensor<1,dim>
+                   phi_i_u = stokes_fe_face_values[velocities].value (i, q);
+
+                 local_rhs(i) += -(phi_i_u *
+                                   stokes_fe_face_values.normal_vector(q) *
+                                   boundary_values[q] *
+                                   stokes_fe_face_values.JxW(q));
+               }
+         }      
+
+                                      // The last step in the loop 
+                                      // over all cells is to
+                                      // enter the local contributions
+                                      // into the global matrix and 
+                                      // vector structures to the
+                                      // positions specified in 
+                                      // <code>local_dof_indices</code>.
+                                      // Again, we only add the 
+                                      // matrix data when it is 
+                                      // requested.
+      cell->get_dof_indices (local_dof_indices);
+
+      if (rebuild_stokes_matrix == true)
+       stokes_constraints.distribute_local_to_global (local_matrix,
+                                                      local_dof_indices,
+                                                      stokes_matrix);
+
+      stokes_constraints.distribute_local_to_global (local_rhs,
+                                                    local_dof_indices,
+                                                    stokes_rhs);
+    }
+  stokes_matrix.compress();
+  stokes_rhs.compress();
+
+  rebuild_stokes_matrix = false;
+
+  std::cout << std::endl;
+}
+
+
+
+
+
+
+                                // @sect4{BoussinesqFlowProblem::assemble_temperature_system}
+                                // 
+                                // This function does the second
+                                // part of the assembly work, the
+                                // creation of the velocity-dependent
+                                // right hand side of the
+                                // temperature equation. The 
+                                // declarations in this function
+                                // are pretty much the same as the
+                                // ones used in the other 
+                                // assembly routine, except that we
+                                // restrict ourselves to vectors
+                                // this time. Though, we need to
+                                // perform more face integrals 
+                                // at this point, induced by the
+                                // use of discontinuous elements for 
+                                // the temperature (just
+                                // as it was in the first DG 
+                                // example in step-12) in combination
+                                // with adaptive grid refinement
+                                // and subfaces. The update 
+                                // flags at face level are the 
+                                // same as in step-12.
+template <int dim>
+void BoussinesqFlowProblem<dim>::assemble_temperature_matrix ()
+{
+  if (rebuild_temperature_matrices == false)
+    return;
+  
+  temperature_mass_matrix = 0;
+  temperature_stiffness_matrix = 0;
+  
+  QGauss<dim>   quadrature_formula(temperature_degree+2);
+  FEValues<dim> temperature_fe_values (temperature_fe, quadrature_formula,
+                                      update_values    | update_gradients |
+                                      update_JxW_values);
+
+  const unsigned int   dofs_per_cell   = temperature_fe.dofs_per_cell;
+  const unsigned int   n_q_points      = quadrature_formula.size();
+
+  FullMatrix<double>   local_mass_matrix (dofs_per_cell, dofs_per_cell);
+  FullMatrix<double>   local_stiffness_matrix (dofs_per_cell, dofs_per_cell);
+
+  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+  std::vector<double> gamma_values (n_q_points);
+
+  std::vector<double>                  phi_T       (dofs_per_cell);
+  std::vector<Tensor<1,dim> >          grad_phi_T  (dofs_per_cell);
+
+                                  // Now, let's start the loop
+                                  // over all cells in the
+                                  // triangulation. The first
+                                  // actions within the loop
+                                  // are, 0as usual, the evaluation
+                                  // of the FE basis functions 
+                                  // and the old and present
+                                  // solution at the quadrature 
+                                  // points.
