]> https://gitweb.dealii.org/ - dealii.git/commitdiff
delete directory due to conversion error
authorGuido Kanschat <dr.guido.kanschat@gmail.com>
Thu, 13 Jul 2006 12:58:06 +0000 (12:58 +0000)
committerGuido Kanschat <dr.guido.kanschat@gmail.com>
Thu, 13 Jul 2006 12:58:06 +0000 (12:58 +0000)
git-svn-id: https://svn.dealii.org/trunk@13371 0785d39b-7218-0410-832d-ea1e28bc413d

49 files changed:
deal.II/deal.II/Attic/examples/Makefile [deleted file]
deal.II/deal.II/Attic/examples/README [deleted file]
deal.II/deal.II/Attic/examples/convergence/Makefile [deleted file]
deal.II/deal.II/Attic/examples/convergence/convergence.cc [deleted file]
deal.II/deal.II/Attic/examples/convergence/make_ps [deleted file]
deal.II/deal.II/Attic/examples/dof/Makefile [deleted file]
deal.II/deal.II/Attic/examples/dof/dof_test.cc [deleted file]
deal.II/deal.II/Attic/examples/dof/dof_test.prm [deleted file]
deal.II/deal.II/Attic/examples/dof/make_ps [deleted file]
deal.II/deal.II/Attic/examples/error-estimation/Makefile [deleted file]
deal.II/deal.II/Attic/examples/error-estimation/ee.gauss.prm [deleted file]
deal.II/deal.II/Attic/examples/error-estimation/ee.kink.prm [deleted file]
deal.II/deal.II/Attic/examples/error-estimation/ee.singular.prm [deleted file]
deal.II/deal.II/Attic/examples/error-estimation/error-estimation.cc [deleted file]
deal.II/deal.II/Attic/examples/error-estimation/make_ps [deleted file]
deal.II/deal.II/Attic/examples/error-estimation/strip_comments [deleted file]
deal.II/deal.II/Attic/examples/grid/Makefile [deleted file]
deal.II/deal.II/Attic/examples/grid/grid_test.cc [deleted file]
deal.II/deal.II/Attic/examples/grid/make_ps [deleted file]
deal.II/deal.II/Attic/examples/multigrid/Makefile [deleted file]
deal.II/deal.II/Attic/examples/multigrid/make_ps [deleted file]
deal.II/deal.II/Attic/examples/multigrid/multigrid.cc [deleted file]
deal.II/deal.II/Attic/examples/nonlinear/fixed-point-iteration/Makefile [deleted file]
deal.II/deal.II/Attic/examples/nonlinear/fixed-point-iteration/nonlinear.cc [deleted file]
deal.II/deal.II/Attic/examples/poisson/Makefile [deleted file]
deal.II/deal.II/Attic/examples/poisson/equation.cc [deleted file]
deal.II/deal.II/Attic/examples/poisson/poisson.cc [deleted file]
deal.II/deal.II/Attic/examples/poisson/poisson.h [deleted file]
deal.II/deal.II/Attic/examples/poisson/poisson.prm [deleted file]
deal.II/deal.II/Attic/examples/poisson/problem.cc [deleted file]
deal.II/deal.II/Attic/examples/poisson/results/make_ps [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/Makefile [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-1/Makefile [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-1/step-1.cc [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-2/Makefile [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-2/step-2.cc [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-3/Makefile [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-3/step-3.cc [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-4/Makefile [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-4/step-4.cc [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-5/Makefile [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-5/circle-grid.inp [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-5/step-5.cc [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-6/Makefile [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-6/step-6.cc [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-7/Makefile [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-7/step-7.cc [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-8/Makefile [deleted file]
deal.II/deal.II/Attic/examples/step-by-step/step-8/step-8.cc [deleted file]

diff --git a/deal.II/deal.II/Attic/examples/Makefile b/deal.II/deal.II/Attic/examples/Makefile
deleted file mode 100644 (file)
index 2be5604..0000000
+++ /dev/null
@@ -1,31 +0,0 @@
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998
-
-
-# list the directories we want to visit
-subdirs = grid/ dof/ poisson/ convergence/ error-estimation/ multigrid/ step-by-step/
-
-# define lists of targets: for each directory we produce a target name
-# for compilation, running and cleaning by appending the action to
-# the directory name (replacing the slash by ".action")
-compile = $(subdirs:/=.compile)
-run     = $(subdirs:/=.run)
-clean   = $(subdirs:/=.clean)
-
-# define global targets which are to be excuted in every subdirectory
-compile: $(compile)
-run    : $(run)
-# for cleaning up: do this also for the present directory
-clean  : $(clean)
-       -rm -f *~
-
-
-# define the action of the targets for the specific subdirectories
-$(compile) :
-       cd $(@:.compile=) ; $(MAKE)
-
-$(run) :
-       cd $(@:.run=) ; $(MAKE) run
-
-$(clean) :
-       -cd $(@:.clean=) ; $(MAKE) clean
diff --git a/deal.II/deal.II/Attic/examples/README b/deal.II/deal.II/Attic/examples/README
deleted file mode 100644 (file)
index a4c5184..0000000
+++ /dev/null
@@ -1,11 +0,0 @@
-The  example  applications  in  the  subdirectories  (apart  from  the
-'step-by-step'  directory) were  written in  the early  stages  of the
-library  and served  more  the  task of  verification  than as  proper
-examples. For this  reason, they are not very  well documented and are
-probably no good examples anyway.
-
-One, the multigrid example, does not even what its name may suggest.
-
-We  excuse   for  the  fact  that   they  might  not   serve  as  good
-examples. Better  ones are planned and  in parts written,  but not yet
-available at present. Sorry.
diff --git a/deal.II/deal.II/Attic/examples/convergence/Makefile b/deal.II/deal.II/Attic/examples/convergence/Makefile
deleted file mode 100644 (file)
index 3b00259..0000000
+++ /dev/null
@@ -1,169 +0,0 @@
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998, 1999, 2000
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target   = convergence
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../..
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g   = $(lib-deal2-2d.g) \
-          $(lib-lac.g)      \
-           $(lib-base.g)
-libs.o   = $(lib-deal2-2d.o) \
-          $(lib-lac.o)      \
-           $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
-  libraries = $(target).go $(libs.g)
-  flags     = $(CXXFLAGS.g)
-else
-  libraries = $(target).go $(libs.o)
-  flags     = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
-  libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
-       @echo ============================ Linking $@
-       @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
-       @echo ============================ Running $<
-       @./$(target)
-       gnuplot make_ps
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
-       -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
-       @echo ==============debug========= $(<F)
-       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
-       @echo ==============optimized===== $(<F)
-       @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-/h-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script.  Since the
-# script prefixes the output names by `lib/o' or `lib/go' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
-              $(shell echo $(include-path-base)/base/*.h    \
-                           $(include-path-lac)/lac/*.h     \
-                           $(include-path-deal2)/*/*.h)
-       @echo ============================ Remaking Makefile
-       @perl $D/common/scripts/make_dependencies.pl  $(INCLUDE) $(target).cc \
-               | perl -pi -e 's!lib/g?o/!!g;' \
-               > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
diff --git a/deal.II/deal.II/Attic/examples/convergence/convergence.cc b/deal.II/deal.II/Attic/examples/convergence/convergence.cc
deleted file mode 100644 (file)
index 38bffd8..0000000
+++ /dev/null
@@ -1,548 +0,0 @@
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-#include <base/logstream.h>
-#include <grid/tria.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_boundary_lib.h>
-#include <dofs/dof_handler.h>
-#include <dofs/dof_accessor.h>
-#include <dofs/dof_constraints.h>
-#include <dofs/dof_tools.h>
-#include <grid/grid_generator.h>
-#include <base/function.h>
-#include <numerics/data_out.h>
-#include <fe/fe_lib.lagrange.h>
-#include <fe/fe_lib.criss_cross.h>
-#include <base/quadrature_lib.h>
-#include <numerics/base.h>
-#include <numerics/assembler.h>
-#include <numerics/vectors.h>
-#include <lac/vector.h>
-
-#include <map>
-#include <fstream>
-#include <cmath>
-#include <string>
-#include <cstdlib>
-
-
-
-
-
-template <int dim>
-class PoissonEquation :  public Equation<dim> {
-  public:
-    PoissonEquation (const Function<dim> &rhs) :
-                   Equation<dim>(1),
-                   right_hand_side (rhs)  {};
-
-    virtual void assemble (FullMatrix<double>  &cell_matrix,
-                          Vector<double>      &rhs,
-                          const FEValues<dim> &fe_values,
-                          const DoFHandler<dim>::cell_iterator &cell) const;
-    virtual void assemble (FullMatrix<double>  &cell_matrix,
-                          const FEValues<dim> &fe_values,
-                          const DoFHandler<dim>::cell_iterator &cell) const;
-    virtual void assemble (Vector<double>      &rhs,
-                          const FEValues<dim> &fe_values,
-                          const DoFHandler<dim>::cell_iterator &cell) const;
-  protected:
-    const Function<dim> &right_hand_side;
-};
-
-
-
-
-
-
-template <int dim>
-class PoissonProblem : public ProblemBase<dim> {
-  public:
-    PoissonProblem (unsigned int order);
-    ~PoissonProblem ();
-    
-    void clear ();
-    void create_new ();
-    int run (unsigned int level);
-    void print_history (string filename) const;
-    
-  protected:
-    Triangulation<dim> *tria;
-    DoFHandler<dim>    *dof;
-    
-    Function<dim>      *rhs;
-    Function<dim>      *boundary_values;
-
-    vector<double> l1_error, l2_error, linfty_error, h1_seminorm_error, h1_error;
-    vector<int>    n_dofs;
-
-    unsigned int        order;
-};
-
-
-
-
-
-/**
-  Right hand side constructed such that the exact solution is
-  $sin(2 pi x) + sin(2 pi y)$
-  */
-template <int dim>
-class RHSPoly : public Function<dim> {
-  public:
-                                    /**
-                                     * Return the value of the function
-                                     * at the given point.
-                                     */
-    virtual double value (const Point<dim> &p,
-                         const unsigned int component) const;
-};
-
-
-
-template <int dim>
-class Solution : public Function<dim> {
-  public:
-                                    /**
-                                     * Return the value of the function
-                                     * at the given point.
-                                     */
-    virtual double value (const Point<dim> &p,
-                         const unsigned int component) const;
-                                    /**
-                                     * Return the gradient of the function
-                                     * at the given point.
-                                     */
-    virtual Tensor<1,dim> gradient (const Point<dim> &p,
-                                   const unsigned int component) const;
-};
-
-
-
-
-template <>
-double RHSPoly<2>::value (const Point<2> &p,
-                         const unsigned int) const {
-  const double x = p(0),
-              y = p(1);
-  const double pi= 3.1415926536;
-  return 4*pi*pi*(sin(2*pi*x)+sin(2*pi*y));
-};
-
-
-
-template <>
-double Solution<2>::value (const Point<2> &p,
-                          const unsigned int) const {
-  const double x = p(0),
-              y = p(1);
-  const double pi= 3.1415926536;
-  return sin(2*pi*x)+sin(2*pi*y);
-};
-
-
-template <>
-Tensor<1,2> Solution<2>::gradient (const Point<2> &p,
-                                  const unsigned int) const {
-  const double x = p(0),
-              y = p(1);
-  const double pi= 3.1415926536;
-  return Point<2> (2*pi*cos(2*pi*x),
-                  2*pi*cos(2*pi*y));
-};
-
-  
-
-
-
-template <>
-void PoissonEquation<2>::assemble (FullMatrix<double>  &cell_matrix,
-                                  Vector<double>      &rhs,
-                                  const FEValues<2>   &fe_values,
-                                  const DoFHandler<2>::cell_iterator &) const {
-  for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-    for (unsigned int i=0; i<fe_values.dofs_per_cell; ++i) 
-      {
-       for (unsigned int j=0; j<fe_values.dofs_per_cell; ++j)
-         cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
-                              fe_values.shape_grad(j,point)) *
-                             fe_values.JxW(point);
-       rhs(i) += fe_values.shape_value(i,point) *
-                 right_hand_side.value(fe_values.quadrature_point(point)) *
-                 fe_values.JxW(point);
-      };
-};
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (FullMatrix<double>  &,
-                                    const FEValues<dim> &,
-                                    const DoFHandler<dim>::cell_iterator &) const {
-  Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (Vector<double>      &,
-                                    const FEValues<dim> &,
-                                    const DoFHandler<dim>::cell_iterator &) const {
-  Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-
-
-
-
-
-
-template <int dim>
-PoissonProblem<dim>::PoissonProblem (unsigned int order) :
-               tria(0), dof(0), rhs(0),
-               boundary_values(0), order(order) {};
-
-
-template <int dim>
-PoissonProblem<dim>::~PoissonProblem () 
-{
-  clear ();
-};
-
-
-
-template <int dim>
-void PoissonProblem<dim>::clear () {
-  if (dof != 0) {
-    delete dof;
-    dof = 0;
-  };
-
-  if (tria != 0) {
-    delete tria;
-    tria = 0;
-  };
-  
-
-                                  // make it known to the underlying
-                                  // ProblemBase that tria and dof
-                                  // are already deleted
-  set_tria_and_dof (tria, dof);
-
-  if (rhs != 0) 
-    {
-      delete rhs;
-      rhs = 0;
-    };
-
-  if (boundary_values != 0) 
-    {
-      delete boundary_values;
-      boundary_values = 0;
-    };
-
-  ProblemBase<dim>::clear ();
-};
-
-
-
-
-template <int dim>
-void PoissonProblem<dim>::create_new () {
-  clear ();
-  
-  tria = new Triangulation<dim>();
-  dof = new DoFHandler<dim> (*tria);
-  set_tria_and_dof (tria, dof);
-};
-
-
-
-
-template <int dim>
-int PoissonProblem<dim>::run (const unsigned int level) {
-  create_new ();
-  
-  cout << "Refinement level = " << level
-       << ", using elements of type <";
-  switch (order)
-    {
-      case 0:
-           cout << "criss-cross";
-           break;
-      default:
-           cout << "Lagrange-" << order;
-           break;
-    };
-  cout << ">" << endl;
-  
-  cout << "    Making grid... ";
-  GridGenerator::hyper_ball (*tria);
-  HyperBallBoundary<dim> boundary_description;
-  tria->set_boundary (0, boundary_description);
-  tria->begin_active()->set_refine_flag();
-  (++(++(tria->begin_active())))->set_refine_flag();
-  tria->execute_coarsening_and_refinement ();
-  tria->refine_global (level);
-  cout << tria->n_active_cells() << " active cells." << endl;
-
-  rhs             = new RHSPoly<dim>();
-  boundary_values = new Solution<dim> ();
-  
-
-  FiniteElement<dim>   *fe;
-  PoissonEquation<dim>  equation (*rhs);
-  Quadrature<dim>      *quadrature;
-  Quadrature<dim-1>    *boundary_quadrature;
-  switch (order) {
-    case 0:
-         fe         = new FECrissCross<dim>();
-         quadrature = new QCrissCross1<dim>();
-         boundary_quadrature = new QGauss2<dim-1>();
-         break;
-    case 1:
-         fe         = new FEQ1<dim>();
-         quadrature = new QGauss3<dim>();
-         boundary_quadrature = new QGauss2<dim-1>();
-         break;
-    case 2:
-         fe         = new FEQ2<dim>();
-         quadrature = new QGauss4<dim>();
-         boundary_quadrature = new QGauss3<dim-1>();
-         break;
-    case 3:
-         fe         = new FEQ3<dim>();
-         quadrature = new QGauss5<dim>();
-         boundary_quadrature = new QGauss4<dim-1>();
-         break;
-    case 4:
-         fe         = new FEQ4<dim>();
-         quadrature = new QGauss6<dim>();
-         boundary_quadrature = new QGauss5<dim-1>();
-         break;
-    default:
-         return 100000;
-  };
-  
-  cout << "    Distributing dofs... "; 
-  dof->distribute_dofs (*fe);
-  cout << dof->n_dofs() << " degrees of freedom." << endl;
-  n_dofs.push_back (dof->n_dofs());
-
-  cout << "    Assembling matrices..." << endl;
-  UpdateFlags update_flags = UpdateFlags(update_values | update_q_points  |
-                                        update_gradients | update_JxW_values);
-  
-  ProblemBase<dim>::FunctionMap dirichlet_bc;
-  dirichlet_bc[0] = boundary_values;
-  assemble (equation, *quadrature, update_flags, dirichlet_bc);
-
-  cout << "    Solving..." << endl;
-  solve ();
-
-  Solution<dim> sol;
-  Vector<float>       l1_error_per_cell, l2_error_per_cell, linfty_error_per_cell;
-  Vector<float>       h1_seminorm_error_per_cell, h1_error_per_cell;
-  
-  cout << "    Calculating L1 error... ";
-  VectorTools::integrate_difference (*dof_handler,
-                                         solution, sol,
-                                         l1_error_per_cell,
-                                         *quadrature, L1_norm);
-  cout << l1_error_per_cell.l1_norm() << endl;
-  l1_error.push_back (l1_error_per_cell.l1_norm());
-
-  cout << "    Calculating L2 error... ";
-  VectorTools::integrate_difference (*dof_handler,
-                                         solution, sol,
-                                         l2_error_per_cell,
-                                         *quadrature, L2_norm);
-  cout << l2_error_per_cell.l2_norm() << endl;
-  l2_error.push_back (l2_error_per_cell.l2_norm());
-
-  cout << "    Calculating L-infinity error... ";
-  VectorTools::integrate_difference (*dof_handler,
-                                         solution, sol,
-                                         linfty_error_per_cell,
-                                         *quadrature, Linfty_norm);
-  cout << linfty_error_per_cell.linfty_norm() << endl;
-  linfty_error.push_back (linfty_error_per_cell.linfty_norm());
-  
-  cout << "    Calculating H1-seminorm error... ";
-  VectorTools::integrate_difference (*dof_handler,
-                                         solution, sol,
-                                         h1_seminorm_error_per_cell,
-                                         *quadrature, H1_seminorm);
-  cout << h1_seminorm_error_per_cell.l2_norm() << endl;
-  h1_seminorm_error.push_back (h1_seminorm_error_per_cell.l2_norm());
-
