]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Document the first two auxiliary functions. Avoid one mistake.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Sun, 21 Sep 2008 23:30:11 +0000 (23:30 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Sun, 21 Sep 2008 23:30:11 +0000 (23:30 +0000)
git-svn-id: https://svn.dealii.org/trunk@16887 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-31/step-31.cc
deal.II/examples/step-32/step-32.cc

index 02c1f70567060443d76f41158f6a0b7c72abe898..2cb6d04411a712c708b28a618b7ad9b9fc72d029 100644 (file)
@@ -79,13 +79,12 @@ using namespace dealii;
 
                                 // @sect3{Equation data}
 
-                                // Again, the next stage in the program
-                                // is the definition of the equation 
-                                // data, that is, the various
-                                // boundary conditions, the right hand
-                                // side and the initial condition (remember
-                                // that we're about to solve a time-
-                                // dependent system). The basic strategy
+                                // Again, the next stage in the program is
+                                // the definition of the equation data, that
+                                // is, the various boundary conditions, the
+                                // right hand sides and the initial condition
+                                // (remember that we're about to solve a
+                                // time-dependent system). The basic strategy
                                 // for this definition is the same as in
                                 // step-22. Regarding the details, though,
                                 // there are some differences.
@@ -96,27 +95,52 @@ using namespace dealii;
                                 // introduction we will use no-flux
                                 // conditions
                                 // $\mathbf{n}\cdot\mathbf{u}=0$. So what is
-                                // left are two conditions for pressure
-                                // <i>p</i> and temperature <i>T</i>.
-
-                                // Secondly, we set an initial
-                                // condition for all problem variables,
-                                // i.e., for <b>u</b>, <i>p</i> and <i>T</i>,
-                                // so the function has <i>dim+2</i>
-                                // components.
-                                // In this case, we choose a very simple
-                                // test case, where everything is zero.
-
-                                // @sect4{Boundary values}
+                                // left are <code>dim-1</code> conditions for
+                                // the tangential part of the normal
+                                // component of the stress tensor,
+                                // $\textbf{n} \cdot [p \textbf{1} -
+                                // \eta\varepsilon(\textbf{u})]$; we assume
+                                // homogenous values for these components,
+                                // i.e. a natural boundary condition that
+                                // requires no specific action (it appears as
+                                // a zero term in the right hand side of the
+                                // weak form).
+                                //
+                                // For the temperature <i>T</i>, we assume no
+                                // thermal energy flux, i.e. $\mathbf{n}
+                                // \cdot \kappa \nabla T=0$. This, again, is
+                                // a boundary condition that does not require
+                                // us to do anything in particular.
+                                //
+                                // Secondly, we have to set initial
+                                // conditions for the temperature (no initial
+                                // conditions are required for the velocity
+                                // and pressure, since the Stokes equations
+                                // for the quasi-stationary case we consider
+                                // here have time derivatives of the velocity
+                                // or pressure). Here, we choose a very
+                                // simple test case, where the initial
+                                // temperature is zero, and all dynamics are
+                                // driven by the temperature right hand side.
+                                //
+                                // Thirdly, we need to define this right hand
+                                // side of the temperature equation. We
+                                // choose it to be constant within three
+                                // circles (or spheres in 3d) somewhere at
+                                // the bottom of the domain, as explained in
+                                // the introduction, and zero outside.
+                                // 
+                                // Finally, or maybe firstly, at the top of
+                                // this namespace, we define the various
+                                // material constants we need ($\eta,\kappa$
+                                // and the Rayleigh number $Ra$):
 namespace EquationData
 {
-                                  // define viscosity
   const double eta = 1;
   const double kappa = 1e-6;
   const double Rayleigh_number = 10;
 
 
-                                  // @sect4{Initial values}
   template <int dim>
   class TemperatureInitialValues : public Function<dim>
   {
@@ -150,20 +174,6 @@ namespace EquationData
   }
 