+  typename DoFHandler<dim>::active_cell_iterator
+    cell = temperature_dof_handler.begin_active(),
+    endc = temperature_dof_handler.end();
+  for (; cell!=endc; ++cell)
+    {
+      local_mass_matrix = 0;
+      local_stiffness_matrix = 0;
+
+      temperature_fe_values.reinit (cell);
+      
+      for (unsigned int q=0; q<n_q_points; ++q)
+       {
+         for (unsigned int k=0; k<dofs_per_cell; ++k)
+           {
+             grad_phi_T[k] = temperature_fe_values.shape_grad (k,q);
+             phi_T[k]      = temperature_fe_values.shape_value (k, q);
+           }
+         
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           for (unsigned int j=0; j<dofs_per_cell; ++j)
+             {
+               local_mass_matrix(i,j)
+                 += (phi_T[i] * phi_T[j]
+                     *
+                     temperature_fe_values.JxW(q));
+               local_stiffness_matrix(i,j)
+                 += (EquationData::kappa * grad_phi_T[i] * grad_phi_T[j]
+                     *
+                     temperature_fe_values.JxW(q));
+             }
+       }
+      
+      cell->get_dof_indices (local_dof_indices);
+
+      temperature_constraints.distribute_local_to_global (local_mass_matrix,
+                                                         local_dof_indices,
+                                                         temperature_mass_matrix);
+      temperature_constraints.distribute_local_to_global (local_stiffness_matrix,
+                                                         local_dof_indices,
+                                                         temperature_stiffness_matrix);
+    }
+  
+  rebuild_temperature_matrices = false;
+}
+
+
+
+
+template <int dim>
+void BoussinesqFlowProblem<dim>::assemble_temperature_system ()
+{
+  const bool use_bdf2_scheme = (timestep_number != 0);
+
+  if (use_bdf2_scheme == true)
+    {
+      temperature_matrix.copy_from (temperature_mass_matrix);
+      temperature_matrix *= (2*time_step + old_time_step) /
+                           (time_step + old_time_step);
+      temperature_matrix.add (time_step, temperature_stiffness_matrix);
+    }
+  else
+    {
+      temperature_matrix.copy_from (temperature_mass_matrix);
+      temperature_matrix.add (time_step, temperature_stiffness_matrix);
+    }
+  
+  temperature_rhs = 0;
+  
+  QGauss<dim>   quadrature_formula(temperature_degree+2);
+  FEValues<dim> temperature_fe_values (temperature_fe, quadrature_formula,
+                                      update_values    | update_gradients |
+                                      update_hessians |
+                                      update_quadrature_points  | update_JxW_values);
+  FEValues<dim> stokes_fe_values (stokes_fe, quadrature_formula,
+                                 update_values);
+
+  const unsigned int   dofs_per_cell   = temperature_fe.dofs_per_cell;
+  const unsigned int   n_q_points      = quadrature_formula.size();
+
+  Vector<double>       local_rhs (dofs_per_cell);
+  FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
+
+  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+                                  // Here comes the declaration
+                                  // of vectors to hold the old
+                                  // and present solution values
+                                  // and gradients
+                                  // for both the cell as well as faces
+                                  // to the cell. Next comes the
+                                  // declaration of an object
+                                  // to hold the temperature 
+                                  // boundary values and a
+                                  // well-known extractor for
+                                  // accessing the temperature
+                                  // part of the FE system.
+  std::vector<Vector<double> > present_stokes_values (n_q_points, 
+                                                     Vector<double>(dim+1));
+
+  
+  std::vector<double>         old_temperature_values (n_q_points);
+  std::vector<double>         old_old_temperature_values(n_q_points);
+  std::vector<Tensor<1,dim> > old_temperature_grads(n_q_points);
+  std::vector<Tensor<1,dim> > old_old_temperature_grads(n_q_points);
+  std::vector<Tensor<2,dim> > old_temperature_hessians(n_q_points);
+  std::vector<Tensor<2,dim> > old_old_temperature_hessians(n_q_points);
+
+  
+  EquationData::TemperatureRightHandSide<dim>  temperature_right_hand_side;
+  std::vector<double> gamma_values (n_q_points);
+
+  std::vector<double>                  phi_T       (dofs_per_cell);
+  std::vector<Tensor<1,dim> >          grad_phi_T  (dofs_per_cell);
+  
+  const double global_u_infty = get_maximal_velocity();
+  const std::pair<double,double>
+    global_T_range = get_extrapolated_temperature_range();
+  const double global_Omega_diameter = GridTools::diameter (triangulation);
+
+                                  // Now, let's start the loop
+                                  // over all cells in the
+                                  // triangulation. The first
+                                  // actions within the loop
+                                  // are, 0as usual, the evaluation
+                                  // of the FE basis functions 
+                                  // and the old and present
+                                  // solution at the quadrature 
+                                  // points.