-  cout << "    Calculating H1 error... ";
-  VectorTools::integrate_difference (*dof_handler,
-                                         solution, sol,
-                                         h1_error_per_cell,
-                                         *quadrature, H1_norm);
-  cout << h1_error_per_cell.l2_norm() << endl;
-  h1_error.push_back (h1_error_per_cell.l2_norm());
-
-  if (dof->n_dofs()<=5000) 
-    {
-      Vector<double> l1_error_per_dof(dof->n_dofs());
-      Vector<double> l2_error_per_dof(dof->n_dofs());
-      Vector<double> linfty_error_per_dof(dof->n_dofs());
-      Vector<double> h1_seminorm_error_per_dof(dof->n_dofs());
-      Vector<double> h1_error_per_dof(dof->n_dofs());
-      DoFTools::distribute_cell_to_dof_vector (*dof, l1_error_per_cell, l1_error_per_dof);
-      DoFTools::distribute_cell_to_dof_vector (*dof, l2_error_per_cell, l2_error_per_dof);
-      DoFTools::distribute_cell_to_dof_vector (*dof, linfty_error_per_cell,
-                                              linfty_error_per_dof);
-      DoFTools::distribute_cell_to_dof_vector (*dof, h1_seminorm_error_per_cell,
-                                              h1_seminorm_error_per_dof);
-      DoFTools::distribute_cell_to_dof_vector (*dof, h1_error_per_cell, h1_error_per_dof);
-
-//       Vector<double> projected_solution;
-//       ConstraintMatrix constraints;
-//       constraints.close ();
-//       VectorTools::project (*dof, constraints, *fe,
-//                              StraightBoundary<dim>(), *quadrature, 
-//                              sol, projected_solution, false,
-//                              *boundary_quadrature);
-//       cout << "    Calculating L2 error of projected solution... ";
-//       VectorTools::integrate_difference (*dof_handler,
-//                                           projected_solution, sol,
-//                                           l2_error_per_cell,
-//                                           *quadrature, *fe, L2_norm);
-//       cout << l2_error_per_cell.l2_norm() << endl;
-
-
-      string filename;
-      filename = ('0'+order);
-      filename += ".";
-      filename += ('0'+level);
-      filename += ".ucd";
-      cout << "    Writing error plots to <" << filename << ">..." << endl;
-      
-      DataOut<dim> out;
-      ofstream o(filename.c_str());
-      fill_data (out);
-      out.add_data_vector (l1_error_per_dof, "L1_Error");
-      out.add_data_vector (l2_error_per_dof, "L2_Error");
-      out.add_data_vector (linfty_error_per_dof, "Linfty_Error");
-      out.add_data_vector (h1_seminorm_error_per_dof, "H1_seminorm_Error");
-      out.add_data_vector (h1_error_per_dof, "H1_Error");
-      out.build_patches ();
-      out.write_ucd (o);
-      o.close ();
-    }
-  else
-    cout << "    Not writing error as grid." << endl;
-  
-  cout << endl;
-
-  const unsigned int n_dofs = dof->n_dofs();
-                                  // release the lock that the dof object
-                                  // has to the finite element object
-  dof->clear ();
-  tria->set_boundary (0);
-  
-  delete fe;
-  delete quadrature;
-  delete boundary_quadrature;
-  
-  return n_dofs;
-};
-
-
-template <int dim>
-void PoissonProblem<dim>::print_history (string filename) const {
-  ofstream out(filename.c_str());
-  out << "# n_dofs    l1_error l2_error linfty_error h1_seminorm_error h1_error"
-      << endl;
-  for (unsigned int i=0; i<n_dofs.size(); ++i)
-    out << n_dofs[i]
-       << "    "
-       << l1_error[i] << "  "
-       << l2_error[i] << "  "
-       << linfty_error[i] << "  "
-       << h1_seminorm_error[i] << "  "
-       << h1_error[i] << endl;
-
-  double average_l1=0,
-        average_l2=0,
-     average_linfty=0,
-    average_h1_semi=0,
-        average_h1=0;
-  for (unsigned int i=1; i<n_dofs.size(); ++i) 
-    {
-      average_l1 += l1_error[i]/l1_error[i-1];
-      average_l2 += l2_error[i]/l2_error[i-1];
-      average_linfty += linfty_error[i]/linfty_error[i-1];
-      average_h1_semi += h1_seminorm_error[i]/h1_seminorm_error[i-1];
-      average_h1 += h1_error[i]/h1_error[i-1];
-    };
-
-  average_l1 /= (l1_error.size()-1);
-  average_l2 /= (l1_error.size()-1);
-  average_linfty /= (l1_error.size()-1);
-  average_h1_semi /= (l1_error.size()-1);
-  average_h1 /= (l1_error.size()-1);
-
-  cout << "==========================================================\n";
-  cout << "Average error reduction rates for h->h/2:" << endl;
-  cout << "    L1 error         : " << 1./average_l1 << endl
-       << "    L2 error         : " << 1./average_l2 << endl
-       << "    Linfty error     : " << 1./average_linfty << endl
-       << "    H1 seminorm error: " << 1./average_h1_semi << endl
-       << "    H1 error         : " << 1./average_h1 << endl;
-  cout << "==========================================================\n";
-  cout << "==========================================================\n";
-};
-
-
-
-
-int main () {
-  deallog.depth_console (0);
-  for (unsigned int order=0; order<5; ++order) 
-    {
-      PoissonProblem<2> problem (order);
-      
-      unsigned int level=0;
-      unsigned int n_dofs;
-      do
-       n_dofs = problem.run (level++);
-      while (n_dofs<25000);
-
-      string filename;
-      switch (order) 
-       {
-         case 0:
-               filename = "criss_cross";
-               break;
-         case 1:
-               filename = "linear";
-               break;
-         case 2:
-               filename = "quadratic";
-               break;
-         case 3:
-               filename = "cubic";
-               break;
-         case 4:
-               filename = "quartic";
-               break;
-       };
-      filename += ".history";
-      
-      cout << endl << "Printing convergence history to <"
-          << filename << ">..." << endl;
-      problem.print_history (filename);
-      cout << endl << endl << endl;
-    };
-  
-  return 0;
-};
diff --git a/deal.II/deal.II/Attic/examples/convergence/make_ps b/deal.II/deal.II/Attic/examples/convergence/make_ps
deleted file mode 100644 (file)
index 76c13a8..0000000
+++ /dev/null
@@ -1,52 +0,0 @@
-set term postscript eps
-set xlabel "Number of degrees of freedom"
-set data style linespoints
-set logscale xy
-
-
-
-set ylabel "Error"
-
-set output "criss-cross.eps"
-
-plot "criss_cross.history" using 1:2 title "L1 error","criss_cross.history" using 1:3 title "L2 error","criss_cross.history" using 1:4 title "Linfty error","criss_cross.history" using 1:5 title "H1 seminorm error","criss_cross.history" using 1:6 title "H1 error"
-
-
-
-set output "linear.eps"
-
-plot "linear.history" using 1:2 title "L1 error","linear.history" using 1:3 title "L2 error","linear.history" using 1:4 title "Linfty error","linear.history" using 1:5 title "H1 seminorm error","linear.history" using 1:6 title "H1 error"
-
-
-
-set output "quadratic.eps"
-
-plot "quadratic.history" using 1:2 title "L1 error","quadratic.history" using 1:3 title "L2 error","quadratic.history" using 1:4 title "Linfty error","quadratic.history" using 1:5 title "H1 seminorm error","quadratic.history" using 1:6 title "H1 error"
-
-
-
-set output "cubic.eps"
-
-plot "cubic.history" using 1:2 title "L1 error","cubic.history" using 1:3 title "L2 error","cubic.history" using 1:4 title "Linfty error","cubic.history" using 1:5 title "H1 seminorm error","cubic.history" using 1:6 title "H1 error"
-
-
-
-set output "quartic.eps"
-
-plot "quartic.history" using 1:2 title "L1 error","quartic.history" using 1:3 title "L2 error","quartic.history" using 1:4 title "Linfty error","quartic.history" using 1:5 title "H1 seminorm error","quartic.history" using 1:6 title "H1 error"
-
-
-
-set output "l2error.eps"
-set ylabel "L2-error"
-
-plot "criss_cross.history" using 1:3 title "Criss-cross elements", "linear.history" using 1:3 title "Linear elements", "quadratic.history" using 1:3 title "Quadratic elements", "cubic.history" using 1:3 title "Cubic elements", "quartic.history" using 1:3 title "Quartic elements"
-
-
-
-set output "h1error.eps"
-set ylabel "H1-error"
-
-plot "criss_cross.history" using 1:6 title "Criss-cross elements", "linear.history" using 1:6 title "Linear elements", "quadratic.history" using 1:6 title "Quadratic elements", "cubic.history" using 1:6 title "Cubic elements", "quartic.history" using 1:6 title "Quartic elements"
-
-
diff --git a/deal.II/deal.II/Attic/examples/dof/Makefile b/deal.II/deal.II/Attic/examples/dof/Makefile
deleted file mode 100644 (file)
index ee93d64..0000000
+++ /dev/null
@@ -1,172 +0,0 @@
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998, 1999, 2000
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target   = dof_test
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../..
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g   = $(lib-deal2-2d.g) \
-          $(lib-deal2-3d.g) \
-          $(lib-lac.g)      \
-           $(lib-base.g)
-libs.o   = $(lib-deal2-2d.o) \
-          $(lib-deal2-3d.o) \
-          $(lib-lac.o)      \
-           $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
-  libraries = $(target).go $(libs.g)
-  flags     = $(CXXFLAGS.g)
-else
-  libraries = $(target).go $(libs.o)
-  flags     = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
-  libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
-       @echo ============================ Linking $@
-       @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
-       @echo ============================ Running $<
-       ./$(target) 2 $(target).prm 
-       ./$(target) 3 $(target).prm
-       gnuplot make_ps
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
-       -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
-       @echo ==============debug========= $(<F)
-       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
-       @echo ==============optimized===== $(<F)
-       @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-/h-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script.  Since the
-# script prefixes the output names by `lib/o' or `lib/go' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
-              $(shell echo $(include-path-base)/base/*.h    \
-                           $(include-path-lac)/lac/*.h     \
-                           $(include-path-deal2)/*/*.h)
-       @echo ============================ Remaking Makefile
-       @perl $D/common/scripts/make_dependencies.pl  $(INCLUDE) $(target).cc \
-               | perl -pi -e 's!lib/g?o/!!g;' \
-               > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
diff --git a/deal.II/deal.II/Attic/examples/dof/dof_test.cc b/deal.II/deal.II/Attic/examples/dof/dof_test.cc
deleted file mode 100644 (file)
index a9513d4..0000000
+++ /dev/null
@@ -1,451 +0,0 @@
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-
-#include <grid/grid_out.h>
-#include <dofs/dof_tools.h>
-#include <dofs/dof_handler.h>
-#include <grid/tria.h>
-#include <fe/fe_lib.lagrange.h>
-#include <grid/tria_boundary.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_accessor.h>
-#include <grid/grid_generator.h>
-#include <lac/sparsity_pattern.h>
-#include <base/parameter_handler.h>
-#include <dofs/dof_constraints.h>
-#include <numerics/dof_renumbering.h>
-
-#include <fstream>
-#include <cmath>
-#include <cstdlib>
-
-
-
-// 1: continuous refinement of the unit square always in the middle
-// 2: refinement of the circle at the boundary
-// 2: refinement of a wiggled area at the boundary
-// 4: random refinement
-
-
-
-
-
-
-template <int dim>
-class Ball :
-  public StraightBoundary<dim> {
-  public:
-    virtual Point<dim>
-    get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const {
-      Point<dim> middle = StraightBoundary<dim>::get_new_point_on_line(line);
-      
-      for (int i=0; i<dim; ++i)
-       middle(i) -= .5;
-      middle *= sqrt(dim) / (sqrt(middle.square())*2);
-      for (int i=0; i<dim; ++i)
-       middle(i) += .5;
-      
-      return middle;
-    };
-
-    
-    virtual Point<dim>
-    get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const {
-      Point<dim> middle = StraightBoundary<dim>::get_new_point_on_quad(quad);
-      
-      for (int i=0; i<dim; ++i)
-       middle(i) -= .5;
-      middle *= sqrt(dim) / (sqrt(middle.square())*2);
-      for (int i=0; i<dim; ++i)
-       middle(i) += .5;
-      
-      return middle;
-    };
-};
-
-
-template <int dim>
-class CurvedLine :
-  public StraightBoundary<dim> {
-  public:
-    virtual Point<dim>
-    get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const;
-
-    virtual Point<dim>
-    get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const;
-};
-
-
-
-template <int dim>
-Point<dim>
-CurvedLine<dim>::get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const
-{
-  Point<dim> middle = StraightBoundary<dim>::get_new_point_on_line (line);
-
-                                  // if the line is at the top of bottom
-                                  // face: do a special treatment on
-                                  // this line. Note that if the
-                                  // z-value of the midpoint is either
-                                  // 0 or 1, then the z-values of all
-                                  // vertices of the line is like that
-  if (dim>=3)
-    if (((middle(2) == 0) || (middle(2) == 1))
-                                      // find out, if the line is in the
-                                      // interior of the top or bottom face
-                                      // of the domain, or at the edge.
-                                      // lines at the edge need to undergo
-                                      // the usual treatment, while for
-                                      // interior lines taking the midpoint
-                                      // is sufficient
-                                      //
-                                      // note: the trick with the boundary
-                                      // id was invented after the above was
-                                      // written, so we are not very strict
-                                      // here with using these flags
-       && (line->boundary_indicator() == 1))
-      return middle;
-
-
-  double x=middle(0),
-        y=middle(1);
-  
-  if (y<x)
-    if (y<1-x)
-      middle(1) = 0.04*sin(6*3.141592*middle(0));
-    else
-      middle(0) = 1+0.04*sin(6*3.141592*middle(1));
-  
-  else
-    if (y<1-x)
-      middle(0) = 0.04*sin(6*3.141592*middle(1));
-    else
-      middle(1) = 1+0.04*sin(6*3.141592*middle(0));
-  
-  return middle;
-};
-
-
-
-template <int dim>
-Point<dim>
-CurvedLine<dim>::get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const
-{
-  Point<dim> middle = StraightBoundary<dim>::get_new_point_on_quad (quad);
-
-                                  // if the face is at the top of bottom
-                                  // face: do not move the midpoint in
-                                  // x/y direction. Note that if the
-                                  // z-value of the midpoint is either
-                                  // 0 or 1, then the z-values of all
-                                  // vertices of the quad is like that
-  if ((middle(2) == 0) || (middle(2) == 1))
-    return middle;
-  
-  double x=middle(0),
-        y=middle(1);
-  
-  if (y<x)
-    if (y<1-x)
-      middle(1) = 0.04*sin(6*3.141592*middle(0));
-    else
-      middle(0) = 1+0.04*sin(6*3.141592*middle(1));
-  
-  else
-    if (y<1-x)
-      middle(0) = 0.04*sin(6*3.141592*middle(1));
-    else
-      middle(1) = 1+0.04*sin(6*3.141592*middle(0));
-  
-  return middle;
-};
-
-
-
-
-template <int dim>
-class TestCases : public MultipleParameterLoop::UserClass{
-  public:
-    TestCases ();
-    virtual ~TestCases ();
-    
-    virtual void create_new (const unsigned int run_no);
-    virtual void declare_parameters (ParameterHandler &prm);
-    virtual void run (ParameterHandler &prm);
-
-  private:
-    Triangulation<dim> *tria;
-    DoFHandler<dim>    *dof;
-};
-
-
-
-template <int dim>
-TestCases<dim>::TestCases () :
-               tria(0), dof(0) {};
-
-
-template <int dim>
-TestCases<dim>::~TestCases () 
-{
-  if (dof)  delete dof;
-  if (tria) delete tria;
-};
-
-
-
-template <int dim>
-void TestCases<dim>::create_new (const unsigned int) {
-  if (dof  != 0) delete dof;
-  if (tria != 0) delete tria;
-
-  tria = new Triangulation<dim>();
-  GridGenerator::hyper_cube(*tria);
-
-  dof = new DoFHandler<dim> (*tria);
-};
-
-
-
-template <int dim>
-void TestCases<dim>::declare_parameters (ParameterHandler &prm) {
-  if (dim>=2)
-    prm.declare_entry ("Test run", "zoom in",
-                      Patterns::Selection("zoom in|ball|curved line|random"));
-  else
-    prm.declare_entry ("Test run", "zoom in",
-                      Patterns::Selection("zoom in|random"));
-  prm.declare_entry ("Grid file", "grid.1");
-  prm.declare_entry ("Sparsity file", "sparsity.1");
-  prm.declare_entry ("Condensed sparsity file", "sparsity.c.1");
-};
-
-
-
-template <int dim>
-void TestCases<dim>::run (ParameterHandler &prm) {
-  cout << "Dimension = " << dim
-       << ", Test case = " << prm.get ("Test run") << endl
-       << endl;
-  
-  string test = prm.get ("Test run");
-  unsigned int test_case = 1;
-  if (test=="zoom in") test_case = 1;
-  else
-    if (test=="ball") test_case = 2;
-    else
-      if (test=="curved line") test_case = 3;
-      else
-       if (test=="random") test_case = 4;
-       else
-         cerr << "This test seems not to be implemented!" << endl;
-
-  
-  cout << "    Making grid..." << endl;  
-  Boundary<dim> *boundary = 0;
-  
-  switch (test_case) 
-    {
-      case 1: 
-      {
-                                        // refine first cell
-       tria->begin_active()->set_refine_flag();
-       tria->execute_coarsening_and_refinement ();
-                                        // refine first active cell
-                                        // on coarsest level
-       tria->begin_active()->set_refine_flag ();
-       tria->execute_coarsening_and_refinement ();
-
-       Triangulation<dim>::active_cell_iterator cell;
-       for (int i=0; i<17; ++i) 
-         {
-                                            // refine the presently
-                                            // second last cell 17
-                                            // times
-           cell = tria->last_active(tria->n_levels()-1);
-           --cell;
-           cell->set_refine_flag ();
-           tria->execute_coarsening_and_refinement ();
-         };
-
-       break;
-      }
-      
-      case 2:
-      case 3:
-      {
-       if (dim==3)
-         {
-           tria->begin_active()->face(2)->set_boundary_indicator(1);
-           tria->begin_active()->face(4)->set_boundary_indicator(1);
-         };
-       
-                                        // set the boundary function
-       boundary = (test_case==2 ?