 
-
-                                  // @sect4{Right hand side}
-                                  // 
-                                  // The last definition of this kind
-                                  // is the one for the right hand
-                                  // side function. Again, the content
-                                  // of the function is very
-                                  // basic and zero in most of the
-                                  // components, except for a source
-                                  // of temperature in some isolated
-                                  // regions near the bottom of the
-                                  // computational domain, as is explained
-                                  // in the problem description in the
-                                  // introduction.
   template <int dim>
   class TemperatureRightHandSide : public Function<dim>
   {
@@ -216,16 +226,19 @@ namespace EquationData
 
                                   // @sect3{Linear solvers and preconditioners}
 
-                                  // This section introduces some
-                                  // objects that are used for the
-                                  // solution of the linear equations of
-                                  // Stokes system that we need to
-                                  // solve in each time step. The basic
-                                  // structure is still the same as
-                                  // in step-20, where Schur complement
-                                  // based preconditioners and solvers
-                                  // have been introduced, with the 
-                                  // actual interface taken from step-22.
+                                  // This section introduces some objects
+                                  // that are used for the solution of the
+                                  // linear equations of the Stokes system
+                                  // that we need to solve in each time
+                                  // step. The basic structure is still the
+                                  // same as in step-20, where Schur
+                                  // complement based preconditioners and
+                                  // solvers have been introduced, with the
+                                  // actual interface taken from step-22 (in
+                                  // particular the discussion in the
+                                  // "Results" section of step-22, in which
+                                  // we introduce alternatives to the direct
+                                  // Schur complement approach).
 namespace LinearSolvers
 {
 
@@ -262,8 +275,9 @@ namespace LinearSolvers
 
 
   template <class Matrix, class Preconditioner>
-  InverseMatrix<Matrix,Preconditioner>::InverseMatrix (const Matrix &m,
-                                                      const Preconditioner &preconditioner)
+  InverseMatrix<Matrix,Preconditioner>::
+  InverseMatrix (const Matrix &m,
+                const Preconditioner &preconditioner)
                  :
                  matrix (&m),
                  preconditioner (preconditioner)
@@ -272,9 +286,10 @@ namespace LinearSolvers
 
 
   template <class Matrix, class Preconditioner>
-  void InverseMatrix<Matrix,Preconditioner>::vmult (
-                               TrilinosWrappers::Vector       &dst,
-                               const TrilinosWrappers::Vector &src) const
+  void
+  InverseMatrix<Matrix,Preconditioner>::
+  vmult (TrilinosWrappers::Vector       &dst,
+        const TrilinosWrappers::Vector &src) const
   {
     SolverControl solver_control (src.size(), 1e-6*src.l2_norm());
     SolverCG<TrilinosWrappers::Vector> cg (solver_control);
@@ -358,11 +373,11 @@ namespace LinearSolvers
                                   // only two distinct eigenvalues.
                                   // Such a preconditioner for the
                                   // blocked Stokes system has been 
-                                  // proposed by Silvester and Wathen,
-                                  // Fast iterative solution of 
+                                  // proposed by Silvester and Wathen
+                                  // ("Fast iterative solution of 
                                   // stabilised Stokes systems part II. 
-                                  // Using general block preconditioners.
-                                  // (SIAM J. Numer. Anal., 31 (1994),
+                                  // Using general block preconditioners",
+                                  // SIAM J. Numer. Anal., 31 (1994),
                                   // pp. 1352-1367).
                                   // 
                                   // The deal.II users who have already
@@ -382,12 +397,13 @@ namespace LinearSolvers
                                   // functions further below in the
                                   // program code.
                                   // 
-                                  // First the declarations. These
-                                  // are similar to the definition of
-                                  // the Schur complement in step-20,
-                                  // with the difference that we need
-                                  // some more preconditioners in
-                                  // the constructor.
+                                  // First the declarations. These are
+                                  // similar to the definition of the Schur
+                                  // complement in step-20, with the
+                                  // difference that we need some more
+                                  // preconditioners in the constructor and
+                                  // that the matrices we use here are built
+                                  // upon Trilinos:
   template <class PreconditionerA, class PreconditionerMp>
   class BlockSchurPreconditioner : public Subscriptor
   {
@@ -425,25 +441,23 @@ namespace LinearSolvers
   {}
 