+  typename DoFHandler<dim>::active_cell_iterator
+    cell = temperature_dof_handler.begin_active(),
+    endc = temperature_dof_handler.end();
+  typename DoFHandler<dim>::active_cell_iterator
+    stokes_cell = stokes_dof_handler.begin_active();
+
+  for (; cell!=endc; ++cell, ++stokes_cell)
+    {
+      local_rhs = 0;
+
+      temperature_fe_values.reinit (cell);
+      stokes_fe_values.reinit (stokes_cell);
+
+      temperature_fe_values.get_function_values (old_temperature_solution,
+                                                old_temperature_values);
+      temperature_fe_values.get_function_values (old_old_temperature_solution,
+                                                old_old_temperature_values);
+
+      temperature_fe_values.get_function_gradients (old_temperature_solution,
+                                                   old_temperature_grads);
+      temperature_fe_values.get_function_gradients (old_old_temperature_solution,
+                                                   old_old_temperature_grads);
+      
+      temperature_fe_values.get_function_hessians (old_temperature_solution,
+                                                  old_temperature_hessians);
+      temperature_fe_values.get_function_hessians (old_old_temperature_solution,
+                                                  old_old_temperature_hessians);
+      
+      temperature_right_hand_side.value_list (temperature_fe_values.get_quadrature_points(),
+                                             gamma_values);
+
+      stokes_fe_values.get_function_values (stokes_solution,
+                                           present_stokes_values);
+      
+      const double nu
+       = compute_viscosity (old_temperature_values,
+                            old_old_temperature_values,
+                            old_temperature_grads,
+                            old_old_temperature_grads,
+                            old_temperature_hessians,
+                            old_old_temperature_hessians,
+                            present_stokes_values,
+                            gamma_values,
+                            global_u_infty,
+                            global_T_range.second - global_T_range.first,
+                            global_Omega_diameter, cell->diameter(),
+                            old_time_step);
+      
+      for (unsigned int q=0; q<n_q_points; ++q)
+       {
+         for (unsigned int k=0; k<dofs_per_cell; ++k)
+           {
+             grad_phi_T[k] = temperature_fe_values.shape_grad (k,q);
+             phi_T[k]      = temperature_fe_values.shape_value (k, q);
+           }
+
+         const double        old_T      = old_temperature_values[q];
+         const double        old_old_T  = old_old_temperature_values[q];
+
+         const Tensor<1,dim> old_grad_T     = old_temperature_grads[q];
+         const Tensor<1,dim> old_old_grad_T = old_old_temperature_grads[q];
+
+         
+         Tensor<1,dim> present_u;
+         for (unsigned int d=0; d<dim; ++d)
+           present_u[d] = present_stokes_values[q](d);
+
+         if (use_bdf2_scheme == true)
+           {
+             for (unsigned int i=0; i<dofs_per_cell; ++i)
+               local_rhs(i) += ((time_step + old_time_step) / old_time_step *
+                                old_T * phi_T[i]
+                                -
+                                (time_step * time_step) /
+                                (old_time_step * (time_step + old_time_step)) *
+                                old_old_T * phi_T[i]
+                                -
+                                time_step *
+                                present_u *
+                                ((1+time_step/old_time_step) * old_grad_T
+                                 -
+                                 time_step / old_time_step * old_old_grad_T) *
+                                phi_T[i]
+                                -
+                                time_step *
+                                nu *
+                                ((1+time_step/old_time_step) * old_grad_T
+                                 -
+                                 time_step / old_time_step * old_old_grad_T) *
+                                grad_phi_T[i]
+                                +
+                                time_step *
+                                gamma_values[q] * phi_T[i])
+                               *
+                               temperature_fe_values.JxW(q);
+           }
+         else
+           {
+             for (unsigned int i=0; i<dofs_per_cell; ++i)
+               local_rhs(i) += (old_T * phi_T[i]
+                                -
+                                time_step *
+                                present_u * old_grad_T * phi_T[i]
+                                -
+                                time_step *
+                                nu *
+                                old_grad_T * grad_phi_T[i]
+                                +
+                                time_step *
+                                gamma_values[q] * phi_T[i])
+                               *
+                               temperature_fe_values.JxW(q);
+           }
+       }
+      
+      cell->get_dof_indices (local_dof_indices);
+      temperature_constraints.distribute_local_to_global (local_rhs,
+                                                         local_dof_indices,
+                                                         temperature_rhs);
+    }
+}
+
+
+
+
+                                // @sect4{BoussinesqFlowProblem::solve}
+template <int dim>
+void BoussinesqFlowProblem<dim>::solve ()
+{
+  std::cout << "   Solving..." << std::endl;
+  
+                                  // Use the BlockMatrixArray structure
+                                  // for extracting only the upper left
+                                  // 2x2 blocks from the matrix that will
+                                  // be used for the solution of the
+                                  // blocked system.