-                   static_cast<Boundary<dim>*>(new Ball<dim>()) :
-                   static_cast<Boundary<dim>*>(new CurvedLine<dim>()));
-       tria->set_boundary (0, *boundary);
-       tria->set_boundary (1, *boundary);
-       
-                                        // refine once
-       tria->begin_active()->set_refine_flag();
-       tria->execute_coarsening_and_refinement ();
-       
-       Triangulation<dim>::active_cell_iterator cell, endc;
-       for (int i=0; i<6-dim; ++i) 
-         {
-           cell = tria->begin_active();
-           endc = tria->end();
-           
-                                            // refine all
-                                            // boundary cells
-           for (; cell!=endc; ++cell)
-             if (cell->at_boundary())
-               cell->set_refine_flag();
-           
-           tria->execute_coarsening_and_refinement();
-         };
-       
-       break;
-      }
-
-      case 4:
-      {
-                                        // refine once
-       tria->begin_active()->set_refine_flag();
-       tria->execute_coarsening_and_refinement ();
-       
-       Triangulation<dim>::active_cell_iterator cell, endc;
-       for (int i=0; i<(dim==2 ? 12 : (dim==3 ? 7 : 20)); ++i) 
-         {
-           int n_levels = tria->n_levels();
-           cell = tria->begin_active();
-           endc = tria->end();
-
-           for (; cell!=endc; ++cell) 
-             {
-               double r      = rand()*1.0/RAND_MAX,
-                      weight = 1.*
-                               (cell->level()*cell->level()) /
-                               (n_levels*n_levels);
-               
-               if (r <= 0.5*weight)
-                 cell->set_refine_flag ();
-             };
-           
-           tria->execute_coarsening_and_refinement ();
-         };
-       break;  
-      }
-    };
-
-                                  // output the grid
-  string file_prefix ("results/");
-  file_prefix += ('0'+dim);
-  file_prefix += "d.";
-  
-  cout << "    Writing grid..." << endl;
-  ofstream out((file_prefix + prm.get("Grid file")).c_str());
-  GridOut().write_gnuplot (*tria, out);
-
-
-
-
-  cout << "    Distributing degrees of freedom..." << endl;
-  FEQ1<dim> fe;
-  dof->distribute_dofs (fe);
-
-  cout << "    Renumbering degrees of freedom..." << endl;
-  DoFRenumbering::Cuthill_McKee (*dof);
-    
-  SparsityPattern sparsity (dof->n_dofs(),
-                           dof->max_couplings_between_dofs());
-  
-  
-  DoFTools::make_sparsity_pattern (*dof, sparsity);
-  int unconstrained_bandwidth = sparsity.bandwidth();
-
-  cout << "    Writing sparsity pattern..." << endl;
-  ofstream sparsity_out ((file_prefix + prm.get("Sparsity file")).c_str());
-  sparsity.print_gnuplot (sparsity_out);
-
-
-  
-                                  // computing constraints
-  cout << "    Computing constraints..." << endl;
-  ConstraintMatrix constraints;
-  DoFTools::make_hanging_node_constraints (*dof, constraints);
-  constraints.close ();
-  constraints.condense (sparsity);
-  
-  cout << "    Writing condensed sparsity pattern..." << endl;
-  ofstream c_sparsity_out ((file_prefix +
-                           prm.get("Condensed sparsity file")).c_str());
-  sparsity.print_gnuplot (c_sparsity_out);
-
-
-  cout << endl
-       << "    Total number of cells         = " << tria->n_cells() << endl
-       << "    Total number of active cells  = " << tria->n_active_cells() << endl
-       << "    Number of DoFs                = " << dof->n_dofs() << endl
-       << "    Number of constraints         = " << constraints.n_constraints() << endl
-       << "    Unconstrained matrix bandwidth= " << unconstrained_bandwidth << endl
-       << "    Constrained matrix bandwidth  = " << sparsity.bandwidth()
-       << endl << endl;
-
-                                  // release the lock that dof has to the
-                                  // finite element object
-  dof->clear ();
-  tria->set_boundary (0);
-  tria->set_boundary (1);
-  if (boundary)
-    delete boundary;
-};
-
-
-
-int main (int argc, char **argv) {
-  if (argc!=3) 
-    {
-      cerr << "Usage: dof_test dimension parameterfile" << endl << endl;
-      return 1;
-    };
-
-  unsigned int dim;
-  if (argv[1][0] == '2')
-    dim = 2;
-  else
-    dim = 3;
-
-  switch (dim)
-    {
-      case 2:
-      {
-           TestCases<2> tests;
-           MultipleParameterLoop input_data;
-
-           tests.declare_parameters(input_data);
-           input_data.read_input (argv[2]);
-           input_data.loop (tests);
-
-           break;
-      };
-       
-      case 3:
-      {
-           TestCases<3> tests;
-           MultipleParameterLoop input_data;
-
-           tests.declare_parameters(input_data);
-           input_data.read_input (argv[2]);
-           input_data.loop (tests);
-
-           break;
-      };
-    };
-  
-  return 0;
-};
-
diff --git a/deal.II/deal.II/Attic/examples/dof/dof_test.prm b/deal.II/deal.II/Attic/examples/dof/dof_test.prm
deleted file mode 100644 (file)
index 8469799..0000000
+++ /dev/null
@@ -1,4 +0,0 @@
-set Test run      = { zoom in | ball | curved line | random }
-set Grid file     = {{ zoom_in | ball | curved_line | random }}.grid
-set Sparsity file = {{ zoom_in | ball | curved_line | random }}.sparsity
-set Condensed sparsity file = {{ zoom_in | ball | curved_line | random }}.sparsity.c
\ No newline at end of file
diff --git a/deal.II/deal.II/Attic/examples/dof/make_ps b/deal.II/deal.II/Attic/examples/dof/make_ps
deleted file mode 100644 (file)
index 281a20b..0000000
+++ /dev/null
@@ -1,122 +0,0 @@
-set size 0.721,1
-set data style lines
-set noxtics
-set noytics
-set noztics
-set noxzeroaxis
-set noyzeroaxis
-set nokey
-set term postscript eps
-
-!echo "  Making <2d.zoom_in.grid.eps>"
-set output "results/2d.zoom_in.grid.eps"
-plot "results/2d.zoom_in.grid"
-
-!echo "  Making <2d.ball.grid.eps>"
-set output "results/2d.ball.grid.eps"
-plot "results/2d.ball.grid"
-
-!echo "  Making <2d.curved_line.grid.eps>"
-set output "results/2d.curved_line.grid.eps"
-plot "results/2d.curved_line.grid"
-
-!echo "  Making <2d.random.grid.eps>"
-set output "results/2d.random.grid.eps"
-plot "results/2d.random.grid"
-
-
-
-
-!echo "  Making <3d.zoom_in.grid.eps>"
-set output "results/3d.zoom_in.grid.eps"
-splot "results/3d.zoom_in.grid"
-
-!echo "  Making <3d.ball.grid.eps>"
-set output "results/3d.ball.grid.eps"
-splot "results/3d.ball.grid"
-
-!echo "  Making <3d.curved_line.grid.eps>"
-set output "results/3d.curved_line.grid.eps"
-splot "results/3d.curved_line.grid"
-
-!echo "  Making <3d.random.grid.eps>"
-set output "results/3d.random.grid.eps"
-splot "results/3d.random.grid"
-
-
-
-
-set data style dots
-
-!echo "  Making <2d.zoom_in.sparsity.eps>"
-set output "results/2d.zoom_in.sparsity.eps"
-plot "results/2d.zoom_in.sparsity"
-
-!echo "  Making <2d.zoom_in.sparsity.c.eps>"
-set output "results/2d.zoom_in.sparsity.c.eps"
-plot "results/2d.zoom_in.sparsity.c"
-
-
-!echo "  Making <2d.ball.sparsity.eps>"
-set output "results/2d.ball.sparsity.eps"
-plot "results/2d.ball.sparsity"
-
-!echo "  Making <2d.ball.sparsity.c.eps>"
-set output "results/2d.ball.sparsity.c.eps"
-plot "results/2d.ball.sparsity.c"
-
-
-!echo "  Making <2d.curved_line.sparsity.eps>"
-set output "results/2d.curved_line.sparsity.eps"
-plot "results/2d.curved_line.sparsity"
-
-!echo "  Making <2d.curved_line.sparsity.c.eps>"
-set output "results/2d.curved_line.sparsity.c.eps"
-plot "results/2d.curved_line.sparsity.c"
-
-
-!echo "  Making <2d.random.sparsity.eps>"
-set output "results/2d.random.sparsity.eps"
-plot "results/2d.random.sparsity"
-
-!echo "  Making <2d.random.sparsity.c.eps>"
-set output "results/2d.random.sparsity.c.eps"
-plot "results/2d.random.sparsity.c"
-
-
-
-!echo "  Making <3d.zoom_in.sparsity.eps>"
-set output "results/3d.zoom_in.sparsity.eps"
-plot "results/3d.zoom_in.sparsity"
-
-!echo "  Making <3d.zoom_in.sparsity.c.eps>"
-set output "results/3d.zoom_in.sparsity.c.eps"
-plot "results/3d.zoom_in.sparsity.c"
-
-
-!echo "  Making <3d.ball.sparsity.eps>"
-set output "results/3d.ball.sparsity.eps"
-plot "results/3d.ball.sparsity"
-
-!echo "  Making <3d.ball.sparsity.c.eps>"
-set output "results/3d.ball.sparsity.c.eps"
-plot "results/3d.ball.sparsity.c"
-
-
-!echo "  Making <3d.curved_line.sparsity.eps>"
-set output "results/3d.curved_line.sparsity.eps"
-plot "results/3d.curved_line.sparsity"
-
-!echo "  Making <3d.curved_line.sparsity.c.eps>"
-set output "results/3d.curved_line.sparsity.c.eps"
-plot "results/3d.curved_line.sparsity.c"
-
-
-!echo "  Making <3d.random.sparsity.eps>"
-set output "results/3d.random.sparsity.eps"
-plot "results/3d.random.sparsity"
-
-!echo "  Making <3d.random.sparsity.c.eps>"
-set output "results/3d.random.sparsity.c.eps"
-plot "results/3d.random.sparsity.c"
-
diff --git a/deal.II/deal.II/Attic/examples/error-estimation/Makefile b/deal.II/deal.II/Attic/examples/error-estimation/Makefile
deleted file mode 100644 (file)
index ed89446..0000000
+++ /dev/null
@@ -1,172 +0,0 @@
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998, 1999, 2000
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target   = error-estimation
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../..
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g   = $(lib-deal2-2d.g) \
-          $(lib-lac.g)      \
-           $(lib-base.g)
-libs.o   = $(lib-deal2-2d.o) \
-          $(lib-lac.o)      \
-           $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
-  libraries = $(target).go $(libs.g)
-  flags     = $(CXXFLAGS.g)
-else
-  libraries = $(target).go $(libs.o)
-  flags     = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
-  libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
-       @echo ============================ Linking $@
-       @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
-       @echo ============================ Running $<
-       ./$(target) ee.gauss.prm
-       ./$(target) ee.singular.prm
-       ./$(target) ee.kink.prm
-       gnuplot make_ps
-
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
-       -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
-       @echo ==============debug========= $(<F)
-       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
-       @echo ==============optimized===== $(<F)
-       @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-/h-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script.  Since the
-# script prefixes the output names by `lib/o' or `lib/go' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
-              $(shell echo $(include-path-base)/base/*.h    \
-                           $(include-path-lac)/lac/*.h     \
-                           $(include-path-deal2)/*/*.h)
-       @echo ============================ Remaking Makefile
-       @perl $D/common/scripts/make_dependencies.pl  $(INCLUDE) $(target).cc \
-               | perl -pi -e 's!lib/g?o/!!g;' \
-               > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
diff --git a/deal.II/deal.II/Attic/examples/error-estimation/ee.gauss.prm b/deal.II/deal.II/Attic/examples/error-estimation/ee.gauss.prm
deleted file mode 100644 (file)
index 560bd59..0000000
+++ /dev/null
@@ -1,8 +0,0 @@
-set Test case            = Gauss shape
-set Initial refinement   = 2
-set Refinement criterion = { global | true error | estimated error }
-set Refinement fraction  = 0.3
-set Coarsening fraction  = 0.03
-set Maximum cells        = 10000
-set Output base filename = data-gauss/
-set Output format        = ucd
diff --git a/deal.II/deal.II/Attic/examples/error-estimation/ee.kink.prm b/deal.II/deal.II/Attic/examples/error-estimation/ee.kink.prm
deleted file mode 100644 (file)
index 6bf0b8e..0000000
+++ /dev/null
@@ -1,8 +0,0 @@
-set Test case            = Kink
-set Initial refinement   = 1
-set Refinement criterion = { global | estimated error }
-set Refinement fraction  = 0.1
-set Coarsening fraction  = 0.02
-set Maximum cells        = 100000
-set Output base filename = data-kink/
-set Output format        = ucd
diff --git a/deal.II/deal.II/Attic/examples/error-estimation/ee.singular.prm b/deal.II/deal.II/Attic/examples/error-estimation/ee.singular.prm
deleted file mode 100644 (file)
index eb69885..0000000
+++ /dev/null
@@ -1,8 +0,0 @@
-set Test case            = Singular
-set Initial refinement   = 1
-set Refinement criterion = { global | estimated error }
-set Refinement fraction  = 0.1
-set Coarsening fraction  = 0.02
-set Maximum cells        = 100000
-set Output base filename = data-singular/
-set Output format        = ucd
diff --git a/deal.II/deal.II/Attic/examples/error-estimation/error-estimation.cc b/deal.II/deal.II/Attic/examples/error-estimation/error-estimation.cc
deleted file mode 100644 (file)
index cd11fc8..0000000
+++ /dev/null
@@ -1,755 +0,0 @@
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-#include <base/function.h>
-#include <base/parameter_handler.h>
-#include <base/quadrature_lib.h>
-#include <grid/grid_generator.h>
-#include <grid/grid_out.h>
-#include <grid/tria.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_boundary_lib.h>
-#include <grid/tria_iterator.h>
-#include <dofs/dof_accessor.h>
-#include <dofs/dof_constraints.h>
-#include <dofs/dof_handler.h>
-#include <dofs/dof_tools.h>
-#include <fe/fe_lib.lagrange.h>
-#include <numerics/data_out.h>
-#include <numerics/base.h>
-#include <numerics/assembler.h>
-#include <numerics/vectors.h>
-#include <numerics/error_estimator.h>
-#include <numerics/solution_transfer.h>
-#include <lac/vector.h>
-
-#include <map>
-#include <fstream>
-#include <cmath>
-#include <string>
-#include <cstdlib>
-
-
-
-
-template <int dim>
-class PoissonEquation :  public Equation<dim> {
-  public:
-    PoissonEquation (const Function<dim> &rhs) :
-                   Equation<dim>(1),
-                   use_coefficient(false),
-                   right_hand_side (rhs),
-                   coefficient (default_coefficient) {};
-
-    PoissonEquation (const Function<dim> &rhs,
-                    const Function<dim> &coefficient ) :
-                   Equation<dim>(1),
-                   use_coefficient(true),
-                   right_hand_side (rhs),
-                   coefficient (coefficient) {};
-
-    virtual void assemble (FullMatrix<double>  &cell_matrix,
-                          Vector<double>      &rhs,
-                          const FEValues<dim> &fe_values,
-                          const DoFHandler<dim>::cell_iterator &cell) const;
-    virtual void assemble (FullMatrix<double>  &cell_matrix,
-                          const FEValues<dim> &fe_values,
-                          const DoFHandler<dim>::cell_iterator &cell) const;
-    virtual void assemble (Vector<double>      &rhs,
-                          const FEValues<dim> &fe_values,
-                          const DoFHandler<dim>::cell_iterator &cell) const;
-  protected:
-    const bool           use_coefficient;
-    const Function<dim> &right_hand_side;
-    const Function<dim> &coefficient;
-
-    static const ConstantFunction<dim> default_coefficient;
-};
-
-
-const ConstantFunction<2> PoissonEquation<2>::default_coefficient(1);
-
-
-
-
-
-template <int dim>
-class PoissonProblem : public ProblemBase<dim>, public MultipleParameterLoop::UserClass {
-  public:
-    enum RefineMode {
-         global, true_error, error_estimator
-    };
-    
-    PoissonProblem ();
-    ~PoissonProblem ();
-    
-    void clear ();
-    void create_new (const unsigned int);
-    void declare_parameters (ParameterHandler &prm);
-    void run (ParameterHandler &prm);
-    void print_history (const ParameterHandler &prm,
-                       const RefineMode refine_mode) const;
-    
-  protected:
-    Triangulation<dim> *tria;
-    DoFHandler<dim>    *dof;
-    
-    Function<dim>      *rhs;
-    Function<dim>      *solution_function;
-    Function<dim>      *coefficient;
-                          
-    Boundary<dim>      *boundary;
-    
-    vector<double> l2_error, linfty_error;
-    vector<double> h1_error, estimated_error;
-    vector<int>    n_dofs;
-};
-
-
-
-
-
-template <int dim>
-class Solution {
-  public:
-
-    class GaussShape : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int component) const;
-       virtual Tensor<1,dim> gradient (const Point<dim> &p,
-                                       const unsigned int component) const;
-    };
-
-    class Singular : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int component) const;
-       virtual Tensor<1,dim> gradient (const Point<dim> &p,
-                                       const unsigned int component) const;
-    };
-
-    class Kink : public Function<dim> {
-      public:
-       class Coefficient : public Function<dim> {
-         public:
-           virtual double value (const Point<dim> &p,
-                                 const unsigned int component) const;
-       };
-       
-       virtual double value (const Point<dim> &p,
-                             const unsigned int component) const;
-       virtual Tensor<1,dim> gradient (const Point<dim> &p,
-                                       const unsigned int component) const;
-    };
-};
-
-
-
-
-template <int dim>
-class RHS {
-  public:
-    
-                                    /**
-                                     * Right hand side constructed such that
-                                     * the exact solution is
-                                     * $x*y*exp(-(x**2+y**2)*40)$.
-                                     */
-    class GaussShape : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int component) const;
-    };
-
-                                    /**
-                                     * Right hand side constructed such that
-                                     * the exact solution is
-                                     * $r^{2/3}$.
-                                     */
-    class Singular : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int component) const;
-    };
-
-                                    /**
-                                     * Right hand side constructed such that
-                                     * the exact solution is
-                                     * $(1+4\theta(f))*f$ with
-                                     * $f=y-x**2$.
-                                     */
-    class Kink : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int component) const;
-    };
-};
-
-
-
-
-template <>
-double Solution<2>::GaussShape::value (const Point<2> &p,
-                                      const unsigned int) const {
-  return p(0)*p(1)*exp(-40*p.square());
-};
-
-
-template <>
-Tensor<1,2> Solution<2>::GaussShape::gradient (const Point<2> &p,
-                                              const unsigned int) const {
-  return Point<2> ((1-80.*p(0)*p(0))*p(1)*exp(-40*p.square()),
-                  (1-80.*p(1)*p(1))*p(0)*exp(-40*p.square()));
-};
-
-
-
-template <>
-double Solution<2>::Singular::value (const Point<2> &p,
-                                    const unsigned int) const {
-  return pow(p.square(), 1./3.);
-};
-
-
-template <>
-Tensor<1,2> Solution<2>::Singular::gradient (const Point<2> &p,
-                                            const unsigned int) const {
-  return 2./3.*pow(p.square(), -2./3.) * p;
-};
-
-
-
-
-inline double theta(const double x) {
-  return (x>0 ? 1 : 0);
-};
-
-
-
-template <>
-double Solution<2>::Kink::value (const Point<2> &p,
-                                const unsigned int) const {
-  const double s = p(1)-p(0)*p(0);
-  return (1+4*theta(s))*s;
-};
-
-
-template <>
-Tensor<1,2> Solution<2>::Kink::gradient (const Point<2> &p,
-                                        const unsigned int) const {
-  const double s = p(1)-p(0)*p(0);
-  return (1+4*theta(s))*Point<2>(-2*p(0),1);
-};
-
-
-template <>
-double Solution<2>::Kink::Coefficient::value (const Point<2> &p,
-                                             const unsigned int) const {
-  const double s = p(1)-p(0)*p(0);
-  return 1./(1.+4.*theta(s));
-};
-
-
-
-template <>
-double RHS<2>::GaussShape::value (const Point<2> &p,
-                                 const unsigned int) const {
-  return (480.-6400.*p.square())*p(0)*p(1)*exp(-40.*p.square());
-};
-
-
-template <>
-double RHS<2>::Singular::value (const Point<2> &p,
-                               const unsigned int) const {
-  return -4./9. * pow(p.square(), -2./3.);
-};
-
-
-template <>
-double RHS<2>::Kink::value (const Point<2> &,
-                           const unsigned int) const {
-  return 2;
-};
-
-
-
-
-  
-
-
-
-template <>
-void PoissonEquation<2>::assemble (FullMatrix<double>  &cell_matrix,
-                                  Vector<double>      &rhs,
-                                  const FEValues<2>   &fe_values,
-                                  const DoFHandler<2>::cell_iterator &) const {
-  for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point) 
-    {
-      const double c = (use_coefficient ?
-                       coefficient.value(fe_values.quadrature_point(point)) :
-                       1);
-      for (unsigned int i=0; i<fe_values.dofs_per_cell; ++i) 
-       {
-         for (unsigned int j=0; j<fe_values.dofs_per_cell; ++j)
-           cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
-                                fe_values.shape_grad(j,point)) *
-                               fe_values.JxW(point) *
-                               c;
-         rhs(i) += fe_values.shape_value(i,point) *
-                   right_hand_side.value(fe_values.quadrature_point(point)) *
-                   fe_values.JxW(point);
-       };
-    };
-};
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (FullMatrix<double>  &,
-                                    const FEValues<dim> &,
-                                    const DoFHandler<dim>::cell_iterator &) const {
-  Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (Vector<double>      &,
-                                    const FEValues<dim> &,
-                                    const DoFHandler<dim>::cell_iterator &) const {
-  Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-
-
-
-
-
-
-template <int dim>
-PoissonProblem<dim>::PoissonProblem () :
-               tria(0), dof(0), rhs(0),
-               solution_function(0), coefficient(0),
-               boundary(0) {};
-
-
-
-template <int dim>
-PoissonProblem<dim>::~PoissonProblem () 
-{
-  clear ();
-};
-
-
-
-template <int dim>
-void PoissonProblem<dim>::clear () {
-  if (dof != 0)               { delete dof;               dof = 0;               };
-  if (tria != 0)              { delete tria;              tria = 0;              };
-  if (rhs != 0)               { delete rhs;               rhs = 0;               };
-  if (solution_function != 0) { delete solution_function; solution_function = 0; };
-  if (coefficient != 0)       { delete coefficient;       coefficient = 0;       };
-  if (boundary != 0)          { delete boundary;          boundary = 0;          };
-
-                                  // make it known to the underlying
-                                  // ProblemBase that tria and dof
-                                  // are already deleted
-  set_tria_and_dof (tria, dof);
-
-  l2_error.clear ();
-  linfty_error.clear ();
-  h1_error.clear ();
-  estimated_error.clear();
-  n_dofs.clear ();
-  
-  ProblemBase<dim>::clear ();
-};
-
-
-
-
-template <int dim>
-void PoissonProblem<dim>::create_new (const unsigned int) {
-  clear ();
-
-  tria = new Triangulation<dim>();
-  dof = new DoFHandler<dim> (*tria);
-  set_tria_and_dof (tria, dof);
-  boundary = new HyperBallBoundary<dim> ();
-};
-
-
-
-template <int dim>
-void PoissonProblem<dim>::declare_parameters (ParameterHandler &prm) {
-  prm.declare_entry ("Test case", "Gauss shape",
-                    Patterns::Selection("Gauss shape|Singular|Kink"));
-  prm.declare_entry ("Initial refinement", "2",
-                    Patterns::Integer());
-  prm.declare_entry ("Refinement criterion", "estimated error",
-                    Patterns::Selection("global|true error|estimated error"));
-  prm.declare_entry ("Refinement fraction", "0.3",
-                    Patterns::Double());
-  prm.declare_entry ("Coarsening fraction", "0.1",
-                    Patterns::Double());
-  prm.declare_entry ("Maximum cells", "3000",
-                    Patterns::Integer());
-  prm.declare_entry ("Output base filename", "");
-  prm.declare_entry ("Output format", "ucd",
-                    Patterns::Selection("ucd|gnuplot"));
-};
-
-
-
-
-template <int dim>
-void PoissonProblem<dim>::run (ParameterHandler &prm) {
-  cout << "======================================="
-       << "=======================================" << endl
-       << "===== Test case: " << prm.get ("Test case") << endl
-       << "===== Doing computation with refinement criterion: ";
-  RefineMode refine_mode;
-  if (prm.get("Refinement criterion")=="global")
-    refine_mode = global;
-  else
-    if (prm.get("Refinement criterion")=="true error")
-      refine_mode = true_error;
-    else
-      if (prm.get("Refinement criterion")=="estimated error")
-       refine_mode = error_estimator;
-      else
-       return;
-
-  switch (refine_mode) 
-    {
-      case global:
-           cout << "global";
-           break;
-      case true_error:
-           cout << "true error";
-           break;
-      case error_estimator:
-           cout << "error estimator";
-           break;
-    };
-
-  cout << endl
-       << "======================================="
-       << "=======================================" << endl;
-  cout << "Making initial grid... " << endl;
-  const unsigned int start_level(prm.get_integer("Initial refinement"));
-  tria->set_boundary (0, *boundary);
-  GridGenerator::hyper_ball (*tria);
-  tria->refine_global (start_level);
-
-  if (prm.get("Test case")=="Gauss shape")
-    rhs             = new RHS<dim>::GaussShape();
-  else
-    if (prm.get("Test case")=="Singular")
-      rhs             = new RHS<dim>::Singular();
-    else
-      if (prm.get("Test case")=="Kink")
-       rhs             = new RHS<dim>::Kink();
-  
-  if (prm.get("Test case")=="Gauss shape")
-    solution_function = new Solution<dim>::GaussShape ();
-  else
-    if (prm.get("Test case")=="Singular")
-      solution_function = new Solution<dim>::Singular ();
-    else
-      if (prm.get("Test case")=="Kink")
-       solution_function = new Solution<dim>::Kink ();
-  
-  
-  FEQ1<dim>         fe;
-  QGauss3<dim>          quadrature;
-  PoissonEquation<dim> *equation;
-  
-  static Solution<dim>::Kink::Coefficient kink_coefficient;
-  if (prm.get("Test case")=="Kink")
-    equation = new PoissonEquation<dim>(*rhs, kink_coefficient);
-  else
-    equation = new PoissonEquation<dim>(*rhs);
-
-  SolutionTransfer<dim,double> solution_transfer (*dof_handler);
-
-  unsigned int refine_step = 0;
-  const unsigned int max_cells = prm.get_integer("Maximum cells");
-  while (tria->n_active_cells() < max_cells)
-    {
-      Vector<double> old_solution = solution;
-      cout << "Refinement step " << refine_step
-          << ", using " << tria->n_active_cells() << " active cells on "
-          << tria->n_levels() << " levels."
