* onedimensional polynomials, thus the degree plus one.
*/
static unsigned int
- compute_n_pols(const unsigned int n);
+ n_polynomials(const unsigned int n);
protected:
/**
template <class Pol>
PolynomialSpace<dim>::PolynomialSpace(const std::vector<Pol> &pols)
: polynomials(pols.begin(), pols.end())
- , n_pols(compute_n_pols(polynomials.size()))
+ , n_pols(n_polynomials(polynomials.size()))
, index_map(n_pols)
, index_map_inverse(n_pols)
{
* FiniteElement classes.
*/
static unsigned int
- compute_n_pols(unsigned int degree);
+ n_polynomials(unsigned int degree);
/**
* @copydoc TensorPolynomialsBase<dim>::clone()
* by the FiniteElement classes.
*/
static unsigned int
- compute_n_pols(unsigned int degree);
+ n_polynomials(unsigned int degree);
/**
* @copydoc TensorPolynomialsBase<dim>::clone()
* required by the FiniteElement classes.
*/
static unsigned int
- compute_n_pols(const unsigned int k);
+ n_polynomials(const unsigned int k);
/**
* @copydoc TensorPolynomialsBase<dim>::clone()
* the FiniteElement classes.
*/
static unsigned int
- compute_n_pols(unsigned int degree);
+ n_polynomials(unsigned int degree);
/**
* @copydoc TensorPolynomialsBase<dim>::clone()
* required by the FiniteElement classes.
*/
static unsigned int
- compute_n_pols(unsigned int degree);
+ n_polynomials(unsigned int degree);
/**
* @copydoc TensorPolynomialsBase<dim>::clone()
* required by the FiniteElement classes.
*/
static unsigned int
- compute_n_pols(const unsigned int degree);
+ n_polynomials(const unsigned int degree);
/**
* @copydoc TensorPolynomialsBase<dim>::clone()
template <int dim>
unsigned int
-PolynomialSpace<dim>::compute_n_pols(const unsigned int n)
+PolynomialSpace<dim>::n_polynomials(const unsigned int n)
{
unsigned int n_pols = n;
for (unsigned int i = 1; i < dim; ++i)
template <>
unsigned int
-PolynomialSpace<0>::compute_n_pols(const unsigned int)
+PolynomialSpace<0>::n_polynomials(const unsigned int)
{
return 0;
}
template <int dim>
PolynomialsABF<dim>::PolynomialsABF(const unsigned int k)
- : TensorPolynomialsBase<dim>(k, compute_n_pols(k))
+ : TensorPolynomialsBase<dim>(k, n_polynomials(k))
, polynomial_space(get_abf_polynomials<dim>(k))
{
// check that the dimensions match. we only store one of the 'dim'
// anisotropic polynomials that make up the vector-valued space, so
// multiply by 'dim'
- Assert(dim * polynomial_space.n() == compute_n_pols(k), ExcInternalError());
+ Assert(dim * polynomial_space.n() == n_polynomials(k), ExcInternalError());
}
template <int dim>
unsigned int
-PolynomialsABF<dim>::compute_n_pols(const unsigned int k)
+PolynomialsABF<dim>::n_polynomials(const unsigned int k)
{
switch (dim)
{
template <int dim>
PolynomialsBDM<dim>::PolynomialsBDM(const unsigned int k)
- : TensorPolynomialsBase<dim>(k, compute_n_pols(k))
+ : TensorPolynomialsBase<dim>(k, n_polynomials(k))
, polynomial_space(Polynomials::Legendre::generate_complete_basis(k))
, monomials((dim == 2) ? (1) : (k + 2))
, p_values(polynomial_space.n())
template <int dim>
unsigned int
-PolynomialsBDM<dim>::compute_n_pols(unsigned int k)
+PolynomialsBDM<dim>::n_polynomials(unsigned int k)
{
if (dim == 1)
return k + 1;
template <int dim>
PolynomialsBernardiRaugel<dim>::PolynomialsBernardiRaugel(const unsigned int k)
- : TensorPolynomialsBase<dim>(k + 1, compute_n_pols(k))
+ : TensorPolynomialsBase<dim>(k + 1, n_polynomials(k))
, polynomial_space_Q(create_polynomials_Q())
, polynomial_space_bubble(create_polynomials_bubble())
{}
template <int dim>
unsigned int
-PolynomialsBernardiRaugel<dim>::compute_n_pols(const unsigned int k)
+PolynomialsBernardiRaugel<dim>::n_polynomials(const unsigned int k)
{
(void)k;
Assert(k == 1, ExcNotImplemented());
template <int dim>
PolynomialsNedelec<dim>::PolynomialsNedelec(const unsigned int k)
- : TensorPolynomialsBase<dim>(k, compute_n_pols(k))
+ : TensorPolynomialsBase<dim>(k, n_polynomials(k))
, polynomial_space(create_polynomials(k))
{}
template <int dim>
unsigned int
-PolynomialsNedelec<dim>::compute_n_pols(unsigned int k)
+PolynomialsNedelec<dim>::n_polynomials(unsigned int k)
{
switch (dim)
{
template <int dim>
PolynomialsRaviartThomas<dim>::PolynomialsRaviartThomas(const unsigned int k)
- : TensorPolynomialsBase<dim>(k, compute_n_pols(k))
+ : TensorPolynomialsBase<dim>(k, n_polynomials(k))
, polynomial_space(create_polynomials(k))
{}
template <int dim>
unsigned int
-PolynomialsRaviartThomas<dim>::compute_n_pols(unsigned int k)
+PolynomialsRaviartThomas<dim>::n_polynomials(unsigned int k)
{
if (dim == 1)
return k + 1;
template <int dim>
PolynomialsRT_Bubbles<dim>::PolynomialsRT_Bubbles(const unsigned int k)
- : TensorPolynomialsBase<dim>(k, compute_n_pols(k))
+ : TensorPolynomialsBase<dim>(k, n_polynomials(k))
, raviart_thomas_space(k - 1)
, monomials(k + 2)
{
template <int dim>
unsigned int
-PolynomialsRT_Bubbles<dim>::compute_n_pols(const unsigned int k)
+PolynomialsRT_Bubbles<dim>::n_polynomials(const unsigned int k)
{
if (dim == 1 || dim == 2 || dim == 3)
return dim * Utilities::fixed_power<dim>(k + 1);