+  {
+                                    // Set up inverse matrix for
+                                    // pressure mass matrix
+    LinearSolvers::InverseMatrix<TrilinosWrappers::SparseMatrix,
+                                TrilinosWrappers::PreconditionSSOR>
+      mp_inverse (stokes_preconditioner_matrix.block(1,1), *Mp_preconditioner);
+
+    LinearSolvers::BlockSchurPreconditioner<TrilinosWrappers::PreconditionAMG,
+                                            TrilinosWrappers::PreconditionSSOR>
+      preconditioner (stokes_matrix, mp_inverse, *Amg_preconditioner);
+
+                                    // Set up GMRES solver and
+                                    // solve.
+    SolverControl solver_control (stokes_matrix.m(),
+                                 1e-6*stokes_rhs.l2_norm());
+
+    SolverGMRES<TrilinosWrappers::BlockVector> gmres(solver_control,
+      SolverGMRES<TrilinosWrappers::BlockVector >::AdditionalData(100));
+
+    //stokes_solution = 0;
+    gmres.solve(stokes_matrix, stokes_solution, stokes_rhs, preconditioner);
+
+    std::cout << "   "
+              << solver_control.last_step()
+              << " GMRES iterations for Stokes subsystem."
+              << std::endl;
+             
+                                    // Produce a constistent solution
+                                    // field (we can't do this on the 'up'
+                                    // vector since it does not have the
+                                    // temperature component, but
+                                    // hanging_node_constraints has
+                                    // constraints also for the
+                                    // temperature vector)
+    stokes_constraints.distribute (stokes_solution);
+  }
+
+  old_time_step = time_step;    
+  time_step = 1./(std::sqrt(2.)*dim*std::sqrt(1.*dim)) /
+             temperature_degree *
+             GridTools::minimal_cell_diameter(triangulation) /
+              std::max (get_maximal_velocity(), .01);
+  
+  temperature_solution = old_temperature_solution;
+
+
+  assemble_temperature_system ();
+  {
+
+    SolverControl solver_control (temperature_matrix.m(),
+                                 1e-8*temperature_rhs.l2_norm());
+    SolverCG<TrilinosWrappers::Vector>   cg (solver_control);
+
+    TrilinosWrappers::PreconditionSSOR preconditioner (temperature_matrix,
+                                                      1.2);
+    cg.solve (temperature_matrix, temperature_solution,
+             temperature_rhs,
+             preconditioner);
+
+                                    // produce a consistent temperature field
+    temperature_constraints.distribute (temperature_solution);
+
+    std::cout << "   "
+              << solver_control.last_step()
+              << " CG iterations for temperature."
+              << std::endl;
+
+    double min_temperature = temperature_solution(0),
+          max_temperature = temperature_solution(0);
+    for (unsigned int i=0; i<temperature_solution.size(); ++i)
+      {
+       min_temperature = std::min<double> (min_temperature,
+                                           temperature_solution(i));
+       max_temperature = std::max<double> (max_temperature,
+                                           temperature_solution(i));
+      }
+    
+    std::cout << "   Temperature range: "
+             << min_temperature << ' ' << max_temperature
+             << std::endl;
+  }
+}
+
+
+
+                                // @sect4{BoussinesqFlowProblem::output_results}
+template <int dim>
+void BoussinesqFlowProblem<dim>::output_results ()  const
+{
+  if (timestep_number % 10 != 0)
+    return;
+
+  const FESystem<dim> joint_fe (stokes_fe, 1,
+                               temperature_fe, 1);
+  DoFHandler<dim> joint_dof_handler (triangulation);
+  joint_dof_handler.distribute_dofs (joint_fe);
+  Assert (joint_dof_handler.n_dofs() ==
+         stokes_dof_handler.n_dofs() + temperature_dof_handler.n_dofs(),
+         ExcInternalError());
+  
+  Vector<double> joint_solution (joint_dof_handler.n_dofs());
+
+  {
+    std::vector<unsigned int> local_joint_dof_indices (joint_fe.dofs_per_cell);