-          << endl;
-      cout << "    Distributing dofs... "; 
-      dof->distribute_dofs (fe);
-      cout << dof->n_dofs() << " degrees of freedom." << endl;
-      n_dofs.push_back (dof->n_dofs());
-
-      cout << "    Assembling matrices..." << endl;
-      UpdateFlags update_flags = UpdateFlags(update_values | update_q_points  |
-                                            update_gradients | update_JxW_values);
-  
-      ProblemBase<dim>::FunctionMap dirichlet_bc;
-      dirichlet_bc[0] = solution_function;
-      assemble (*equation, quadrature, update_flags, dirichlet_bc);
-
-                                      // if we have an old solution lying
-                                      // around, use it to preset the solution
-                                      // vector. this reduced the quired
-                                      // number of iterations by about
-                                      // 10 per cent
-      if (refine_step != 0)
-       {
-         solution.reinit (dof_handler->n_dofs());
-         solution_transfer.interpolate (old_solution, solution);
-
-                                          // if you don't want to preset
-                                          // the solution vector,
-                                          // uncomment the following
-                                          // line and comment out the
-                                          // preceding one
-//        solution.reinit (dof_handler->n_dofs());
-         
-         solution_transfer.clear ();
-       };
-
-      cout << "    Solving..." << endl;
-
-      solve ();
-
-
-      Vector<float>       l2_error_per_cell, linfty_error_per_cell, h1_error_per_cell;
-      Vector<float>       estimated_error_per_cell;
-      QGauss3<dim>  q;
-  
-      cout << "    Calculating L2 error... ";
-      VectorTools::integrate_difference (*dof_handler,
-                                             solution, *solution_function,
-                                             l2_error_per_cell, q,
-                                             L2_norm);
-      cout << l2_error_per_cell.l2_norm() << endl;
-      l2_error.push_back (l2_error_per_cell.l2_norm());
-
-      cout << "    Calculating L-infinity error... ";
-      VectorTools::integrate_difference (*dof_handler,
-                                             solution, *solution_function,
-                                             linfty_error_per_cell, q,
-                                             Linfty_norm);
-      cout << linfty_error_per_cell.linfty_norm() << endl;
-      linfty_error.push_back (linfty_error_per_cell.linfty_norm());
-
-      cout << "    Calculating H1 error... ";
-      VectorTools::integrate_difference (*dof_handler,
-                                             solution, *solution_function,
-                                             h1_error_per_cell, q, 
-                                             H1_norm);
-      cout << h1_error_per_cell.l2_norm() << endl;
-      h1_error.push_back (h1_error_per_cell.l2_norm());
-
-      cout << "    Estimating H1 error... ";
-
-      QSimpson<dim-1> eq;
-      KellyErrorEstimator<dim>::estimate (*dof, eq,
-                                         KellyErrorEstimator<dim>::FunctionMap(),
-                                         solution,
-                                         estimated_error_per_cell,
-                                         vector<bool>(), // all components
-                                         ((prm.get("Test case")=="Kink") ?
-                                          &kink_coefficient : 0 ));
-      cout << estimated_error_per_cell.l2_norm() << endl;
-      estimated_error.push_back (estimated_error_per_cell.l2_norm());
-
-      Vector<double> l2_error_per_dof(dof->n_dofs()), linfty_error_per_dof(dof->n_dofs());
-      Vector<double> h1_error_per_dof(dof->n_dofs()), estimated_error_per_dof(dof->n_dofs());
-      Vector<double> error_ratio (dof->n_dofs());
-      DoFTools::distribute_cell_to_dof_vector (*dof, l2_error_per_cell, l2_error_per_dof);
-      DoFTools::distribute_cell_to_dof_vector (*dof, linfty_error_per_cell,
-                                         linfty_error_per_dof);
-      DoFTools::distribute_cell_to_dof_vector (*dof, h1_error_per_cell, h1_error_per_dof);
-      DoFTools::distribute_cell_to_dof_vector (*dof, estimated_error_per_cell,
-                                         estimated_error_per_dof);
-      error_ratio.ratio (h1_error_per_dof, estimated_error_per_dof);
-  
-      DataOut<dim> out;
-      fill_data (out);
-      out.add_data_vector (l2_error_per_dof, "L2_Error");
-      out.add_data_vector (linfty_error_per_dof, "Linfty_Error");
-      out.add_data_vector (h1_error_per_dof, "H1_Error");
-      out.add_data_vector (estimated_error_per_dof, "Estimated_Error");
-      out.add_data_vector (error_ratio, "Ratio_True_to_Estimated_Error");
-      out.build_patches ();
-      string filename = prm.get ("Output base filename");
-      switch (refine_mode) 
-       {
-         case global:
-               filename += "global.";
-               break;
-         case true_error:
-               filename += "true_error.";
-               break;
-         case error_estimator:
-               filename += "estimated_error.";
-               break;
-       };
-      filename += ('0'+(start_level+refine_step)/10);
-      filename += ('0'+(start_level+refine_step)%10);
-
-      if (prm.get("Output format")=="ucd")
-       filename += ".inp";
-      else
-       if (prm.get("Output format")=="gnuplot")
-         filename += ".gnuplot";
-      
-      cout << "    Writing error plots to <" << filename << ">..." << endl;
-      ofstream outfile(filename.c_str());
-      if (prm.get("Output format")=="ucd")      
-       out.write_ucd (outfile);
-      else
-       if (prm.get("Output format")=="gnuplot")
-         out.write_gnuplot (outfile);
-      
-      outfile.close();
-      
-      cout << "    Refining triangulation...";
-      switch (refine_mode) 
-       {
-         case global:
-               tria->set_all_refine_flags ();
-               break;
-         case true_error:
-               tria->refine_and_coarsen_fixed_number (h1_error_per_cell,
-                                                      prm.get_double("Refinement fraction"),
-                                                      prm.get_double("Coarsening fraction"));
-               break;
-         case error_estimator:
-               tria->refine_and_coarsen_fixed_number (estimated_error_per_cell,
-                                                      prm.get_double("Refinement fraction"),
-                                                      prm.get_double("Coarsening fraction"));
-               break;
-       };
-
-      tria->prepare_coarsening_and_refinement ();
-      solution_transfer.prepare_for_coarsening_and_refinement (solution);
-      tria->execute_coarsening_and_refinement ();
-      
-      cout << endl << endl;
-      ++refine_step;
-    };
-
-  string filename = prm.get ("Output base filename");
-  switch (refine_mode) 
-    {
-      case global:
-           filename += "global.";
-           break;
-      case true_error:
-           filename += "true_error.";
-           break;
-      case error_estimator:
-           filename += "estimated_error.";
-           break;
-    };
-
-  cout << endl;
-  
-  filename += "finest_mesh.gnuplot";
-  cout << "    Writing finest grid to <" << filename << ">... " << endl;
-  ofstream finest_mesh (filename.c_str());
-  GridOut().write_gnuplot (*tria, finest_mesh);
-  finest_mesh.close();
-
-  print_history (prm, refine_mode);
-  cout << endl << endl << endl;
-
-  dof->clear ();
-  delete equation;
-};
-
-
-template <int dim>
-void PoissonProblem<dim>::print_history (const ParameterHandler &prm,
-                                        const RefineMode refine_mode) const {
-  string filename(prm.get("Output base filename"));
-  filename += "history.";
-  switch (refine_mode) 
-    {
-      case global:
-           filename += "global.";
-           break;
-      case true_error:
-           filename += "true_error.";
-           break;
-      case error_estimator:
-           filename += "estimated_error.";
-           break;
-    };
-  filename += "gnuplot";
-  
-  cout << endl << "Printing convergence history to <" << filename << ">..."
-       << endl;
-  ofstream out(filename.c_str());
-  out << "# n_dofs    l2_error linfty_error "
-      << "h1_error estimated_error"
-      << endl;
-  for (unsigned int i=0; i<n_dofs.size(); ++i)
-    out << n_dofs[i]
-       << "    "
-       << l2_error[i] << "  "
-       << linfty_error[i] << "  "
-       << h1_error[i] << "  "
-       << estimated_error[i] << "  "
-       << endl;
-
-  double average_l2=0,
-     average_linfty=0,
-        average_h1=0,
-       average_est=0;
-  
-  for (unsigned int i=1; i<n_dofs.size(); ++i) 
-    {
-      average_l2 += l2_error[i]/l2_error[i-1];
-      average_linfty += linfty_error[i]/linfty_error[i-1];
-      average_h1 += h1_error[i]/h1_error[i-1];
-      average_est += estimated_error[i]/estimated_error[i-1];
-    };
-
-  average_l2 /= (l2_error.size()-1);
-  average_linfty /= (l2_error.size()-1);
-  average_h1 /= (l2_error.size()-1);
-  average_est /= (l2_error.size()-1);
-
-  cout << "Average error reduction rates for h->h/2:" << endl;
-  cout << "    L2 error         : " << 1./average_l2 << endl
-       << "    Linfty error     : " << 1./average_linfty << endl
-       << "    H1 error         : " << 1./average_h1 << endl
-       << "    Estimated error  : " << 1./average_est << endl;
-};
-
-
-
-
-int main (int argc, char **argv) {
-  if (argc!=2) 
-    {
-      cout << "Usage: error-estimation parameterfile" << endl << endl;
-      return 1;
-    };
-
-  PoissonProblem<2> poisson;
-  MultipleParameterLoop input_data;
-
-  poisson.declare_parameters(input_data);
-  input_data.read_input (argv[1]);
-  input_data.loop (poisson);
-  
-  return 0;
-};
-
-
-
diff --git a/deal.II/deal.II/Attic/examples/error-estimation/make_ps b/deal.II/deal.II/Attic/examples/error-estimation/make_ps
deleted file mode 100644 (file)
index 5c06b6c..0000000
+++ /dev/null
@@ -1,94 +0,0 @@
-set xlabel "Number of degrees of freedom"
-set ylabel "Error"
-set data style linespoints
-set logscale xy
-
-set term postscript eps
-
-
-set output "data-gauss/history.global.eps"
-
-plot "data-gauss/history.global.gnuplot" using 1:2 title "L2 error","data-gauss/history.global.gnuplot" using 1:3 title "Linfty error","data-gauss/history.global.gnuplot" using 1:4 title "H1 error","data-gauss/history.global.gnuplot" using 1:5 title "Estimated H1 error"
-
-
-set output "data-gauss/history.true_error.eps"
-
-plot "data-gauss/history.true_error.gnuplot" using 1:2 title "L2 error","data-gauss/history.true_error.gnuplot" using 1:3 title "Linfty error","data-gauss/history.true_error.gnuplot" using 1:4 title "H1 error","data-gauss/history.true_error.gnuplot" using 1:5 title "Estimated H1 error"
-
-
-set output "data-gauss/history.estimated_error.eps"
-
-plot "data-gauss/history.estimated_error.gnuplot" using 1:2 title "L2 error","data-gauss/history.estimated_error.gnuplot" using 1:3 title "Linfty error","data-gauss/history.estimated_error.gnuplot" using 1:4 title "H1 error","data-gauss/history.estimated_error.gnuplot" using 1:5 title "Estimated H1 error"
-
-
-set output "data-gauss/history.compare.eps"
-plot "data-gauss/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-gauss/history.true_error.gnuplot" using 1:2 title "ref. by true error -- L2 error", "data-gauss/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", 0.1/sqrt(x) title "O(h)", "data-gauss/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-gauss/history.true_error.gnuplot" using 1:4 title "ref. by true error -- H1 error", "data-gauss/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error", 0.04/x title "O(h^2)"
-
-
-
-
-
-set output "data-singular/history.global.eps"
-
-plot "data-singular/history.global.gnuplot" using 1:2 title "L2 error","data-singular/history.global.gnuplot" using 1:3 title "Linfty error","data-singular/history.global.gnuplot" using 1:4 title "H1 error","data-singular/history.global.gnuplot" using 1:5 title "Estimated H1 error"
-
-
-set output "data-singular/history.estimated_error.eps"
-
-plot "data-singular/history.estimated_error.gnuplot" using 1:2 title "L2 error","data-singular/history.estimated_error.gnuplot" using 1:3 title "Linfty error","data-singular/history.estimated_error.gnuplot" using 1:4 title "H1 error","data-singular/history.estimated_error.gnuplot" using 1:5 title "Estimated H1 error"
-
-
-set output "data-singular/history.compare.eps"
-plot "data-singular/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-singular/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", 1.1/x**0.33 title "O(h^2/3)", 2./sqrt(x) title "O(h)", "data-singular/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-singular/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error", 0.2/x**0.4 title "O(h^0.8)", 4./x title "O(h^2)"
-
-
-
-
-
-
-
-set output "data-kink/history.global.eps"
-
-plot "data-kink/history.global.gnuplot" using 1:2 title "L2 error","data-kink/history.global.gnuplot" using 1:3 title "Linfty error","data-kink/history.global.gnuplot" using 1:4 title "H1 error","data-kink/history.global.gnuplot" using 1:5 title "Estimated H1 error"
-
-
-set output "data-kink/history.estimated_error.eps"
-
-plot "data-kink/history.estimated_error.gnuplot" using 1:2 title "L2 error","data-kink/history.estimated_error.gnuplot" using 1:3 title "Linfty error","data-kink/history.estimated_error.gnuplot" using 1:4 title "H1 error","data-kink/history.estimated_error.gnuplot" using 1:5 title "Estimated H1 error"
-
-
-set output "data-kink/history.compare.eps"
-plot "data-kink/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-kink/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", 5/x**0.25 title "O(h^1/2)", 20/x**0.5 title "O(h)", "data-kink/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-kink/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error", 1.5/sqrt(x) title "O(h)", 20/x**0.95 title "O(h^1.8)"
-
-
-
-
-set parametric
-set data style lines
-set nologscale xy
-set size 0.7,1
-
-set output "data-gauss/finest_mesh.global.eps"
-plot "data-gauss/global.finest_mesh.gnuplot" title "Finest mesh"
-
-set output "data-gauss/finest_mesh.true_error.eps"
-plot "data-gauss/true_error.finest_mesh.gnuplot" title "Finest mesh"
-
-set output "data-gauss/finest_mesh.estimated_error.eps"
-plot "data-gauss/estimated_error.finest_mesh.gnuplot" title "Finest mesh"
-
-
-
-set output "data-singular/finest_mesh.global.eps"
-plot "data-singular/global.finest_mesh.gnuplot" title "Finest mesh"
-
-set output "data-singular/finest_mesh.estimated_error.eps"
-plot "data-singular/estimated_error.finest_mesh.gnuplot" title "Finest mesh"
-
-
-
-set output "data-kink/finest_mesh.global.eps"
-plot "data-kink/global.finest_mesh.gnuplot" title "Finest mesh"
-
-set output "data-kink/finest_mesh.estimated_error.eps"
-plot "data-kink/estimated_error.finest_mesh.gnuplot" title "Finest mesh"
diff --git a/deal.II/deal.II/Attic/examples/error-estimation/strip_comments b/deal.II/deal.II/Attic/examples/error-estimation/strip_comments
deleted file mode 100755 (executable)
index 779b6b1..0000000
+++ /dev/null
@@ -1 +0,0 @@
-perl -pi -e 's/^#.*$\\n//g' data-*/*.inp
diff --git a/deal.II/deal.II/Attic/examples/grid/Makefile b/deal.II/deal.II/Attic/examples/grid/Makefile
deleted file mode 100644 (file)
index 455e443..0000000
+++ /dev/null
@@ -1,178 +0,0 @@
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998, 1999, 2000
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target   = grid_test
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../..
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g   = $(lib-deal2-2d.g) \
-          $(lib-deal2-3d.g) \
-          $(lib-lac.g)      \
-           $(lib-base.g)
-libs.o   = $(lib-deal2-2d.o) \
-          $(lib-deal2-3d.o) \
-          $(lib-lac.o)      \
-           $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
-  libraries = $(target).go $(libs.g)
-  flags     = $(CXXFLAGS.g)
-else
-  libraries = $(target).go $(libs.o)
-  flags     = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
-  libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
-       @echo ============================ Linking $@
-       @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
-       @echo ============================ Running $<
-       ./$(target) 2 1
-       ./$(target) 2 2
-       ./$(target) 2 3
-       ./$(target) 2 4
-       ./$(target) 3 1
-       ./$(target) 3 2
-       ./$(target) 3 3
-       ./$(target) 3 4
-
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
-       -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
-       @echo ==============debug========= $(<F)
-       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
-       @echo ==============optimized===== $(<F)
-       @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-/h-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script.  Since the
-# script prefixes the output names by `lib/o' or `lib/go' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
-              $(shell echo $(include-path-base)/base/*.h    \
-                           $(include-path-lac)/lac/*.h     \
-                           $(include-path-deal2)/*/*.h)
-       @echo ============================ Remaking Makefile
-       @perl $D/common/scripts/make_dependencies.pl  $(INCLUDE) $(target).cc \
-               | perl -pi -e 's!lib/g?o/!!g;' \
-               > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
diff --git a/deal.II/deal.II/Attic/examples/grid/grid_test.cc b/deal.II/deal.II/Attic/examples/grid/grid_test.cc
deleted file mode 100644 (file)
index c5d4c08..0000000
+++ /dev/null
@@ -1,329 +0,0 @@
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-#include <grid/tria_boundary.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria.h>
-#include <grid/grid_generator.h>
-#include <grid/grid_out.h>
-#include <fstream>
-#include <string>
-#include <cmath>
-#include <cstdlib>
-
-
-
-// 1: continuous refinement of the unit square always in the middle
-// 2: refinement of the circle at the boundary
-// 2: refinement of a wiggled area at the boundary
-// 4: random refinement
-
-
-
-
-
-template <int dim>
-class Ball :
-  public StraightBoundary<dim> {
-  public:
-    virtual Point<dim>
-    get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const {
-      Point<dim> middle = StraightBoundary<dim>::get_new_point_on_line(line);
-      
-      for (int i=0; i<dim; ++i)
-       middle(i) -= .5;
-      middle *= sqrt(dim) / (sqrt(middle.square())*2);
-      for (int i=0; i<dim; ++i)
-       middle(i) += .5;
-      
-      return middle;
-    };
-
-    
-    virtual Point<dim>
-    get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const {
-      Point<dim> middle = StraightBoundary<dim>::get_new_point_on_quad(quad);
-      
-      for (int i=0; i<dim; ++i)
-       middle(i) -= .5;
-      middle *= sqrt(dim) / (sqrt(middle.square())*2);
-      for (int i=0; i<dim; ++i)
-       middle(i) += .5;
-      
-      return middle;
-    };
-};
-
-
-template <int dim>
-class CurvedLine :
-  public StraightBoundary<dim> {
-  public:
-    virtual Point<dim>
-    get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const;
-
-    virtual Point<dim>
-    get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const;
-};
-
-
-
-template <int dim>
-Point<dim>
-CurvedLine<dim>::get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const
-{
-  Point<dim> middle = StraightBoundary<dim>::get_new_point_on_line (line);
-
-                                  // if the line is at the top of bottom
-                                  // face: do a special treatment on
-                                  // this line. Note that if the
-                                  // z-value of the midpoint is either
-                                  // 0 or 1, then the z-values of all
-                                  // vertices of the line is like that
-  if (dim>=3)
-    if (((middle(2) == 0) || (middle(2) == 1))
-                                      // find out, if the line is in the
-                                      // interior of the top or bottom face
-                                      // of the domain, or at the edge.