 
-                                  // This is the <code>vmult</code>
-                                  // function. We implement
-                                  // the action of $P^{-1}$ as described
-                                  // above in three successive steps.
-                                  // The first step multiplies
-                                  // the velocity vector by a 
-                                  // preconditioner of the matrix <i>A</i>.
-                                  // The resuling velocity vector
-                                  // is then multiplied by $B$ and
-                                  // subtracted from the pressure.
-                                  // This second step only acts on 
-                                  // the pressure vector and is 
+                                  // Next is the <code>vmult</code>
+                                  // function. We implement the action of
+                                  // $P^{-1}$ as described above in three
+                                  // successive steps.  The first step
+                                  // multiplies the velocity part of the
+                                  // vector by a preconditioner of the matrix
+                                  // <i>A</i>.  The resuling velocity vector
+                                  // is then multiplied by $B$ and subtracted
+                                  // from the pressure.  This second step
+                                  // only acts on the pressure vector and is
                                   // accomplished by the command
-                                  // SparseMatrix::residual. Next, 
-                                  // we change the sign in the 
-                                  // temporary pressure vector and
-                                  // finally multiply by the pressure
-                                  // mass matrix to get the final
-                                  // pressure vector.
+                                  // SparseMatrix::residual. Next, we change
+                                  // the sign in the temporary pressure
+                                  // vector and finally multiply by the
+                                  // pressure mass matrix to get the final
+                                  // pressure vector, completing our work on
+                                  // the Stokes preconditioner:
   template <class PreconditionerA, class PreconditionerMp>
   void BlockSchurPreconditioner<PreconditionerA, PreconditionerMp>::vmult (
     TrilinosWrappers::BlockVector       &dst,
@@ -460,19 +474,38 @@ namespace LinearSolvers
 
                                 // @sect3{The <code>BoussinesqFlowProblem</code> class template}
 
-                                // The definition of this class is
+                                // The definition of the class that defines
+                                // the top-level logic of solving the
+                                // time-dependent Boussinesq problem is
                                 // mainly based on the step-22 tutorial
-                                // program. Most of the data types are
-                                // the same as there. However, we
-                                // deal with a time-dependent system now,
-                                // and there is temperature to take care
-                                // of as well, so we need some additional
-                                // function and variable declarations.
-                                // Furthermore, we have a slightly more
-                                // sophisticated solver we are going to
-                                // use, so there is a second pointer
-                                // to a sparse ILU for a pressure
-                                // mass matrix as well.
+                                // program. The main differences are that now
+                                // we also have to solve for the temperature
+                                // equation, which forces us to have a second
+                                // DoFHandler object for the temperature
+                                // variable as well as matrices, right hand
+                                // sides, and solution vectors for the
+                                // current and previous time steps. As
+                                // mentioned in the introduction, all linear
+                                // algebra objects are going to use wrappers
+                                // of the corresponding Trilinos
+                                // functionality.
+                                //
+                                // The member functions of this class are
+                                // reminiscent of step-21, where we also used
+                                // a staggered scheme that first solves the
+                                // flow equations (here the Stokes equations,
+                                // in step-21 Darcy flow) and then updates
+                                // the advected quantity (here the
+                                // temperature, there the saturation). The
+                                // functions that are new are mainly
+                                // concerned with determining the time step,
+                                // as well as the proper size of the
+                                // artificial viscosity stabilization.
+                                //
+                                // The last three variables indicate whether
+                                // the various matrices or preconditioners
+                                // need to be rebuilt the next time the
+                                // corresponding build functions are called.
 template <int dim>
 class BoussinesqFlowProblem
 {
@@ -557,18 +590,17 @@ class BoussinesqFlowProblem
 