+    std::vector<unsigned int> local_stokes_dof_indices (stokes_fe.dofs_per_cell);
+    std::vector<unsigned int> local_temperature_dof_indices (temperature_fe.dofs_per_cell);
+    
+    typename DoFHandler<dim>::active_cell_iterator
+      joint_cell       = joint_dof_handler.begin_active(),
+      joint_endc       = joint_dof_handler.end(),
+      stokes_cell      = stokes_dof_handler.begin_active(),
+      temperature_cell = temperature_dof_handler.begin_active();
+    for (; joint_cell!=joint_endc; ++joint_cell, ++stokes_cell, ++temperature_cell)
+      {
+       joint_cell->get_dof_indices (local_joint_dof_indices);
+       stokes_cell->get_dof_indices (local_stokes_dof_indices);
+       temperature_cell->get_dof_indices (local_temperature_dof_indices);
+
+       for (unsigned int i=0; i<joint_fe.dofs_per_cell; ++i)
+         if (joint_fe.system_to_base_index(i).first.first == 0)
+           {
+             Assert (joint_fe.system_to_base_index(i).second
+                     <
+                     local_stokes_dof_indices.size(),
+                     ExcInternalError());
+             joint_solution(local_joint_dof_indices[i])
+               = stokes_solution(local_stokes_dof_indices[joint_fe.system_to_base_index(i).second]);
+           }
+         else
+           {
+             Assert (joint_fe.system_to_base_index(i).first.first == 1,
+                     ExcInternalError());
+             Assert (joint_fe.system_to_base_index(i).second
+                     <
+                     local_stokes_dof_indices.size(),
+                     ExcInternalError());
+             joint_solution(local_joint_dof_indices[i])
+               = temperature_solution(local_temperature_dof_indices[joint_fe.system_to_base_index(i).second]);
+           }
+      }
+  }
+  
+  
+  std::vector<std::string> joint_solution_names (dim, "velocity");
+  joint_solution_names.push_back ("p");
+  joint_solution_names.push_back ("T");
+
+  DataOut<dim> data_out;
+
+  data_out.attach_dof_handler (joint_dof_handler);
+
+  std::vector<DataComponentInterpretation::DataComponentInterpretation>
+    data_component_interpretation
+    (dim+2, DataComponentInterpretation::component_is_scalar);
+  for (unsigned int i=0; i<dim; ++i)
+    data_component_interpretation[i]
+      = DataComponentInterpretation::component_is_part_of_vector;
+
+  data_out.add_data_vector (joint_solution, joint_solution_names,
+                           DataOut<dim>::type_dof_data,
+                           data_component_interpretation);
+  data_out.build_patches (std::min(stokes_degree, temperature_degree));
+
+  std::ostringstream filename;
+  filename << "solution-" << Utilities::int_to_string(timestep_number, 4) << ".vtk";
+
+  std::ofstream output (filename.str().c_str());
+  data_out.write_vtk (output);
+}
+
+
+
+                                // @sect4{BoussinesqFlowProblem::refine_mesh}
+template <int dim>
+void BoussinesqFlowProblem<dim>::refine_mesh (const unsigned int max_grid_level)
+{
+  Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
+
+  KellyErrorEstimator<dim>::estimate (temperature_dof_handler,
+                                     QGauss<dim-1>(temperature_degree+1),
+                                     typename FunctionMap<dim>::type(),
+                                     temperature_solution,
+                                     estimated_error_per_cell);
+
+  GridRefinement::refine_and_coarsen_fixed_fraction (triangulation,
+                                                    estimated_error_per_cell,
+                                                    0.8, 0.1);
+  if (triangulation.n_levels() > max_grid_level) 
+    for (typename Triangulation<dim>::active_cell_iterator
+          cell = triangulation.begin_active(max_grid_level);
+        cell != triangulation.end(); ++cell)
+      cell->clear_refine_flag ();
+  
+  std::vector<TrilinosWrappers::Vector> x_solution (2);
+  x_solution[0].reinit (temperature_solution);
+  x_solution[0] = temperature_solution;
+  x_solution[1].reinit (temperature_solution);
+  x_solution[1] = old_temperature_solution;
+
+  SolutionTransfer<dim,TrilinosWrappers::Vector> soltrans(temperature_dof_handler);
+