-                                      // lines at the edge need to undergo
-                                      // the usual treatment, while for
-                                      // interior lines taking the midpoint
-                                      // is sufficient
-                                      //
-                                      // note: the trick with the boundary
-                                      // id was invented after the above was
-                                      // written, so we are not very strict
-                                      // here with using these flags
-       && (line->boundary_indicator() == 1))
-      return middle;
-
-
-  double x=middle(0),
-        y=middle(1);
-  
-  if (y<x)
-    if (y<1-x)
-      middle(1) = 0.04*sin(6*3.141592*middle(0));
-    else
-      middle(0) = 1+0.04*sin(6*3.141592*middle(1));
-  
-  else
-    if (y<1-x)
-      middle(0) = 0.04*sin(6*3.141592*middle(1));
-    else
-      middle(1) = 1+0.04*sin(6*3.141592*middle(0));
-  
-  return middle;
-};
-
-
-
-template <int dim>
-Point<dim>
-CurvedLine<dim>::get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const
-{
-  Point<dim> middle = StraightBoundary<dim>::get_new_point_on_quad (quad);
-
-                                  // if the face is at the top of bottom
-                                  // face: do not move the midpoint in
-                                  // x/y direction. Note that if the
-                                  // z-value of the midpoint is either
-                                  // 0 or 1, then the z-values of all
-                                  // vertices of the quad is like that
-  if ((middle(2) == 0) || (middle(2) == 1))
-    return middle;
-  
-  double x=middle(0),
-        y=middle(1);
-  
-  if (y<x)
-    if (y<1-x)
-      middle(1) = 0.04*sin(6*3.141592*middle(0));
-    else
-      middle(0) = 1+0.04*sin(6*3.141592*middle(1));
-  
-  else
-    if (y<1-x)
-      middle(0) = 0.04*sin(6*3.141592*middle(1));
-    else
-      middle(1) = 1+0.04*sin(6*3.141592*middle(0));
-  
-  return middle;
-};
-
-
-
-template <int dim>
-void test (const int test_case) {
-  cout << "Running testcase " << test_case
-       << " in " << dim << " dimensions." << endl;
-  Triangulation<dim> tria;
-  GridGenerator::hyper_cube(tria);
-  
-  if ((dim==1) && ((test_case==2) || (test_case==3)))
-    {
-      cout << "Impossible for this dimension." << endl;
-      return;
-    };
-
-  
-  switch (test_case) 
-    {
-      case 1: 
-      {
-                                        // we want to log the
-                                        // refinement history
-//     ofstream history ("mesh.history");
-       
-                                        // refine first cell
-       tria.begin_active()->set_refine_flag();
-//     tria.save_refine_flags (history);
-       tria.execute_coarsening_and_refinement ();
-       
-                                        // refine first active cell
-                                        // on coarsest level
-       tria.begin_active()->set_refine_flag ();
-//     tria.save_refine_flags (history);
-       tria.execute_coarsening_and_refinement ();
-
-       Triangulation<dim>::active_cell_iterator cell;
-       for (int i=0; i<17; ++i) 
-         {
-                                            // refine the presently
-                                            // second last cell 17
-                                            // times
-           cell = tria.last_active(tria.n_levels()-1);
-           --cell;
-           cell->set_refine_flag ();
-//         tria.save_refine_flags (history);
-           tria.execute_coarsening_and_refinement ();
-         };
-
-//     tria.refine_global (5);
-       
-       break;
-      }
-      
-      case 2:
-      case 3:
-      {
-       if (dim==3)
-         {
-           tria.begin_active()->face(2)->set_boundary_indicator(1);
-           tria.begin_active()->face(4)->set_boundary_indicator(1);
-         };
-       
-       
-                                        // set the boundary function
-       Ball<dim>       ball;
-       CurvedLine<dim> curved_line;
-       if (test_case==2)
-         {
-           tria.set_boundary (0, ball);
-           tria.set_boundary (1, ball);
-         } else {
-           tria.set_boundary (0, curved_line);
-           tria.set_boundary (1, curved_line);
-         };
-       
-                                        // refine once
-       tria.begin_active()->set_refine_flag();
-       tria.execute_coarsening_and_refinement ();
-       
-       Triangulation<dim>::active_cell_iterator cell, endc;
-       const unsigned int steps[4] = { 0, 10, 7, 2 };
-       for (unsigned int i=0; i<steps[dim]; ++i) 
-         {
-           cell = tria.begin_active();
-           endc = tria.end();
-           
-                                            // refine all
-                                            // boundary cells
-           for (; cell!=endc; ++cell)
-             if (cell->at_boundary())
-               cell->set_refine_flag();
-           
-           tria.execute_coarsening_and_refinement();
-         };
-
-       tria.set_boundary (0);
-       tria.set_boundary (1);
-       
-       break;
-      }
-
-      case 4:
-      {
-                                        // refine once
-       tria.begin_active()->set_refine_flag();
-       tria.execute_coarsening_and_refinement ();
-       
-       Triangulation<dim>::active_cell_iterator cell, endc;
-       for (int i=0; i<(dim==2 ? 13 : (dim==3 ? 7 : 30)); ++i) 
-         {
-           int n_levels = tria.n_levels();
-           cell = tria.begin_active();
-           endc = tria.end();
-
-           for (; cell!=endc; ++cell) 
-             {
-               double r      = rand()*1.0/RAND_MAX,
-                      weight = 1.*
-                               (cell->level()*cell->level()) /
-                               (n_levels*n_levels);
-               
-               if (r <= 0.5*weight)
-                 cell->set_refine_flag ();
-             };
-           
-           tria.execute_coarsening_and_refinement ();
-         };
-       break;  
-      }
-    };
-  
-  
-       
-                                  // output the grid
-  string filename("results/");
-  filename += ('0'+dim);
-  filename += "d.";
-  filename += ('0'+test_case);
-  filename += ".eps";
-  
-  ofstream out(filename.c_str());
-  GridOut grid_out;
-  GridOut::EpsFlags<3> eps_flags;
-  eps_flags.azimut_angle += 20;
-  eps_flags.turn_angle += 20;
-  grid_out.set_flags (eps_flags);
-  grid_out.write_eps (tria, out);
-    
-  cout << "     Total number of cells        = " << tria.n_cells() << endl
-       << "     Total number of active cells = " << tria.n_active_cells() << endl;
-};
-
-
-
-int main (int argc, char **argv) {
-  if (argc!=3) 
-    {
-      cout << "Usage: grid_test dimension testcase" << endl << endl
-          << "Dimension: 2 or 3" << endl << endl
-          << "Testcases:" << endl
-          << "  1: continuous refinement of the unit square/cube always in the middle" << endl
-          << "  2: refinement of the circle/sphere at the boundary" << endl
-          << "  3: refinement of a wiggled area at the boundary" << endl
-          << "  4: random refinement" << endl << endl;
-      return 1;
-    };
-
-  if (argv[1][0] == '2')
-    test<2> (argv[2][0]-'0');
-  else
-    test<3> (argv[2][0]-'0');
-
-  return 0;
-};
diff --git a/deal.II/deal.II/Attic/examples/grid/make_ps b/deal.II/deal.II/Attic/examples/grid/make_ps
deleted file mode 100644 (file)
index 21782a3..0000000
+++ /dev/null
@@ -1,43 +0,0 @@
-set size 0.721,1
-set data style lines
-set noxtics
-set noytics
-set noztics
-set noxzeroaxis
-set noyzeroaxis
-#set nozzeroaxis
-set nokey
-set term postscript eps
-
-!echo "  Making <results/2d.1.eps>"
-set output "results/2d.1.eps"
-plot "results/2d.1"
-
-!echo "  Making <results/2d.2.eps>"
-set output "results/2d.2.eps"
-plot "results/2d.2"
-
-!echo "  Making <results/2d.3.eps>"
-set output "results/2d.3.eps"
-plot "results/2d.3"
-
-!echo "  Making <results/2d.4.eps>"
-set output "results/2d.4.eps"
-plot "results/2d.4"
-
-
-!echo "  Making <results/3d.1.eps>"
-set output "results/3d.1.eps"
-splot "results/3d.1"
-
-!echo "  Making <results/3d.2.eps>"
-set output "results/3d.2.eps"
-splot "results/3d.2"
-
-!echo "  Making <results/3d.3.eps>"
-set output "results/3d.3.eps"
-splot "results/3d.3"
-
-!echo "  Making <results/3d.4.eps>"
-set output "results/3d.4.eps"
-splot "results/3d.4"
diff --git a/deal.II/deal.II/Attic/examples/multigrid/Makefile b/deal.II/deal.II/Attic/examples/multigrid/Makefile
deleted file mode 100644 (file)
index c0b78a5..0000000
+++ /dev/null
@@ -1,169 +0,0 @@
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998, 1999, 2000
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target   = multigrid
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../..
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g   = $(lib-deal2-2d.g) \
-          $(lib-lac.g)      \
-           $(lib-base.g)
-libs.o   = $(lib-deal2-2d.o) \
-          $(lib-lac.o)      \
-           $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
-  libraries = $(target).go $(libs.g)
-  flags     = $(CXXFLAGS.g)
-else
-  libraries = $(target).go $(libs.o)
-  flags     = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
-  libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
-       @echo ============================ Linking $@
-       @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
-       @echo ============================ Running $<
-       @./$(target)
-       gnuplot make_ps
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
-       -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
-       @echo ==============debug========= $(<F)
-       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
-       @echo ==============optimized===== $(<F)
-       @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-/h-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script.  Since the
-# script prefixes the output names by `lib/o' or `lib/go' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
-              $(shell echo $(include-path-base)/base/*.h    \
-                           $(include-path-lac)/lac/*.h     \
-                           $(include-path-deal2)/*/*.h)
-       @echo ============================ Remaking Makefile
-       @perl $D/common/scripts/make_dependencies.pl  $(INCLUDE) $(target).cc \
-               | perl -pi -e 's!lib/g?o/!!g;' \
-               > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
diff --git a/deal.II/deal.II/Attic/examples/multigrid/make_ps b/deal.II/deal.II/Attic/examples/multigrid/make_ps
deleted file mode 100644 (file)
index 76c13a8..0000000
+++ /dev/null
@@ -1,52 +0,0 @@
-set term postscript eps
-set xlabel "Number of degrees of freedom"
-set data style linespoints
-set logscale xy
-
-
-
-set ylabel "Error"
-
-set output "criss-cross.eps"
-
-plot "criss_cross.history" using 1:2 title "L1 error","criss_cross.history" using 1:3 title "L2 error","criss_cross.history" using 1:4 title "Linfty error","criss_cross.history" using 1:5 title "H1 seminorm error","criss_cross.history" using 1:6 title "H1 error"
-
-
-
-set output "linear.eps"
-
-plot "linear.history" using 1:2 title "L1 error","linear.history" using 1:3 title "L2 error","linear.history" using 1:4 title "Linfty error","linear.history" using 1:5 title "H1 seminorm error","linear.history" using 1:6 title "H1 error"
-
-
-
-set output "quadratic.eps"
-
-plot "quadratic.history" using 1:2 title "L1 error","quadratic.history" using 1:3 title "L2 error","quadratic.history" using 1:4 title "Linfty error","quadratic.history" using 1:5 title "H1 seminorm error","quadratic.history" using 1:6 title "H1 error"
-
-
-
-set output "cubic.eps"
-
-plot "cubic.history" using 1:2 title "L1 error","cubic.history" using 1:3 title "L2 error","cubic.history" using 1:4 title "Linfty error","cubic.history" using 1:5 title "H1 seminorm error","cubic.history" using 1:6 title "H1 error"
-
-
-
-set output "quartic.eps"
-
-plot "quartic.history" using 1:2 title "L1 error","quartic.history" using 1:3 title "L2 error","quartic.history" using 1:4 title "Linfty error","quartic.history" using 1:5 title "H1 seminorm error","quartic.history" using 1:6 title "H1 error"
-
-
-
-set output "l2error.eps"
-set ylabel "L2-error"
-
-plot "criss_cross.history" using 1:3 title "Criss-cross elements", "linear.history" using 1:3 title "Linear elements", "quadratic.history" using 1:3 title "Quadratic elements", "cubic.history" using 1:3 title "Cubic elements", "quartic.history" using 1:3 title "Quartic elements"
-
-
-
-set output "h1error.eps"
-set ylabel "H1-error"
-
-plot "criss_cross.history" using 1:6 title "Criss-cross elements", "linear.history" using 1:6 title "Linear elements", "quadratic.history" using 1:6 title "Quadratic elements", "cubic.history" using 1:6 title "Cubic elements", "quartic.history" using 1:6 title "Quartic elements"
-
-
diff --git a/deal.II/deal.II/Attic/examples/multigrid/multigrid.cc b/deal.II/deal.II/Attic/examples/multigrid/multigrid.cc
deleted file mode 100644 (file)
index efe706d..0000000
+++ /dev/null
@@ -1,515 +0,0 @@
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-
-#include <base/quadrature_lib.h>
-#include <base/function.h>
-#include <base/logstream.h>
-#include <lac/vector.h>
-#include <lac/full_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/solver_cg.h>
-#include <lac/vector_memory.h>
-#include <lac/precondition.h>
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <grid/grid_generator.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_boundary_lib.h>
-#include <dofs/dof_accessor.h>
-#include <dofs/dof_tools.h>
-#include <fe/fe_values.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
-#include <numerics/data_out.h>
-#include <fe/fe_lib.lagrange.h>
-#include <grid/grid_out.h>
-#include <dofs/dof_constraints.h>
-#include <numerics/error_estimator.h>
-
-#include <multigrid/mg_dof_handler.h>
-#include <multigrid/mg_dof_accessor.h>
-#include <multigrid/mg_dof_tools.h>
-#include <multigrid/mg_base.h>
-#include <multigrid/mg_smoother.h>
-#include <multigrid/multigrid.h>
-
-#include <lac/solver_richardson.h>
-
-#include <fstream>
-
-
-
-template <int dim>
-class LaplaceProblem 
-{
-  public:
-    LaplaceProblem ();
-    ~LaplaceProblem ();
-    void run ();
-    
-  private:
-    void setup_system ();
-    void assemble_system ();
-    void solve ();
-    void refine_grid ();
-    void output_results (const unsigned int cycle) const;
-
-    Triangulation<dim>   triangulation;
-    MGDoFHandler<dim>    mg_dof_handler;
-
-    FEQ1<dim>            fe;
-
-    ConstraintMatrix     hanging_node_constraints;
-
-    SparsityPattern      global_sparsity_pattern;
-    SparseMatrix<double> global_system_matrix;
-
-    MGLevelObject<SparsityPattern>       level_sparsity_patterns;
-    MGLevelObject<SparseMatrix<double> > level_system_matrices;
-    
-    Vector<double>       solution;
-    Vector<double>       system_rhs;
-};
-
-
-
-template <int dim>
-class Coefficient : public Function<dim> 
-{
-  public:
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-    
-    virtual void value_list (const vector<Point<dim> > &points,
-                            vector<double>            &values,
-                            const unsigned int         component = 0) const;
-};
-
-
-
-template <int dim>
-double Coefficient<dim>::value (const Point<dim> &p,
-                               const unsigned int) const 
-{
-  if (p.square() < 0.5*0.5)
-    return 20;
-  else
-    return 1;
-};
-
-
-
-template <int dim>
-void Coefficient<dim>::value_list (const vector<Point<dim> > &points,
-                                  vector<double>            &values,
-                                  const unsigned int component) const 
-{
-  const unsigned int n_points = points.size();
-
-  Assert (values.size() == n_points, 
-         ExcVectorHasWrongSize (values.size(), n_points));
-  
-  Assert (component == 0, 
-         ExcWrongComponent (component, 1));
-  
-  for (unsigned int i=0; i<n_points; ++i)
-    {
-      if (points[i].square() < 0.5*0.5)
-       values[i] = 20;
-      else
-       values[i] = 1;
-    };
-};
-
-
-
-
-class MGSmootherLAC : public MGSmootherBase
-{
-  private:
-    SmartPointer<MGLevelObject<SparseMatrix<double> > >matrices;
-  public:
-    MGSmootherLAC(MGLevelObject<SparseMatrix<double> >&);
-    
-    virtual void smooth (const unsigned int level,
-                        Vector<double> &u,
-                        const Vector<double> &rhs) const;    
-};
-
-
-MGSmootherLAC::MGSmootherLAC(MGLevelObject<SparseMatrix<double> >& matrix)
-               :
-               matrices(&matrix)
-{}
-
-
-void
-MGSmootherLAC::smooth (const unsigned int level,
-                      Vector<double> &u,
-                      const Vector<double> &rhs) const
-{
-  SolverControl control(2,1.e-300,false,false);
-  PrimitiveVectorMemory<> mem;
-  SolverRichardson<> rich(control, mem);
-  PreconditionRelaxation<>
-    prec((*matrices)[level], &SparseMatrix<double> ::template precondition_SSOR<double>, 1.);
-
-  rich.solve((*matrices)[level], u, rhs, prec);
-}
-
-
-
-template <int dim>
-LaplaceProblem<dim>::LaplaceProblem () :
-               mg_dof_handler (triangulation)
-{};
-
-
-
-template <int dim>
-LaplaceProblem<dim>::~LaplaceProblem () 
-{
-  mg_dof_handler.clear ();
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::setup_system ()
-{
-  mg_dof_handler.distribute_dofs (fe);
-
-  hanging_node_constraints.clear ();
-  DoFTools::make_hanging_node_constraints (mg_dof_handler,
-                                          hanging_node_constraints);
-  hanging_node_constraints.close ();
-  global_sparsity_pattern.reinit (mg_dof_handler.DoFHandler<dim>::n_dofs(),
-                                 mg_dof_handler.DoFHandler<dim>::n_dofs(),
-                                 mg_dof_handler.max_couplings_between_dofs());
-  DoFTools::make_sparsity_pattern (mg_dof_handler, global_sparsity_pattern);
-  hanging_node_constraints.condense (global_sparsity_pattern);
-  global_sparsity_pattern.compress();
-
-  global_system_matrix.reinit (global_sparsity_pattern);
-
-  solution.reinit (mg_dof_handler.DoFHandler<dim>::n_dofs());
-  system_rhs.reinit (mg_dof_handler.DoFHandler<dim>::n_dofs());
-
-
-  const unsigned int n_levels = triangulation.n_levels();
-  level_system_matrices.resize (0, n_levels);
-  level_sparsity_patterns.resize (0, n_levels);
-  
-  for (unsigned int level=0; level<n_levels; ++level) 
-    {
-      level_sparsity_patterns[level].reinit (mg_dof_handler.n_dofs(level),
-                                            mg_dof_handler.n_dofs(level),
-                                            mg_dof_handler.max_couplings_between_dofs()); //xxx
-      MGDoFTools::make_sparsity_pattern (mg_dof_handler,
-                                        level_sparsity_patterns[level],
-                                        level);
-      level_sparsity_patterns[level].compress();
-
-      level_system_matrices[level].reinit (level_sparsity_patterns[level]);
-    };
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::assemble_system () 
-{  
-  const Coefficient<dim> coefficient;
-
-  QGauss2<dim>  quadrature_formula;
-
-  FEValues<dim> fe_values (fe, quadrature_formula, 
-                          UpdateFlags(update_values    |
-                                      update_gradients |
-                                      update_q_points  |
-                                      update_JxW_values));
-
-  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int   n_q_points    = quadrature_formula.n_quadrature_points;
-
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       cell_rhs (dofs_per_cell);
-
-  vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-                                  // FIX
-  vector<double>       coefficient_values (n_q_points, 1.0);
-
-                                  // not only active cells
-  MGDoFHandler<dim>::cell_iterator cell = mg_dof_handler.begin(),
-                                  endc = mg_dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      cell_matrix.clear ();
-      cell_rhs.clear ();
-
-      fe_values.reinit (cell);
-      const FullMatrix<double> 
-       & shape_values = fe_values.get_shape_values();
-      const vector<vector<Tensor<1,dim> > >
-       & shape_grads  = fe_values.get_shape_grads();
-      const vector<double>
-       & JxW_values   = fe_values.get_JxW_values();
-      const vector<Point<dim> >
-       & q_points     = fe_values.get_quadrature_points();
-
-                                      // FIX
-//      coefficient.value_list (q_points, coefficient_values);
-      
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-       for (unsigned int i=0; i<dofs_per_cell; ++i)
-         {
-           for (unsigned int j=0; j<dofs_per_cell; ++j)
-             cell_matrix(i,j) += (coefficient_values[q_point] *
