<I>laplace_on_quad_vector</I> can be filled by the constructor of
the <I>MappingQ</I> class. This is done by calling the
<I>MappingQ::set_laplace_on_quad_vector</I> function that
-includes the coefficients hardcoded for <I>p</I>=2 and <I>p</I>=3 in <I>d</I>=2dimensions, and a routine for computing the coefficients according to
+includes the coefficients hardcoded for <I>p</I>=2 and <I>p</I>=3 in <I>d</I>=2 dimensions, and a routine for computing the coefficients according to
(<A HREF="index.html#eq:coefficients">9</A>) for all other cases. The mapping support
points <IMG
WIDTH="56" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
<I>MappingQ::compute_support_points_laplace</I> that is invoked
by the virtual <I>compute_mapping_support_points</I> function of
the base <I>Mapping</I> class. In
-<I>MappingQ::compute_support_points_laplace</I>, first the 4<I>p</I>points on the boundary of the cell are computed (by calling
+<I>MappingQ::compute_support_points_laplace</I>, first the 4<I>p</I> points on the boundary of the cell are computed (by calling
<I>MappingQ::add_line_support_points</I>), then by calling
-<I>MappingQ::apply_laplace_vector</I> the remaining (<I>p</I>-1)<SUP>2</SUP>inner mapping supports points are computed, where
+<I>MappingQ::apply_laplace_vector</I> the remaining (<I>p</I>-1)<SUP>2</SUP> inner mapping supports points are computed, where
<I>MappingQ::apply_laplace_vector</I> just performes the linear
combination given in (<A HREF="index.html#eq:linear-combination-laplace">8</A>).
<BR><HR>