                                 // @sect4{BoussinesqFlowProblem::BoussinesqFlowProblem}
                                 // 
-                                // The constructor of this class is
-                                // an extension of the constructor
-                                // in step-22. We need to include 
-                                // the temperature in the definition
-                                // of the finite element. As discussed
-                                // in the introduction, we are going 
-                                // to use discontinuous elements 
-                                // of one degree less than for pressure
-                                // there. Moreover, we initialize
-                                // the time stepping as well as the
-                                // options for the matrix assembly 
-                                // and preconditioning.
+                                // The constructor of this class is an
+                                // extension of the constructor in
+                                // step-22. We need to add the various
+                                // variables that concern the temperature. As
+                                // discussed in the introduction, we are
+                                // going to use $Q_2\times Q_1$ (Taylor-Hood)
+                                // elements again for the Stokes part, and
+                                // $Q_2$ elements for the
+                                // temperature. Moreover, we initialize the
+                                // time stepping as well as the options for
+                                // matrix assembly and preconditioning:
 template <int dim>
 BoussinesqFlowProblem<dim>::BoussinesqFlowProblem ()
                 :
@@ -594,6 +626,13 @@ BoussinesqFlowProblem<dim>::BoussinesqFlowProblem ()
 
 
                                 // @sect4{BoussinesqFlowProblem::get_maximal_velocity}
+
+                                // Starting the real functionality of this
+                                // class is a helper function that determines
+                                // the maximum velocity in the domain (at the
+                                // quadrature points, in fact). It should be
+                                // relatively obvious to all who have gotten
+                                // to this point:
 template <int dim>
 double BoussinesqFlowProblem<dim>::get_maximal_velocity () const
 {
@@ -630,46 +669,125 @@ double BoussinesqFlowProblem<dim>::get_maximal_velocity () const
 
 
                                 // @sect4{BoussinesqFlowProblem::get_extrapolated_temperature_range}
+
+                                // Next a function that determines the
+                                // minimum and maximum temperature at
+                                // quadrature points inside $\Omega$ when
+                                // extrapolated from the two previous time
+                                // steps to the current one. We need this
+                                // information in the computation of the
+                                // artificial viscosity parameter $\nu$ as
+                                // discussed in the introduction.
+                                //
+                                // The formula for the extrapolated
+                                // temperature is
+                                // $\left(1+\frac{k_n}{\frac{k_{n-1}}
+                                // \right)T^{n-1} + \frac{k_n}{\frac{k_{n-1}}
+                                // T^{n-2}$. The way to compute it is to loop
+                                // over all quadrature points and updated the
+                                // maximum and minimum value if the current
+                                // value is bigger/smaller than the previous
+                                // one. We initialize the variables that
+                                // store the max and min before the loop over
+                                // all quadrature points by bounding
+                                // $\left(1+\frac{k_n}{\frac{k_{n-1}}
+                                // \right)T^{n-1}({\mathbf x}_s) +
+                                // \frac{k_n}{\frac{k_{n-1}} T^{n-2}({\mathbf
+                                // x}_s) \le \max_{{\mathbf
+                                // x}_s}\left(1+\frac{k_n}{\frac{k_{n-1}}
+                                // \right)T^{n-1}({\mathbf x}_s) +
+                                // \frac{k_n}{\frac{k_{n-1}} T^{n-2}({\mathbf
+                                // x}_s)$, where ${\mathbf x}_s$ is the set
+                                // of the support points (i.e. nodal points,
+                                // but note that the maximum of a finite
+                                // element function can be attained at a
+                                // point that's not a support point unless
+                                // one is using $Q_1$ elements). So if we
+                                // initialize the minimal value by this upper
+                                // bound, and the maximum value by the
+                                // negative of this upper bound, then we know
+                                // for a fact that it is larger/smaller than
+                                // the minimum/maximum and that the loop over
+                                // all quadrature points is ultimately going
+                                // to update the initial value with the
+                                // correct one.
+                                //
+                                // The only other complication worth
+                                // mentioning here is that in the first time
+                                // step, $T^{k-2}$ is not yet available of
+                                // course. In that case, we can only use
+                                // $T^{k-1}$ which we have from the initial
+                                // temperature.
 template <int dim>
 std::pair<double,double>
 BoussinesqFlowProblem<dim>::get_extrapolated_temperature_range () const
 {
-  QGauss<dim>   quadrature_formula(temperature_degree+2);
-  const unsigned int   n_q_points = quadrature_formula.size();
+  const QGauss<dim>  quadrature_formula(temperature_degree+2);
+  const unsigned int n_q_points = quadrature_formula.size();
 