-                                  (shape_grads[i][q_point]    *
-                                   shape_grads[j][q_point] +
-                                   shape_values(i,q_point)    *
-                                   shape_values(j,q_point)  )   *
-                                  JxW_values[q_point]);
-
-           cell_rhs(i) += (shape_values (i,q_point) *
-                           sin(4*sqrt(q_points[q_point].square())) *
-                           fe_values.JxW (q_point));
-         };
-
-
-      cell->get_mg_dof_indices (local_dof_indices);
-      const unsigned int level = cell->level();
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       for (unsigned int j=0; j<dofs_per_cell; ++j)
-         level_system_matrices[level].add (local_dof_indices[i],
-                                           local_dof_indices[j],
-                                           cell_matrix(i,j));
-      
-                                      // if active, then also into
-                                      // global matrix
-      if (cell->active())
-       {
-         cell->get_dof_indices (local_dof_indices);
-         for (unsigned int i=0; i<dofs_per_cell; ++i)
-           {
-             for (unsigned int j=0; j<dofs_per_cell; ++j)
-               global_system_matrix.add (local_dof_indices[i],
-                                         local_dof_indices[j],
-                                         cell_matrix(i,j));
-             
-             system_rhs(local_dof_indices[i]) += cell_rhs(i);
-           };
-       };
-    };
-
-  hanging_node_constraints.condense (global_system_matrix);
-  hanging_node_constraints.condense (system_rhs);
-
-//    map<unsigned int,double> boundary_values;
-//    VectorTools::interpolate_boundary_values (mg_dof_handler,
-//                                         0,
-//                                         ZeroFunction<dim>(),
-//                                         boundary_values);
-//    MatrixTools<dim>::apply_boundary_values (boundary_values,
-//                                        global_system_matrix,
-//                                        solution,
-//                                        system_rhs);
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::solve () 
-{
-
-    {
-      SolverControl           solver_control (1000, 1e-12);
-      PrimitiveVectorMemory<> vector_memory;
-      SolverCG<>              cg (solver_control, vector_memory);
-
-      SolverControl           coarse_grid_solver_control (1000, 1e-12);
-      PrimitiveVectorMemory<> coarse_grid_vector_memory;
-      
-      SolverCG<>              coarse_grid_cg (coarse_grid_solver_control,
-                                             coarse_grid_vector_memory);
-      
-//        PreconditionRelaxation<>
-//     coarse_grid_solver_preconditioner(level_system_matrices[level_system_matrices.get_minlevel()],
-//                                       &SparseMatrix<double>::template precondition_SSOR<double>,
-//                                       1.2);
-      PreconditionIdentity coarse_grid_solver_preconditioner;
-      
-      MGCoarseGridLACIteration<SolverCG<>, SparseMatrix<double>, PreconditionIdentity>
-       coarse_grid_solver (coarse_grid_cg,
-                           level_system_matrices[level_system_matrices.get_minlevel()],
-                           coarse_grid_solver_preconditioner);
-      
-      MGSmootherLAC      smoother (level_system_matrices);
-      MGTransferPrebuilt grid_transfer;
-      grid_transfer.build_matrices (mg_dof_handler);
-      
-      Multigrid<2> multigrid (mg_dof_handler,
-                             hanging_node_constraints,
-                             level_sparsity_patterns,
-                             level_system_matrices,
-                             grid_transfer);
-      
-      PreconditionMG<Multigrid<2> >
-       mg_precondition (multigrid, smoother, smoother, coarse_grid_solver);
-
-      solution.clear ();
-      cg.solve (global_system_matrix, solution, system_rhs,
-               mg_precondition);
-
-      cout << "   MG Outer iterations:       " << solver_control.last_step()
-          << endl;
-
-      cout << "   MG Total inner iterations: " << coarse_grid_solver_control.last_step()
-          << endl;
-    };
-  
-    {
-      SolverControl           solver_control (1000, 1e-12);
-      PrimitiveVectorMemory<> vector_memory;
-      SolverCG<>              cg (solver_control, vector_memory);
-
-      PreconditionRelaxation<>
-       preconditioner(global_system_matrix,
-                      &SparseMatrix<double>::template precondition_SSOR<double>,
-                      1.2);
-      
-      solution.clear ();
-      cg.solve (global_system_matrix, solution, system_rhs,
-               preconditioner);
-      
-      cout << "   CG Outer iterations:       " << solver_control.last_step()
-          << endl;
-    };
-
-  hanging_node_constraints.distribute (solution);
-};
-
-
-template <int dim>
-void LaplaceProblem<dim>::refine_grid ()
-{
-  Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
-
-  KellyErrorEstimator<dim>::FunctionMap neumann_boundary;
-  KellyErrorEstimator<dim>::estimate (mg_dof_handler,
-                                     QGauss3<dim-1>(),
-                                     neumann_boundary,
-                                     solution,
-                                     estimated_error_per_cell);
-
-  triangulation.refine_and_coarsen_fixed_number (estimated_error_per_cell,
-                                                0.3, 0.03);
-  triangulation.execute_coarsening_and_refinement ();
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::output_results (const unsigned int cycle) const
-{
-  string filename = "grid-";
-  filename += ('0' + cycle);
-  Assert (cycle < 10, ExcInternalError());
-  
-  filename += ".eps";
-  ofstream output (filename.c_str());
-
-  GridOut grid_out;
-  grid_out.write_eps (triangulation, output);
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::run () 
-{
-  for (unsigned int cycle=0; cycle<8; ++cycle)
-    {
-      cout << "Cycle " << cycle << ':' << endl;
-
-      if (cycle == 0)
-       {
-         GridGenerator::hyper_cube (triangulation);
-         triangulation.refine_global (1);
-       }
-      else
-       {
-         refine_grid ();
-       };
-      
-
-      cout << "   Number of active cells:       "
-          << triangulation.n_active_cells()
-          << endl;
-
-      setup_system ();
-
-      cout << "   Number of degrees of freedom: "
-          << mg_dof_handler.DoFHandler<dim>::n_dofs()
-          << endl;
-      
-      assemble_system ();
-      solve ();
-      output_results (cycle);
-
-  DataOut<dim>::EpsFlags eps_flags;
-  eps_flags.z_scaling = 4;
-  
-  DataOut<dim> data_out;
-  data_out.set_flags (eps_flags);
-
-  data_out.attach_dof_handler (mg_dof_handler);
-  data_out.add_data_vector (solution, "solution");
-  data_out.build_patches ();
-  
-  ofstream output ("final-solution.eps");
-  data_out.write_eps (output);
-    };
-};
-
-
-    
-int main () 
-{
-  try
-    {
-      deallog.depth_console (0);
-
-      LaplaceProblem<2> laplace_problem_2d;
-      laplace_problem_2d.run ();
-    }
-  catch (exception &exc)
-    {
-      cerr << endl << endl
-          << "----------------------------------------------------"
-          << endl;
-      cerr << "Exception on processing: " << endl
-          << exc.what() << endl
-          << "Aborting!" << endl
-          << "----------------------------------------------------"
-          << endl;
-      return 1;
-    }
-  catch (...) 
-    {
-      cerr << endl << endl
-          << "----------------------------------------------------"
-          << endl;
-      cerr << "Unknown exception!" << endl
-          << "Aborting!" << endl
-          << "----------------------------------------------------"
-          << endl;
-      return 1;
-    };
-
-  return 0;
-};
diff --git a/deal.II/deal.II/Attic/examples/nonlinear/fixed-point-iteration/Makefile b/deal.II/deal.II/Attic/examples/nonlinear/fixed-point-iteration/Makefile
deleted file mode 100644 (file)
index 0010ae4..0000000
+++ /dev/null
@@ -1,133 +0,0 @@
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998
-
-# Template for makefiles for the examples subdirectory. In principle,
-# everything should be done automatically if you set the target file
-# here correctly:
-target   = nonlinear
-
-# All dependencies between files should be updated by the included
-# file Makefile.dep if necessary. Object files are compiled into
-# the archives ./Obj.a and ./Obj.g.a. By default, the debug version
-# is used to link. It you don't like that, change the following
-# variable to "off"
-debug-mode = off
-
-# If you want your program to be linked with extra object or library
-# files, specify them here:
-user-libs =
-
-# To run the program, use "make run"; to give parameters to the program,
-# give the parameters to the following variable:
-run-parameters  = $(target).prm
-
-# To execute additional action apart from running the program, fill
-# in this list:
-additional-run-action = gnuplot make_ps
-
-# To specify which files are to be deleted by "make clean" (apart from
-# the usual ones: object files, executables, backups, etc), fill in the
-# following list
-delete-files = gnuplot* *.eps
-
-
-
-
-###############################################################################
-# Internals
-
-#deal include base path
-D = ../../../..
-
-include ../../../Make.global_options
-
-
-
-# get lists of files we need
-cc-files    = $(filter-out *%, $(shell echo *.cc))
-o-files     = $(cc-files:.cc=.o)
-go-files    = $(cc-files:.cc=.go)
-h-files     = $(filter-out *%, $(shell echo *.h))
-lib-h-files = $(filter-out *%, $(shell echo ../../include/*.h))
-
-# list of libraries needed to link with
-libs.g   = ./Obj.g.a         \
-           $(lib-deal2-2d.g) \
-          $(lib-lac.g)      \
-           $(lib-base.g)
-libs     = ./Obj.a           \
-           $(lib-deal2-2d.o) \
-          $(lib-lac.o)      \
-           $(lib-base.o)
-
-
-# check whether we use debug mode or not
-ifeq ($(debug-mode),on)
-libraries = $(libs.g)
-flags     = $(CXXFLAGS.g)
-endif
-
-ifeq ($(debug-mode),off)
-libraries = $(libs)
-flags     = $(CXXFLAGS)
-endif
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
-  libraries += $(lib-ACE)
-endif
-
-
-# make rule for the target
-$(target) : $(libraries)
-       @echo ============================ Linking $@
-       @$(CXX) $(flags) -o $@ $^ $(user-libs)
-
-# rule how to run the program
-run: $(target)
-       $(target) $(run-parameters)
-       $(additional-run-action)
-
-
-# rule to make object files
-%.go : %.cc
-       @echo ============================ Compiling with debugging information:   $<
-       @echo $(CXX) ... -c $< -o $@
-       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
-       @echo ============================ Compiling with optimization:   $<
-       @echo $(CXX) ... -c $< -o $@
-       @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# rules which files the libraries depend upon
-Obj.a: ./Obj.a($(o-files))
-Obj.g.a: ./Obj.g.a($(go-files))
-
-
-clean:
-       -rm -f *.o *.go *~ Makefile.dep Obj.a Obj.g.a $(target) $(delete-files)
-
-
-
-.PHONY: clean
-
-
-#Rule to generate the dependency file. This file is
-#automagically remade whenever needed, i.e. whenever
-#one of the cc-/h-files changed. Make detects whether
-#to remake this file upon inclusion at the bottom
-#of this file.
-#
-#use perl to generate rules for the .go files as well
-#as to make rules not for tria.o and the like, but
-#rather for libnumerics.a(tria.o)
-Makefile.dep: $(cc-files) $(h-files) $(lib-h-files)
-       @echo ============================ Remaking Makefile
-       @perl ../../../Make_dep.pl ./Obj $(INCLUDE) $(cc-files) \
-               > Makefile.dep
-
-
-include Makefile.dep
-
diff --git a/deal.II/deal.II/Attic/examples/nonlinear/fixed-point-iteration/nonlinear.cc b/deal.II/deal.II/Attic/examples/nonlinear/fixed-point-iteration/nonlinear.cc
deleted file mode 100644 (file)
index 3015530..0000000
+++ /dev/null
@@ -1,253 +0,0 @@
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-
-
-#include <lac/vector.h>
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <grid/tria_accessor.h>
-#include <dofs/dof_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_boundary.h>
-#include <grid/grid_generator.h>
-#include <numerics/data_io.h>
-#include <base/function.h>
-#include <fe/fe_lib.lagrange.h>
-#include <base/quadrature_lib.h>
-#include <numerics/base.h>
-#include <numerics/assembler.h>
-#include <numerics/error_estimator.h>
-
-#include <map>
-#include <fstream>
-#include <cmath>
-#include <cstdlib>
-
-
-
-
-
-template <int dim>
-class RightHandSide :  public Function<dim> 
-{
-  public:
-    double value (const Point<dim> &p) const 
-      {
-       double x = 80;
-       for (unsigned int d=0; d<dim; ++d)
-         if (p(d) < 0.5)
-           x *= -p(d);
-         else
-           x *= (1-p(d));
-       
-       return x;
-      };
-};
-
-
-
-template <int dim>
-class PoissonEquation :  public Equation<dim> {
-  public:
-    PoissonEquation (const Function<dim>  &rhs,
-                    const Vector<double> &last_solution) :
-                   Equation<dim>(1),
-                   right_hand_side (rhs),
-                   last_solution(last_solution) {};
-
-    virtual void assemble (FullMatrix<double>  &cell_matrix,
-                          Vector<double>      &rhs,
-                          const FEValues<dim> &fe_values,
-                          const DoFHandler<dim>::cell_iterator &cell) const;
-    virtual void assemble (FullMatrix<double>  &cell_matrix,
-                          const FEValues<dim> &fe_values,
-                          const DoFHandler<dim>::cell_iterator &cell) const;
-    virtual void assemble (Vector<double>      &rhs,
-                          const FEValues<dim> &fe_values,
-                          const DoFHandler<dim>::cell_iterator &cell) const;
-  protected:
-    const Function<dim>  &right_hand_side;
-    const Vector<double> &last_solution;
-};
-
-
-
-
-
-
-template <int dim>
-class NonlinearProblem : public ProblemBase<dim> {
-  public:
-    NonlinearProblem ();
-    void run ();
-
-  protected:
-    Triangulation<dim> *tria;
-    DoFHandler<dim>    *dof;
-
-    Vector<double>      last_solution;
-};
-
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (FullMatrix<double>  &cell_matrix,
-                                    Vector<double>      &rhs,
-                                    const FEValues<dim> &fe_values,
-                                    const DoFHandler<dim>::cell_iterator &) const {
-  const vector<vector<Tensor<1,dim> > >&gradients = fe_values.get_shape_grads ();
-  const FullMatrix<double> &values    = fe_values.get_shape_values ();
-  vector<double>            rhs_values (fe_values.n_quadrature_points);
-  const vector<double> &weights   = fe_values.get_JxW_values ();
-  
-  vector<Tensor<1,dim> >   last_solution_grads(fe_values.n_quadrature_points);
-  fe_values.get_function_grads (last_solution, last_solution_grads);
-
-  
-  right_hand_side.value_list (fe_values.get_quadrature_points(), rhs_values);
-   
-  for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-    for (unsigned int i=0; i<fe_values.total_dofs; ++i) 
-      {
-       for (unsigned int j=0; j<fe_values.total_dofs; ++j)
-         cell_matrix(i,j) += (gradients[i][point] *
-                              gradients[j][point]) *
-                             weights[point] /
-                             sqrt(1+last_solution_grads[i]*last_solution_grads[i]);
-       rhs(i) += values(i,point) *
-                 rhs_values[point] *
-                 weights[point];
-      };
-};
-
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (FullMatrix<double>  &,
-                                    const FEValues<dim> &,
-                                    const DoFHandler<dim>::cell_iterator &) const {
-  Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (Vector<double>      &,
-                                    const FEValues<dim> &,
-                                    const DoFHandler<dim>::cell_iterator &) const {
-  Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-
-template <int dim>
-NonlinearProblem<dim>::NonlinearProblem () :
-               tria(0), dof(0) {};
-
-
-
-template <int dim>
-void NonlinearProblem<dim>::run () {
-
-                                  // first reset everything to a virgin state
-  clear ();
-  
-  tria = new Triangulation<dim>();
-  dof = new DoFHandler<dim> (tria);
-  set_tria_and_dof (tria, dof);
-
-
-  RightHandSide<dim>    rhs;
-  ZeroFunction<dim>     boundary_values;
-  StraightBoundary<dim> boundary;
-  
-  FELinear<dim>                   fe;
-  PoissonEquation<dim>            equation (rhs, last_solution);
-  QGauss2<dim>                    quadrature;
-  
-  ProblemBase<dim>::FunctionMap dirichlet_bc;
-  dirichlet_bc[0] = &boundary_values;
-
-
-  GridGenerator::hypercube (*tria);
-  tria->refine_global (4);
-
-  for (unsigned int refinement_step=0; refinement_step<10; ++refinement_step)
-    {
-      cout << "Refinement step " << refinement_step << endl
-          << "  Grid has " << tria->n_active_cells() << " active cells." << endl;
-  
-      cout << "    Distributing dofs... "; 
-      dof->distribute_dofs (fe);
-      cout << dof->n_dofs() << " degrees of freedom." << endl;
-      
-                                      // set the starting values for the iteration
-                                      // to a constant value of 1
-      last_solution.reinit (dof->n_dofs());
-      for (unsigned int i=0; i<dof->n_dofs(); ++i)
-       last_solution(i) = 1;
-  
-
-                                      // here comes the fixed point iteration
-      for (unsigned int nonlinear_step=0; nonlinear_step<10; ++nonlinear_step)
-       {
-         cout << "    Nonlinear step " << nonlinear_step << endl;
-         cout << "        Assembling matrices..." << endl;
-         assemble (equation, quadrature, fe,
-                   UpdateFlags(update_values | update_gradients |
-                               update_JxW_values | update_q_points),
-                   dirichlet_bc);
-         
-         cout << "        Solving..." << endl;
-         solve ();
-         
-         if (nonlinear_step % 2 == 0)
-           {
-             string filename = "nonlinear.";
-             filename += ('0' + refinement_step);
-             filename += '.';
-             filename += ('0' + (nonlinear_step/2));
-             filename += ".gnuplot";
-             cout << "        Writing to file <" << filename << ">..." << endl;
-             
-             DataOut<dim> out;
-             ofstream gnuplot(filename.c_str());
-             fill_data (out);
-             out.write_gnuplot (gnuplot);
-             gnuplot.close ();
-           };
-         
-         last_solution = solution;
-       };
-
-      Vector<float> error_indicator;
-      KellyErrorEstimator<dim> ee;
-      QSimpson<dim-1> eq;
-      ee.estimate_error (*dof, eq, fe,
-                        KellyErrorEstimator<dim>::FunctionMap(),
-                        solution,
-                        error_indicator);
-      tria->refine_and_coarsen_fixed_number (error_indicator, 0.3, 0);
-      tria->execute_coarsening_and_refinement ();
-    };
-  
-  
-  delete dof;
-  delete tria;
-  
-  cout << endl;
-};
-
-
-
-
-int main ()
-{
-  NonlinearProblem<2> problem;
-  problem.run ();
-};
diff --git a/deal.II/deal.II/Attic/examples/poisson/Makefile b/deal.II/deal.II/Attic/examples/poisson/Makefile
deleted file mode 100644 (file)
index 2c1e787..0000000
+++ /dev/null
@@ -1,134 +0,0 @@
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998
-
-# Template for makefiles for the examples subdirectory. In principle,
-# everything should be done automatically if you set the target file
-# here correctly:
-target   = poisson
-
-# All dependencies between files should be updated by the included
-# file Makefile.dep if necessary. Object files are compiled into
-# the archives ./Obj.a and ./Obj.g.a. By default, the debug version
-# is used to link. It you don't like that, change the following
-# variable to "off"
-debug-mode = on
-
-# If you want your program to be linked with extra object or library
-# files, specify them here:
-user-libs =
-
-# To run the program, use "make run"; to give parameters to the program,
-# give the parameters to the following variable:
-run-parameters  = $(target).prm
-
-# To execute additional action apart from running the program, fill
-# in this list:
-additional-run-action = cd results ; gnuplot make_ps
-
-# To specify which files are to be deleted by "make clean" (apart from
-# the usual ones: object files, executables, backups, etc), fill in the
-# following list
-delete-files = results/*gnuplot results/*.eps
-
-
-
-
-###############################################################################
-# Internals
-
-#deal include base path
-D = ../../..