+  triangulation.prepare_coarsening_and_refinement();
+  soltrans.prepare_for_coarsening_and_refinement(x_solution);
+
+  triangulation.execute_coarsening_and_refinement ();
+  setup_dofs ();
+
+  std::vector<TrilinosWrappers::Vector> tmp (2);
+  tmp[0].reinit (temperature_solution);
+  tmp[1].reinit (temperature_solution);
+  soltrans.interpolate(x_solution, tmp);
+
+  temperature_solution = tmp[0];
+  old_temperature_solution = tmp[1];
+
+  rebuild_stokes_matrix         = true;
+  rebuild_temperature_matrices  = true;
+  rebuild_stokes_preconditioner = true;
+}
+
+
+
+                                // @sect4{BoussinesqFlowProblem::run}
+template <int dim>
+void BoussinesqFlowProblem<dim>::run ()
+{
+  const unsigned int initial_refinement = (dim == 2 ? 4 : 2);
+  const unsigned int n_pre_refinement_steps = (dim == 2 ? 4 : 3);
+
+
+  GridGenerator::hyper_cube (triangulation);
+  triangulation.refine_global (initial_refinement);
+
+  setup_dofs();
+
+  unsigned int       pre_refinement_step    = 0;
+  
+  start_time_iteration:
+
+  VectorTools::project (temperature_dof_handler,
+                       temperature_constraints,
+                       QGauss<dim>(temperature_degree+2),
+                       EquationData::TemperatureInitialValues<dim>(),
+                       old_temperature_solution);
+  
+  timestep_number = 0;
+  double time = 0;
+
+  do
+    {
+      std::cout << "Timestep " << timestep_number
+               << ":  t=" << time
+               << ", dt=" << time_step
+                << std::endl;
+
+      assemble_stokes_system ();
+      build_stokes_preconditioner ();
+      assemble_temperature_matrix ();
+
+      solve ();
+
+      output_results ();
+
+      std::cout << std::endl;
+      
+      if ((timestep_number == 0) &&
+         (pre_refinement_step < n_pre_refinement_steps))
+       {
+         refine_mesh (initial_refinement + n_pre_refinement_steps);
+         ++pre_refinement_step;
+         goto start_time_iteration;
+       }
+      else
+       if ((timestep_number > 0) && (timestep_number % 5 == 0))
+         refine_mesh (initial_refinement + n_pre_refinement_steps);
+
+      time += time_step;
+      ++timestep_number;
+
+      old_old_temperature_solution = old_temperature_solution;
+      old_temperature_solution     = temperature_solution;      
+    }
+  while (time <= 100);
+}
+
+
+
+                                // @sect3{The <code>main</code> function}
+int main (int argc, char *argv[])
+{
+#ifdef DEAL_II_COMPILER_SUPPORTS_MPI
+  MPI_Init (&argc,&argv);
+#else
+  (void)argc;
+  (void)argv;
+#endif
+  
+  try
+    {
+      deallog.depth_console (0);
+
+      BoussinesqFlowProblem<2> flow_problem;
+      flow_problem.run ();
+    }
+  catch (std::exception &exc)
+    {
+      std::cerr << std::endl << std::endl
+                << "----------------------------------------------------"
+                << std::endl;
+      std::cerr << "Exception on processing: " << std::endl
+                << exc.what() << std::endl
+                << "Aborting!" << std::endl
+                << "----------------------------------------------------"
+                << std::endl;
+
+      return 1;
+    }
+  catch (...)
+    {
+      std::cerr << std::endl << std::endl
+                << "----------------------------------------------------"
+                << std::endl;
+      std::cerr << "Unknown exception!" << std::endl
+                << "Aborting!" << std::endl
+                << "----------------------------------------------------"
+                << std::endl;
+      return 1;
+    }
+    
+#ifdef DEAL_II_COMPILER_SUPPORTS_MPI
+  MPI_Finalize();
+#endif
+
+  return 0;
+}
index c277ba5a3af748b3cdf052f2e42593411e56e9f3..f315b1daa1805387df982aa67ad66c4c476ffe89 100644 (file)
@@ -14,7 +14,7 @@ target = $(basename $(shell echo step-*.cc))
 # run-time checking of parameters and internal states is performed, so
 # you should set this value to `on' while you develop your program,
 # and to `off' when running production computations.
-debug-mode = on
+debug-mode = off
 
 
 # As third field, we need to give the path to the top-level deal.II

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.