   FEValues<dim> fe_values (temperature_fe, quadrature_formula,
                            update_values);
   std::vector<double> old_temperature_values(n_q_points);
   std::vector<double> old_old_temperature_values(n_q_points);
-  
-  double min_temperature = (1. + time_step/old_time_step) *
-                          old_temperature_solution.linfty_norm()
-                          +
-                          time_step/old_time_step *
-                          old_old_temperature_solution.linfty_norm(),
-        max_temperature = -min_temperature;
 
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = temperature_dof_handler.begin_active(),
-    endc = temperature_dof_handler.end();
-  for (; cell!=endc; ++cell)
+  if (timestep_number != 0)
     {
-      fe_values.reinit (cell);
-      fe_values.get_function_values (old_temperature_solution, old_temperature_values);
-      fe_values.get_function_values (old_old_temperature_solution, old_old_temperature_values);
+      double min_temperature = (1. + time_step/old_time_step) *
+                              old_temperature_solution.linfty_norm()
+                              +
+                              time_step/old_time_step *
+                              old_old_temperature_solution.linfty_norm(),
+            max_temperature = -min_temperature;
+
+      typename DoFHandler<dim>::active_cell_iterator
+       cell = temperature_dof_handler.begin_active(),
+       endc = temperature_dof_handler.end();
+      for (; cell!=endc; ++cell)
+       {
+         fe_values.reinit (cell);
+         fe_values.get_function_values (old_temperature_solution,
+                                        old_temperature_values);
+         fe_values.get_function_values (old_old_temperature_solution,
+                                        old_old_temperature_values);
 
-      for (unsigned int q=0; q<n_q_points; ++q)
-        {
-          const double temperature = 
-           (1. + time_step/old_time_step) * old_temperature_values[q]-
-           time_step/old_time_step * old_old_temperature_values[q];
+         for (unsigned int q=0; q<n_q_points; ++q)
+           {
+             const double temperature = 
+               (1. + time_step/old_time_step) * old_temperature_values[q]-
+               time_step/old_time_step * old_old_temperature_values[q];
 
-          min_temperature = std::min (min_temperature, temperature);
-         max_temperature = std::max (max_temperature, temperature);
-        }
+             min_temperature = std::min (min_temperature, temperature);
+             max_temperature = std::max (max_temperature, temperature);
+           }
+       }
+
+      return std::make_pair(min_temperature, max_temperature);
     }
+  else
+    {
+      double min_temperature = old_temperature_solution.linfty_norm(),
+            max_temperature = -min_temperature;
 
-  return std::make_pair(min_temperature, max_temperature);
+      typename DoFHandler<dim>::active_cell_iterator
+       cell = temperature_dof_handler.begin_active(),
+       endc = temperature_dof_handler.end();
+      for (; cell!=endc; ++cell)
+       {
+         fe_values.reinit (cell);
+         fe_values.get_function_values (old_temperature_solution,
+                                        old_temperature_values);
+
+         for (unsigned int q=0; q<n_q_points; ++q)
+           {
+             const double temperature = old_temperature_values[q];
+
+             min_temperature = std::min (min_temperature, temperature);
+             max_temperature = std::max (max_temperature, temperature);
+           }
+       }
+  
+      return std::make_pair(min_temperature, max_temperature);
+    }    
 }
 
 
@@ -1949,7 +2067,7 @@ void BoussinesqFlowProblem<dim>::run ()
 
   setup_dofs();
 
-  unsigned int       pre_refinement_step    = 0;
+  unsigned int pre_refinement_step = 0;
   
   start_time_iteration:
 
@@ -1959,7 +2077,9 @@ void BoussinesqFlowProblem<dim>::run ()
                        EquationData::TemperatureInitialValues<dim>(),
                        old_temperature_solution);
   
-  timestep_number = 0;
+  timestep_number           = 0;
+  time_step = old_time_step = 0;
+  
   double time = 0;
 
   do
index 83cdeb17dd12146be0ef8a2498058c3f8f7258d8..4f82e4890939ec003732547bd3a45b099d386673 100644 (file)
@@ -428,43 +428,72 @@ template <int dim>
 std::pair<double,double>
 BoussinesqFlowProblem<dim>::get_extrapolated_temperature_range () const
 {
-  QGauss<dim>   quadrature_formula(temperature_degree+2);
-  const unsigned int   n_q_points = quadrature_formula.size();
+  const QGauss<dim>  quadrature_formula(temperature_degree+2);
+  const unsigned int n_q_points = quadrature_formula.size();
 