-
-include $D/common/Make.global_options
-
-
-
-# get lists of files we need
-cc-files    = $(filter-out *%, $(shell echo *.cc))
-o-files     = $(cc-files:.cc=.o)
-go-files    = $(cc-files:.cc=.go)
-h-files     = $(filter-out *%, $(shell echo *.h))
-lib-h-files = $(filter-out *%, $(shell echo ../../include/*/*.h))
-
-# list of libraries needed to link with
-libs.g   = ./Obj.g.a         \
-           $(lib-deal2-2d.g) \
-          $(lib-lac.g)      \
-           $(lib-base.g)
-libs     = ./Obj.a           \
-           $(lib-deal2-2d.o) \
-          $(lib-lac.o)      \
-           $(lib-base.o)
-
-
-
-# check whether we use debug mode or not
-ifeq ($(debug-mode),on)
-libraries = $(libs.g)
-flags     = $(CXXFLAGS.g)
-endif
-
-ifeq ($(debug-mode),off)
-libraries = $(libs)
-flags     = $(CXXFLAGS)
-endif
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
-  libraries += $(lib-ACE)
-endif
-
-
-# make rule for the target
-$(target) : $(libraries)
-       @echo ============================ Linking $@
-       @$(CXX) $(flags) -o $@ $^ $(user-libs)
-
-# rule how to run the program
-run: $(target)
-       ./$(target) $(run-parameters)
-       $(additional-run-action)
-
-
-# rule to make object files
-%.go : %.cc
-       @echo ============================ Compiling with debugging information:   $<
-       @echo $(CXX) ... -c $< -o $@
-       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
-       @echo ============================ Compiling with optimization:   $<
-       @echo $(CXX) ... -c $< -o $@
-       @$(CXX) $(CXXFLAGS.o) -c $< -o $@
-
-
-# rules which files the libraries depend upon
-Obj.a: ./Obj.a($(o-files))
-Obj.g.a: ./Obj.g.a($(go-files))
-
-
-clean:
-       -rm -f *.o *.go *~ Makefile.dep Obj.a Obj.g.a $(target) $(delete-files)
-
-
-
-.PHONY: clean
-
-
-#Rule to generate the dependency file. This file is
-#automagically remade whenever needed, i.e. whenever
-#one of the cc-/h-files changed. Make detects whether
-#to remake this file upon inclusion at the bottom
-#of this file.
-#
-#use perl to generate rules for the .go files as well
-#as to make rules not for tria.o and the like, but
-#rather for libnumerics.a(tria.o)
-Makefile.dep: $(cc-files) $(h-files) $(lib-h-files)
-       @echo ============================ Remaking Makefile
-       @perl $D/common/scripts/Make_dep.pl ./Obj $(INCLUDE) $(cc-files) \
-               > Makefile.dep
-
-
-include Makefile.dep
-
diff --git a/deal.II/deal.II/Attic/examples/poisson/equation.cc b/deal.II/deal.II/Attic/examples/poisson/equation.cc
deleted file mode 100644 (file)
index 9610c7e..0000000
+++ /dev/null
@@ -1,86 +0,0 @@
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-#include "poisson.h"
-#include <lac/vector.h>
-
-
-
-#if deal_II_dimension == 1
-
-template <>
-void PoissonEquation<1>::assemble (FullMatrix<double>  &cell_matrix,
-                                  Vector<double>      &rhs,
-                                  const FEValues<1>   &fe_values,
-                                  const DoFHandler<1>::cell_iterator &) const {
-  for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-    for (unsigned int i=0; i<fe_values.total_dofs; ++i) 
-      {
-       for (unsigned int j=0; j<fe_values.total_dofs; ++j)
-         cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
-                              fe_values.shape_grad(j,point)) *
-                             fe_values.JxW(point);
-       rhs(i) += fe_values.shape_value(i,point) *
-                 right_hand_side(fe_values.quadrature_point(point)) *
-                 fe_values.JxW(point);
-      };
-};
-
-#endif
-
-
-
-//#if deal_II_dimension >= 2
-
-template <int dim>
-void PoissonEquation<dim>::assemble (FullMatrix<double>  &cell_matrix,
-                                    Vector<double>      &rhs,
-                                    const FEValues<dim> &fe_values,
-                                    const DoFHandler<dim>::cell_iterator &) const {
-  const vector<vector<Tensor<1,dim> > >&gradients = fe_values.get_shape_grads ();
-  const FullMatrix<double>            &values    = fe_values.get_shape_values ();
-  vector<double>        rhs_values (fe_values.n_quadrature_points);
-  const vector<double> &weights   = fe_values.get_JxW_values ();
-
-  right_hand_side.value_list (fe_values.get_quadrature_points(), rhs_values);
-   
-  for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-    for (unsigned int i=0; i<fe_values.dofs_per_cell; ++i) 
-      {
-       for (unsigned int j=0; j<fe_values.dofs_per_cell; ++j)
-         cell_matrix(i,j) += (gradients[i][point] *
-                              gradients[j][point]) *
-                             weights[point];
-       rhs(i) += values(i,point) *
-                 rhs_values[point] *
-                 weights[point];
-      };
-};
-
-//#endif
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (FullMatrix<double>  &,
-                                    const FEValues<dim> &,
-                                    const DoFHandler<dim>::cell_iterator &) const {
-  Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (Vector<double>      &,
-                                    const FEValues<dim> &,
-                                    const DoFHandler<dim>::cell_iterator &) const {
-  Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-
-
-
-template class PoissonEquation<2>;
diff --git a/deal.II/deal.II/Attic/examples/poisson/poisson.cc b/deal.II/deal.II/Attic/examples/poisson/poisson.cc
deleted file mode 100644 (file)
index bbfa784..0000000
+++ /dev/null
@@ -1,29 +0,0 @@
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-
-#include "poisson.h"
-#include <lac/vector.h>
-#include <base/logstream.h>
-
-
-int main (int argc, char **argv) {
-  if (argc!=2) 
-    {
-      cout << "Usage: poisson parameterfile" << endl << endl;
-      return 1;
-    };
-
-                                  // no additional output to console
-  deallog.depth_console (0);
-
-  PoissonProblem<2> poisson;
-  MultipleParameterLoop input_data;
-
-  poisson.declare_parameters(input_data);
-  input_data.read_input (argv[1]);
-  input_data.loop (poisson);
-  
-  return 0;
-};
diff --git a/deal.II/deal.II/Attic/examples/poisson/poisson.h b/deal.II/deal.II/Attic/examples/poisson/poisson.h
deleted file mode 100644 (file)
index ece30b3..0000000
+++ /dev/null
@@ -1,101 +0,0 @@
-/*----------------------------   poisson.h     ---------------------------*/
-/*      $Id$                 */
-/*      Copyright W. Bangerth, University of Heidelberg, 1998 */
-#ifndef __poisson_H
-#define __poisson_H
-/*----------------------------   poisson.h     ---------------------------*/
-
-
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <grid/tria_accessor.h>
-#include <dofs/dof_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_boundary.h>
-#include <dofs/dof_constraints.h>
-#include <numerics/data_io.h>
-#include <base/function.h>
-#include <base/parameter_handler.h>
-#include <fe/fe_lib.lagrange.h>
-#include <base/quadrature_lib.h>
-#include <numerics/base.h>
-#include <numerics/assembler.h>
-#include <lac/sparse_matrix.h>
-
-
-#include <map>
-#include <fstream>
-#include <cmath>
-#include <cstdlib>
-
-
-
-
-
-
-
-template <int dim>
-class PoissonEquation :  public Equation<dim> {
-  public:
-    PoissonEquation (const Function<dim> &rhs) :
-                   Equation<dim>(1),
-                   right_hand_side (rhs)  {};
-
-    virtual void assemble (FullMatrix<double>  &cell_matrix,
-                          Vector<double>      &rhs,
-                          const FEValues<dim> &fe_values,
-                          const DoFHandler<dim>::cell_iterator &cell) const;
-    virtual void assemble (FullMatrix<double>  &cell_matrix,
-                          const FEValues<dim> &fe_values,
-                          const DoFHandler<dim>::cell_iterator &cell) const;
-    virtual void assemble (Vector<double>      &rhs,
-                          const FEValues<dim> &fe_values,
-                          const DoFHandler<dim>::cell_iterator &cell) const;
-  protected:
-    const Function<dim> &right_hand_side;
-};
-
-
-
-
-
-
-template <int dim>
-class PoissonProblem : public ProblemBase<dim>,
-                      public MultipleParameterLoop::UserClass {
-  public:
-    PoissonProblem ();
-    virtual ~PoissonProblem();
-    
-    void clear ();
-    
-    virtual void create_new (const unsigned int run_no);
-    virtual void declare_parameters (ParameterHandler &prm);
-    virtual void run (ParameterHandler &prm);
-
-
-    bool make_grid (ParameterHandler &prm);
-    void make_zoom_in_grid ();
-    void make_random_grid ();
-
-    bool set_right_hand_side (ParameterHandler &prm);
-    bool set_boundary_values (ParameterHandler &prm);
-    
-  protected:
-    Triangulation<dim> *tria;
-    DoFHandler<dim>    *dof;
-    
-    Function<dim>      *rhs;
-    Function<dim>      *boundary_values;
-
-    Boundary<dim>      *boundary;
-};
-
-
-
-
-
-/*----------------------------   poisson.h     ---------------------------*/
-/* end of #ifndef __poisson_H */
-#endif
-/*----------------------------   poisson.h     ---------------------------*/
diff --git a/deal.II/deal.II/Attic/examples/poisson/poisson.prm b/deal.II/deal.II/Attic/examples/poisson/poisson.prm
deleted file mode 100644 (file)
index 434c6ff..0000000
+++ /dev/null
@@ -1,5 +0,0 @@
-set Test run          = { zoom in | ball | curved line | random | jump | L-region | slit domain}
-set Global refinement = {{ 2 | 5 | 6 | 0 | 3 | 5 | 5 }}
-set Right hand side   = {{ zero | zero | trigpoly | constant | zero | zero | poly }}
-set Boundary values   = {{ sine | sine | zero | zero | jump | sine | sine }}
-set Output file       = results/{{ zoom_in | ball | curved_line | random | jump | L-region | slit_domain }}.gnuplot
diff --git a/deal.II/deal.II/Attic/examples/poisson/problem.cc b/deal.II/deal.II/Attic/examples/poisson/problem.cc
deleted file mode 100644 (file)
index b5de827..0000000
+++ /dev/null
@@ -1,622 +0,0 @@
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-
-#include "poisson.h"
-#include <lac/vector.h>
-#include <grid/grid_generator.h>
-#include <grid/tria_boundary_lib.h>
-#include <numerics/data_out.h>
-
-
-template <int dim>
-class BoundaryValuesSine : public Function<dim> {
-  public:
-                                    /**
-                                     * Return the value of the function
-                                     * at the given point.
-                                     */
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component) const {
-      Assert (component==0, ExcIndexRange (component, 0, 1));
-
-      double x = 1;
-      
-      for (unsigned int i=0; i<dim; ++i)
-       x *= cos(2*3.1415926536*p(i));
-      return x;
-    };
-
-                                    /**
-                                     * Return the value of the function
-                                     * at the given point.
-                                     */
-    virtual void value (const Point<dim> &p,
-                       Vector<double>   &values) const {
-      Assert (values.size()==1, ExcVectorHasWrongSize (values.size(), 1));
-
-      double x = 1;
-      
-      for (unsigned int i=0; i<dim; ++i)
-       x *= cos(2*3.1415926536*p(i));
-
-      values(0) = x;
-    };
-    
-
-                                    /**
-                                     * Set #values# to the point values
-                                     * of the function at the #points#.
-                                     * It is assumed that #values# be
-                                     * empty.
-                                     */
-    virtual void value_list (const vector<Point<dim> > &points,
-                            vector<double>            &values,
-                            const unsigned int         component) const {
-      Assert (values.size() == points.size(),
-             ExcVectorHasWrongSize(values.size(), points.size()));
-      for (unsigned int i=0; i<points.size(); ++i) 
-       values[i] = BoundaryValuesSine<dim>::value (points[i], component);
-    };
-};
-
-
-
-template <int dim>
-class BoundaryValuesJump : public Function<dim> {
-  public:
-                                    /**
-                                     * Return the value of the function
-                                     * at the given point.
-                                     */
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component) const {
-      Assert (component==0, ExcIndexRange (component, 0, 1));
-      switch (dim) 
-       {
-         case 1:
-               return 0;
-         default:
-               if (p(0) == p(1))
-                 return 0.5;
-               else
-                 return (p(0)>p(1) ? 0. : 1.);
-       };
-    };
-};
-
-
-
-
-template <int dim>
-class RHSTrigPoly : public Function<dim> {
-  public:
-                                    /**
-                                     * Return the value of the function
-                                     * at the given point.
-                                     */
-    virtual double value (const Point<dim> &p,
-                         const unsigned int) const;
-};
-
-
-
-/**
-  Right hand side constructed such that the exact solution is
-  $x(1-x)$ in 1d, $x(1-x)*y(1-y)$ in 2d, etc.
-  */
-template <int dim>
-class RHSPoly : public Function<dim> {
-  public:
-                                    /**
-                                     * Return the value of the function
-                                     * at the given point.
-                                     */
-    virtual double value (const Point<dim> &p,
-                         const unsigned int) const;
-};
-
-
-
-
-
-
-
-
-
-template <int dim>
-class CurvedLine :
-  public StraightBoundary<dim> {
-  public:
-    virtual Point<dim>
-    get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const;
-
-    virtual Point<dim>
-    get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const;
-};
-
-
-
-template <int dim>
-Point<dim>
-CurvedLine<dim>::get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const
-{
-  Point<dim> middle = StraightBoundary<dim>::get_new_point_on_line (line);
-
-                                  // if the line is at the top of bottom
-                                  // face: do a special treatment on
-                                  // this line. Note that if the
-                                  // z-value of the midpoint is either
-                                  // 0 or 1, then the z-values of all
-                                  // vertices of the line is like that
-  if (dim>=3)
-    if (((middle(2) == 0) || (middle(2) == 1))
-                                      // find out, if the line is in the
-                                      // interior of the top or bottom face
-                                      // of the domain, or at the edge.
-                                      // lines at the edge need to undergo
-                                      // the usual treatment, while for
-                                      // interior lines taking the midpoint
-                                      // is sufficient
-                                      //
-                                      // note: the trick with the boundary
-                                      // id was invented after the above was
-                                      // written, so we are not very strict
-                                      // here with using these flags
-       && (line->boundary_indicator() == 1))
-      return middle;
-
-
-  double x=middle(0),
-        y=middle(1);
-  
-  if (y<x)
-    if (y<1-x)
-      middle(1) = 0.04*sin(6*3.141592*middle(0));
-    else
-      middle(0) = 1+0.04*sin(6*3.141592*middle(1));
-  
-  else
-    if (y<1-x)
-      middle(0) = 0.04*sin(6*3.141592*middle(1));
-    else
-      middle(1) = 1+0.04*sin(6*3.141592*middle(0));
-  
-  return middle;
-};
-
-
-
-template <int dim>
-Point<dim>
-CurvedLine<dim>::get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const
-{
-  Point<dim> middle = StraightBoundary<dim>::get_new_point_on_quad (quad);
-
-                                  // if the face is at the top of bottom
-                                  // face: do not move the midpoint in
-                                  // x/y direction. Note that if the
-                                  // z-value of the midpoint is either
-                                  // 0 or 1, then the z-values of all
-                                  // vertices of the quad is like that
-  if ((middle(2) == 0) || (middle(2) == 1))
-    return middle;
-  
-  double x=middle(0),
-        y=middle(1);
-  
-  if (y<x)
-    if (y<1-x)
-      middle(1) = 0.04*sin(6*3.141592*middle(0));
-    else
-      middle(0) = 1+0.04*sin(6*3.141592*middle(1));
-  
-  else
-    if (y<1-x)
-      middle(0) = 0.04*sin(6*3.141592*middle(1));
-    else
-      middle(1) = 1+0.04*sin(6*3.141592*middle(0));
-  
-  return middle;
-};
-
-
-
-
-template <int dim>
-double RHSTrigPoly<dim>::value (const Point<dim>   &p,
-                               const unsigned int  component) const {
-  Assert (component==0, ExcIndexRange (component, 0, 1));
-
-  const double pi = 3.1415926536;
-  switch (dim) 
-    {
-      case 1:
-           return p(0)*p(0)*cos(2*pi*p(0));
-      case 2:
-           return (-2.0*cos(pi*p(0)/2)*p(1)*sin(pi*p(1)) +
-                   2.0*p(0)*sin(pi*p(0)/2)*pi*p(1)*sin(pi*p(1)) +
-                   5.0/4.0*p(0)*p(0)*cos(pi*p(0)/2)*pi*pi*p(1)*sin(pi*p(1)) -
-                   2.0*p(0)*p(0)*cos(pi*p(0)/2)*cos(pi*p(1))*pi);
-      default:
-           return 0;
-    };
-};
-
-
-
-template <int dim>
-double RHSPoly<dim>::value (const Point<dim>   &p,
-                           const unsigned int  component) const {
-  Assert (component==0, ExcIndexRange (component, 0, 1));
-
-  double ret_val = 0;
-  for (unsigned int i=0; i<dim; ++i)
-    ret_val += 2*p(i)*(1.-p(i));
-  return ret_val;
-};
-
-
-
-
-
-template <int dim>
-PoissonProblem<dim>::PoissonProblem () :
-               tria(0), dof(0), rhs(0), boundary_values(0), boundary(0) {};
-
-
-
-template <int dim>
-PoissonProblem<dim>::~PoissonProblem () 
-{
-  clear ();
-};
-
-
-
-template <int dim>
-void PoissonProblem<dim>::clear () {  
-  if (dof != 0) {
-    delete dof;
-    dof = 0;
-  };
-
-  if (boundary != 0)
-    {
-      tria->set_boundary (0);
-      delete boundary;
-      boundary = 0;
-    };
-  
-  if (tria != 0) {
-    delete tria;
-    tria = 0;
-  };
-
-                                  // make it known to the underlying
-                                  // ProblemBase that tria and dof
-                                  // are already deleted
-  set_tria_and_dof (tria, dof);
-
-
-  if (rhs != 0) 
-    {
-      delete rhs;
-      rhs = 0;
-    };
-
-  if (boundary_values != 0) 
-    {
-      delete boundary_values;
-      boundary_values = 0;
-    };
-
-  ProblemBase<dim>::clear ();
-};
-
-
-
-
-template <int dim>
-void PoissonProblem<dim>::create_new (const unsigned int) {
-  clear ();
-  
-  tria = new Triangulation<dim>();
-  dof = new DoFHandler<dim> (*tria);
-  set_tria_and_dof (tria, dof);
-};
-
-
-
-
-template <int dim>
-void PoissonProblem<dim>::declare_parameters (ParameterHandler &prm) {
-  if (dim>=2)
-    prm.declare_entry ("Test run", "zoom in",
-                      Patterns::Selection("tensor|zoom in|ball|curved line|"
-                                         "random|jump|L-region|slit domain"));
-  else
-    prm.declare_entry ("Test run", "zoom in",
-                      Patterns::Selection("tensor|zoom in|random"));
-
-  prm.declare_entry ("Global refinement", "0",
-                    Patterns::Integer());
-  prm.declare_entry ("Right hand side", "zero",
-                    Patterns::Selection("zero|constant|trigpoly|poly"));
-  prm.declare_entry ("Boundary values", "zero",
-                    Patterns::Selection("zero|sine|jump"));
-  prm.declare_entry ("Output file", "gnuplot.1");
-};
-
-
-
-
-template <int dim>
-bool PoissonProblem<dim>::make_grid (ParameterHandler &prm) {
-  string test = prm.get ("Test run");
-  unsigned int test_case;
-  if (test=="zoom in") test_case = 1;
-  else
-    if (test=="ball") test_case = 2;
-    else
-      if (test=="curved line") test_case = 3;
-      else
-       if (test=="random") test_case = 4;
-       else
-         if (test=="tensor") test_case = 5;
-         else
-           if (test=="jump") test_case = 6;
-           else
-             if (test=="L-region") test_case = 7;
-             else
-               if (test=="slit domain") test_case = 8;
-               else
-                 {
-                   cerr << "This test seems not to be implemented!" << endl;
-                   return false;
-                 };
-
-  switch (test_case) 
-    {
-      case 1:
-           boundary = new StraightBoundary<dim>();
-           tria->set_boundary (0, *boundary);
-           make_zoom_in_grid ();
-           break;
-      case 2:
-                                            // make ball grid around origin with
-                                            // unit radius
-      {
-           static const Point<dim> origin;
-           boundary = new HyperBallBoundary<dim>(origin, 1.);
-           GridGenerator::hyper_ball (*tria, origin, 1.);
-           tria->set_boundary (0, *boundary);
-           break;
-      };
-      case 3:
-                                            // set the boundary function
-      {
-           boundary = new CurvedLine<dim>();
-           GridGenerator::hyper_cube (*tria);
-           tria->set_boundary (0, *boundary);
-           break;
-      };
-      case 4:
-           boundary = new StraightBoundary<dim>();
-           tria->set_boundary (0, *boundary);
-           make_random_grid ();
-           break;
-      case 5:
-           boundary = new StraightBoundary<dim>();
-           tria->set_boundary (0, *boundary);
-           GridGenerator::hyper_cube (*tria);
-           break;
-      case 6:
-           boundary = new StraightBoundary<dim>();
-           tria->set_boundary (0, *boundary);
-           GridGenerator::hyper_cube (*tria);
-           tria->refine_global (1);
-           for (unsigned int i=0; i<5; ++i)
-             {
-               tria->begin_active(tria->n_levels()-1)->set_refine_flag();
-               (--(tria->last_active()))->set_refine_flag();
-               tria->execute_coarsening_and_refinement ();
-             };
-           break;
-      case 7:
-           boundary = new StraightBoundary<dim>();
-           tria->set_boundary (0, *boundary);
-           GridGenerator::hyper_L (*tria);
-           break;
-      case 8:
-           boundary = new StraightBoundary<dim>();
-           tria->set_boundary (0, *boundary);
-           GridGenerator::hyper_cube_slit (*tria);         
-           break;
-      default:
-           return false;
-    };
-
-  int refine_global = prm.get_integer ("Global refinement");
-  if ((refine_global < 0) || (refine_global>10))
-    return false;
-  else
-    tria->refine_global (refine_global);
-
-  return true;
-};
-
-         
-
-
-template <int dim>
-void PoissonProblem<dim>::make_zoom_in_grid () {
-  GridGenerator::hyper_cube (*tria);
-  
-                                  // refine first cell
-  tria->begin_active()->set_refine_flag();
-  tria->execute_coarsening_and_refinement ();
-                                  // refine first active cell
-                                  // on coarsest level
-  tria->begin_active()->set_refine_flag ();
-  tria->execute_coarsening_and_refinement ();
-
-  Triangulation<dim>::active_cell_iterator cell;
-  for (int i=0; i<(dim==3 ? 5 : 17); ++i) 
-    {
-                                      // refine the presently
-                                      // second last cell several
-                                      // times
-      cell = tria->last_active(tria->n_levels()-1);
-      --cell;
-      cell->set_refine_flag ();
-      tria->execute_coarsening_and_refinement ();
-    };
-};
-
-
-
-
-template <int dim>
-void PoissonProblem<dim>::make_random_grid () {
-  GridGenerator::hyper_cube (*tria);
-  tria->refine_global (1);
-       
-  Triangulation<dim>::active_cell_iterator cell, endc;
-  for (int i=0; i<(dim==3 ? 7 : 12); ++i)
-    {
-      int n_levels = tria->n_levels();
-      cell = tria->begin_active();
-      endc = tria->end();
-      
-      for (; cell!=endc; ++cell) 
-       {
-         double r      = rand()*1.0/RAND_MAX,
-                weight = 1.*
-                         (cell->level()*cell->level()) /
-                         (n_levels*n_levels);
-         
-         if (r <= 0.5*weight)
-           cell->set_refine_flag ();
-       };
-      
-      tria->execute_coarsening_and_refinement ();
-    };
-};
-  
-
-
-
-template <int dim>
-bool PoissonProblem<dim>::set_right_hand_side (ParameterHandler &prm) {
-  string rhs_name = prm.get ("Right hand side");
-
-  if (rhs_name == "zero")
-    rhs = new ZeroFunction<dim>();
-  else
-    if (rhs_name == "constant")
-      rhs = new ConstantFunction<dim>(1.);
-    else
-      if (rhs_name == "trigpoly")
-       rhs = new RHSTrigPoly<dim>();
-      else
-       if (rhs_name == "poly")
-         rhs = new RHSPoly<dim> ();
-       else
-         return false;
-
-  if (rhs != 0)
-    return true;
-  else
-    return false;
-};
-
-
-
-template <int dim>
-bool PoissonProblem<dim>::set_boundary_values (ParameterHandler &prm) {
-  string bv_name = prm.get ("Boundary values");
-  
-  if (bv_name == "zero")
-    boundary_values = new ZeroFunction<dim> ();
-  else
-    if (bv_name == "sine")
-      boundary_values = new BoundaryValuesSine<dim> ();
-    else
-      if (bv_name == "jump")
-       boundary_values = new BoundaryValuesJump<dim> ();
-      else 
-       {
-         cout << "Unknown boundary value function " << bv_name << endl;
-         return false;
-       };
-
-  if (boundary_values != 0)
-    return true;
-  else
-    return false;
-};
-
-
-
-
-template <int dim>
-void PoissonProblem<dim>::run (ParameterHandler &prm) {
-  cout << "Test case = " << prm.get ("Test run")
-       << endl;
-  
-  cout << "    Making grid... ";
-  if (!make_grid (prm))
-    return;
-  cout << tria->n_active_cells() << " active cells." << endl;
-  
-  if (!set_right_hand_side (prm))
-    return;
-
-  if (!set_boundary_values (prm))
-    return;
-  
-  FEQ1<dim>                   fe;
-  PoissonEquation<dim>            equation (*rhs);
-  QGauss2<dim>                    quadrature;
-  
-  cout << "    Distributing dofs... "; 
-  dof->distribute_dofs (fe);
-  cout << dof->n_dofs() << " degrees of freedom." << endl;
-
-  cout << "    Assembling matrices..." << endl;
-  ProblemBase<dim>::FunctionMap dirichlet_bc;
-  dirichlet_bc[0] = boundary_values;
-  assemble (equation, quadrature,
-           UpdateFlags(update_values | update_gradients |
-                       update_JxW_values | update_q_points),
-           dirichlet_bc);
-
-  cout << "    Solving..." << endl;
-  solve ();
-
-  cout << "    Writing to file <" << prm.get("Output file") << ">..."