   FEValues<dim> fe_values (temperature_fe, quadrature_formula,
                            update_values);
   std::vector<double> old_temperature_values(n_q_points);
   std::vector<double> old_old_temperature_values(n_q_points);
 
-  double min_temperature = (1. + time_step/old_time_step) *
-                          old_temperature_solution.linfty_norm()
-                          +
-                          time_step/old_time_step *
-                          old_old_temperature_solution.linfty_norm(),
-         max_temperature = -min_temperature;
+  if (timestep_number != 0)
+    {
+      double min_temperature = (1. + time_step/old_time_step) *
+                              old_temperature_solution.linfty_norm()
+                              +
+                              time_step/old_time_step *
+                              old_old_temperature_solution.linfty_norm(),
+            max_temperature = -min_temperature;
+
+      typename DoFHandler<dim>::active_cell_iterator
+       cell = temperature_dof_handler.begin_active(),
+       endc = temperature_dof_handler.end();
+      for (; cell!=endc; ++cell)
+       {
+         fe_values.reinit (cell);
+         fe_values.get_function_values (old_temperature_solution,
+                                        old_temperature_values);
+         fe_values.get_function_values (old_old_temperature_solution,
+                                        old_old_temperature_values);
 
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = temperature_dof_handler.begin_active(),
-    endc = temperature_dof_handler.end();
-  for (; cell!=endc; ++cell)
-    if (cell->subdomain_id() == (unsigned int)trilinos_communicator.MyPID())
-      {
-       fe_values.reinit (cell);
-       fe_values.get_function_values (old_temperature_solution, old_temperature_values);
-       fe_values.get_function_values (old_old_temperature_solution, old_old_temperature_values);
+         for (unsigned int q=0; q<n_q_points; ++q)
+           {
+             const double temperature = 
+               (1. + time_step/old_time_step) * old_temperature_values[q]-
+               time_step/old_time_step * old_old_temperature_values[q];
 
-       for (unsigned int q=0; q<n_q_points; ++q)
-         {
-           const double temperature = 
-             (1. + time_step/old_time_step) * old_temperature_values[q]-
-             time_step/old_time_step * old_old_temperature_values[q];
+             min_temperature = std::min (min_temperature, temperature);
+             max_temperature = std::max (max_temperature, temperature);
+           }
+       }
 
-           min_temperature = std::min (min_temperature, temperature);
-           max_temperature = std::max (max_temperature, temperature);
-         }
-      }
+      return std::make_pair(min_temperature, max_temperature);
+    }
+  else
+    {
+      double min_temperature = old_temperature_solution.linfty_norm(),
+            max_temperature = -min_temperature;
+
+      typename DoFHandler<dim>::active_cell_iterator
+       cell = temperature_dof_handler.begin_active(),
+       endc = temperature_dof_handler.end();
+      for (; cell!=endc; ++cell)
+       {
+         fe_values.reinit (cell);
+         fe_values.get_function_values (old_temperature_solution,
+                                        old_temperature_values);
+
+         for (unsigned int q=0; q<n_q_points; ++q)
+           {
+             const double temperature = old_temperature_values[q];
 
-  return std::make_pair(min_temperature, max_temperature);
+             min_temperature = std::min (min_temperature, temperature);
+             max_temperature = std::max (max_temperature, temperature);
+           }
+       }
+  
+      return std::make_pair(min_temperature, max_temperature);
+    }    
 }
 
 
@@ -1442,7 +1471,9 @@ void BoussinesqFlowProblem<dim>::run ()
                        EquationData::TemperatureInitialValues<dim>(),
                        old_temperature_solution);
   
-  timestep_number = 0;
+  timestep_number           = 0;
+  time_step = old_time_step = 0;
+
   double time = 0;
 
   do

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.