-       << endl;
-
-  DataOut<dim> out;
-  string o_filename = prm.get ("Output file");
-  ofstream gnuplot(o_filename.c_str());
-  out.attach_dof_handler (*dof_handler);
-  out.add_data_vector (solution, "solution");
-  out.build_patches ();
-  out.write_gnuplot (gnuplot);
-  gnuplot.close ();
-
-                                  // release the lock of the DoF object to
-                                  // the FE object
-  dof->clear ();
-  
-  cout << endl;
-};
-
-
-
-
-
-template class PoissonProblem<2>;
diff --git a/deal.II/deal.II/Attic/examples/poisson/results/make_ps b/deal.II/deal.II/Attic/examples/poisson/results/make_ps
deleted file mode 100644 (file)
index df05475..0000000
+++ /dev/null
@@ -1,38 +0,0 @@
-set data style lines
-set noxtics
-set noytics
-set noztics
-set nokey
-set para
-set hidden3d
-set term postscript eps
-
-!echo "  Making <zoom_in.eps>"
-set output "zoom_in.eps"
-splot "zoom_in.gnuplot"
-
-!echo "  Making <ball.eps>"
-set output "ball.eps"
-splot "ball.gnuplot"
-
-!echo "  Making <curved_line.eps>"
-set output "curved_line.eps"
-splot "curved_line.gnuplot"
-
-!echo "  Making <random.eps>"
-set output "random.eps"
-splot "random.gnuplot"
-
-!echo "  Making <jump.eps>"
-set output "jump.eps"
-splot "jump.gnuplot"
-
-!echo "  Making <L-region.eps>"
-set view 52,115
-set output "L-region.eps"
-splot "L-region.gnuplot"
-
-!echo "  Making <slit_domain.eps>"
-set view 52,115
-set output "slit_domain.eps"
-splot "slit_domain.gnuplot"
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/Makefile
deleted file mode 100644 (file)
index 6cf1272..0000000
+++ /dev/null
@@ -1,36 +0,0 @@
-# $Id$
-#
-# This Makefile only recurses into the subdirs
-
-
-# existing examples. take dirnames and strip 'step'
-steps = $(shell echo step-*)
-
-
-# default is: build all examples. for each example, there is a target
-# build-step-N, where N in [1...]
-default: $(addprefix build-,$(steps))
-
-# run example programs; make a target run-step-N for each N
-run: $(addprefix run-,$(steps))
-
-# clean subdirs; make a target clean-step-N for each N
-clean: $(addprefix clean-,$(steps))
-
-
-
-# for each build/run/clean target: strip the build- prefix of the
-# target and build in that directory
-build-step-%:
-       cd $(@:build-%=%) ; $(MAKE)
-run-step-%:
-       cd $(@:run-%=%) ; $(MAKE) run
-clean-step-%:
-       cd $(@:clean-%=%) ; $(MAKE) clean
-
-
-# all targets in this directory do not produce files, so they are
-# .PHONY:
-.PHONY: $(addprefix build-step-,$(steps)) \
-        $(addprefix run-step-,$(steps))   \
-        $(addprefix clean-step-,$(steps))
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-1/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-1/Makefile
deleted file mode 100644 (file)
index 4459137..0000000
+++ /dev/null
@@ -1,167 +0,0 @@
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g   = $(lib-deal2-2d.g) \
-          $(lib-lac.g)      \
-           $(lib-base.g)
-libs.o   = $(lib-deal2-2d.o) \
-          $(lib-lac.o)      \
-           $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
-  libraries = $(target).go $(libs.g)
-  flags     = $(CXXFLAGS.g)
-else
-  libraries = $(target).go $(libs.o)
-  flags     = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
-  libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
-       @echo ============================ Linking $@
-       @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
-       @echo ============================ Running $<
-       @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
-       -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
-       @echo ==============debug========= $(<F)
-       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
-       @echo ==============optimized===== $(<F)
-       @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script.  Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
-              $(shell echo $(include-path-base)/base/*.h    \
-                           $(include-path-lac)/lac/*.h      \
-                           $(include-path-deal2)/*/*.h)
-       @echo ============================ Remaking Makefile
-       @perl $D/common/scripts/make_dependencies.pl  $(INCLUDE) $(target).cc \
-               | perl -pi -e 's!lib/g?o/!!g;' \
-               > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-1/step-1.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-1/step-1.cc
deleted file mode 100644 (file)
index f2487ef..0000000
+++ /dev/null
@@ -1,228 +0,0 @@
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */
-
-                                 // The most fundamental class in the
-                                 // library is the ``Triangulation''
-                                 // class, which is declared here:
-#include <grid/tria.h>
-                                 // We need the following two includes
-                                 // for loops over cells and/or faces:
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-                                 // Here are some functions to
-                                 // generate standard grids:
-#include <grid/grid_generator.h>
-                                 // We would like to use boundaries
-                                 // which are not straight lines, so
-                                 // we import some classes which
-                                 // predefine some boundary
-                                 // descriptions:
-#include <grid/tria_boundary_lib.h>
-                                 // Output of grids in various
-                                 // graphics formats:
-#include <grid/grid_out.h>
-
-                                 // This is needed for C++ output:
-#include <fstream>
-
-
-
-                                 // In the following function, we
-                                 // simply use the unit square as
-                                 // domain and produce a globally
-                                 // refined grid from it.
-void first_grid ()
-{
-                                   // Define an object for a
-                                   // triangulation of a
-                                   // two-dimensional domain. Here and
-                                   // in many following cases, the
-                                   // string "<2>" after a class name
-                                   // indicates that this is an object
-                                   // that shall work in two space
-                                   // dimensions. Likewise, there are
-                                   // version working in one ("<1>")
-                                   // and three ("<3>") space
-                                   // dimensions, or for all
-                                   // dimensions. We will see such
-                                   // constructs in later examples,
-                                   // where we show how to program
-                                   // dimension independently.
-                                   // (At present, only one through
-                                   // three space dimensions are
-                                   // supported, but that is not a
-                                   // restriction. In case someone
-                                   // would like to implement four
-                                   // dimensional finite elements, for
-                                   // example for general relativity,
-                                   // this would be a straightforward
-                                   // thing.)
-  Triangulation<2> triangulation;
-  
-                                   // Fill it with a square
-  GridGenerator::hyper_cube (triangulation);
-  
-                                   // Refine all cells four times, to
-                                   // yield 4^4=256 cells in total
-  triangulation.refine_global (4);
-
-                                   // Now we want to write it to some
-                                   // output, here in postscript
-                                   // format
-  ofstream out ("grid-1.eps");
-  GridOut grid_out;
-  grid_out.write_eps (triangulation, out);
-};
-
-
-
-                                 // The grid in the following function
-                                 // is slightly more complicated in
-                                 // that we use a ring domain and
-                                 // refine the result once globally
-void second_grid ()
-{
-                                   // Define an object for a
-                                   // triangulation of a
-                                   // two-dimensional domain
-  Triangulation<2> triangulation;
-  
-                                   // Fill it with a ring domain. The
-                                   // center of the ring shall be the
-                                   // point (1,0), and inner and outer
-                                   // radius shall be 0.5 and 1. The
-                                   // number of circumferentical cells
-                                   // will be adjusted automatically
-                                   // by this function (in this case,
-                                   // there will be 10)
-  const Point<2> center (1,0);
-  const double inner_radius = 0.5,
-               outer_radius = 1.0;
-  GridGenerator::hyper_shell (triangulation,
-                              center, inner_radius, outer_radius);
-                                   // By default, the triangulation
-                                   // assumes that all boundaries are
-                                   // straight and given by the cells
-                                   // of the coarse grid (which we
-                                   // just created). Here, however, we
-                                   // would like to have a curved
-                                   // boundary. Furtunately, some good
-                                   // soul implemented an object which
-                                   // describes the boundary of a ring
-                                   // domain; it only needs the center
-                                   // of the ring and automatically
-                                   // figures out the inner and outer
-                                   // radius when needed. Note that we
-                                   // associate this boundary object
-                                   // with that part of the boundary
-                                   // that has the "boundary number"
-                                   // zero. By default, all boundary
-                                   // parts have this number, but you
-                                   // might want to change this number
-                                   // for some parts, and then the
-                                   // curved boundary thus associated
-                                   // with number zero will not apply
-                                   // there.
-  const HyperShellBoundary<2> boundary_description(center);
-  triangulation.set_boundary (0, boundary_description);
-  
-                                   // Now, just for the purpose of
-                                   // demonstration and for no
-                                   // particular reason, we will
-                                   // refine the grid in five steps
-                                   // towards the inner circle of the
-                                   // domain:
-  for (unsigned int step=0; step<5; ++step)
-    {
-                                       // Get an iterator which points
-                                       // to a cell and which we will
-                                       // move over all active cells
-                                       // one by one. Active cells are
-                                       // those that are not further
-                                       // refined
-      Triangulation<2>::active_cell_iterator cell, endc;
-      cell = triangulation.begin_active();
-      endc = triangulation.end();
-
-                                       // Now loop over all cells...
-      for (; cell!=endc; ++cell)
-                                         // ...and over all vertices
-                                         // of the cells. Note the
-                                         // dimension-independent way
-                                         // by which we find out about
-                                         // the number of faces of a
-                                         // cell
-        for (unsigned int vertex=0;
-             vertex < GeometryInfo<2>::vertices_per_cell;
-             ++vertex)
-          {
-                                             // If this cell is at the
-                                             // inner boundary, then
-                                             // at least one of its vertices
-                                             // must have a radial
-                                             // distance from the center
-                                             // of 0.5
-            const Point<2> vector_to_center
-              = (cell->vertex(vertex) - center);
-            const double distance_from_center
-              = sqrt(vector_to_center.square());
-            
-            if (fabs(distance_from_center - inner_radius) < 1e-10)
-              {
-                                                 // Ok, this is one of
-                                                 // the cells we were
-                                                 // looking for. Flag
-                                                 // it for refinement
-                                                 // and go to the next
-                                                 // cell by breaking
-                                                 // the loop over all
-                                                 // vertices
-                cell->set_refine_flag ();
-                break;
-              };
-          };
-
-                                       // Refine the cells which we
-                                       // have marked
-      triangulation.execute_coarsening_and_refinement ();
-    };
-  
-  
-                                   // Now we want to write it to some
-                                   // output, here in postscript
-                                   // format
-  ofstream out ("grid-2.eps");
-  GridOut grid_out;
-  grid_out.write_eps (triangulation, out);
-
-
-                                   // At this point, all objects
-                                   // created in this function will be
-                                   // destroyed in reverse
-                                   // order. Unfortunately, we defined
-                                   // the boundary object after the
-                                   // triangulation, which still has a
-                                   // pointer to it and the library
-                                   // will produce an error if the
-                                   // boundary object is destroyed
-                                   // before the triangulation. We
-                                   // therefore have to release it,
-                                   // which can be done as
-                                   // follows. Note that this sets the
-                                   // boundary object used for part
-                                   // "0" of the boundary back to a
-                                   // default object, over which the
-                                   // triangulation has full control.
-  triangulation.set_boundary (0);
-};
-
-
-
-                                 // Main function. Only call the two
-                                 // subfunctions, which produce the
-                                 // two grids.
-int main () 
-{
-  first_grid ();
-  second_grid ();
-};
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-2/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-2/Makefile
deleted file mode 100644 (file)
index 4459137..0000000
+++ /dev/null
@@ -1,167 +0,0 @@
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g   = $(lib-deal2-2d.g) \
-          $(lib-lac.g)      \
-           $(lib-base.g)
-libs.o   = $(lib-deal2-2d.o) \
-          $(lib-lac.o)      \
-           $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
-  libraries = $(target).go $(libs.g)
-  flags     = $(CXXFLAGS.g)
-else
-  libraries = $(target).go $(libs.o)
-  flags     = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
-  libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
-       @echo ============================ Linking $@
-       @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
-       @echo ============================ Running $<
-       @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
-       -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
-       @echo ==============debug========= $(<F)
-       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
-       @echo ==============optimized===== $(<F)
-       @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script.  Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
-              $(shell echo $(include-path-base)/base/*.h    \
-                           $(include-path-lac)/lac/*.h      \
-                           $(include-path-deal2)/*/*.h)
-       @echo ============================ Remaking Makefile
-       @perl $D/common/scripts/make_dependencies.pl  $(INCLUDE) $(target).cc \
-               | perl -pi -e 's!lib/g?o/!!g;' \
-               > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-2/step-2.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-2/step-2.cc
deleted file mode 100644 (file)
index 181571a..0000000
+++ /dev/null
@@ -1,361 +0,0 @@
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */
-
-                                // The following includes are just
-                                // like for the previous program, so
-                                // will not be commented further
-#include <grid/tria.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/grid_generator.h>
-#include <grid/tria_boundary_lib.h>
-
-                                // We need this include file for the
-                                // association of degrees of freedom
-                                // ("DoF"s) to vertices, lines, and
-                                // cells.
-#include <dofs/dof_handler.h>
-                                // The following include contains the
-                                // description of the bilinear finite
-                                // element, including the facts that
-                                // it has one degree of freedom on
-                                // each vertex of the triangulation,
-                                // but none on faces and none in the
-                                // interior of the cells.
-                                //
-                                // In fact, the file contains the
-                                // description of several more finite
-                                // elements as well, such as
-                                // biquadratic, bicubic and biquartic
-                                // elements, but not only for two
-                                // space dimensions, but also for one
-                                // and three dimensions.
-#include <fe/fe_lib.lagrange.h>
-                                // In the following file, several
-                                // tools for manipulating degrees of
-                                // freedom can be found:
-#include <dofs/dof_tools.h>
-                                // We will use a sparse matrix to
-                                // visualize the pattern of nonzero
-                                // entries resulting from the
-                                // distribution of degrees of freedom
-                                // on the grid. That class can be
-                                // found here:
-#include <lac/sparse_matrix.h>
-                                // We will want to use a special
-                                // algorithm to renumber degrees of
-                                // freedom. It is declared here:
-#include <numerics/dof_renumbering.h>
-
-                                // This is needed for C++ output:
-#include <fstream>
-
-
-
-                                // This is the function that produced
-                                // the circular grid in the previous
-                                // example. The sole difference is
-                                // that it returns the grid it
-                                // produces via its argument.
-                                //
-                                // We won't comment on the internals
-                                // of this function, since this has
-                                // been done in the previous
-                                // example. If you don't understand
-                                // what is happening here, look
-                                // there.
-void make_grid (Triangulation<2> &triangulation)
-{
-  const Point<2> center (1,0);
-  const double inner_radius = 0.5,
-              outer_radius = 1.0;
-  GridGenerator::hyper_shell (triangulation,
-                             center, inner_radius, outer_radius);
-
-                                  // This is the single difference to
-                                  // the respetive function in the
-                                  // previous program: since we want
-                                  // to export the triangulation
-                                  // through this function's
-                                  // parameter, we need to make sure
-                                  // that the boundary object lives
-                                  // at least as long as the
-                                  // triangulation does. However,
-                                  // since the boundary object is a
-                                  // local variable, it would be
-                                  // deleted at the end of this
-                                  // function, which is too early; by
-                                  // declaring it 'static', we can
-                                  // assure that it lives until the
-                                  // end of the program.
-  static const HyperShellBoundary<2> boundary_description(center);
-  triangulation.set_boundary (0, boundary_description);
-  
-  for (unsigned int step=0; step<5; ++step)
-    {
-      Triangulation<2>::active_cell_iterator cell, endc;
-      cell = triangulation.begin_active();
-      endc = triangulation.end();
-
-      for (; cell!=endc; ++cell)
-       for (unsigned int vertex=0;
-            vertex < GeometryInfo<2>::vertices_per_cell;
-            ++vertex)
-         {
-           const Point<2> vector_to_center
-             = (cell->vertex(vertex) - center);
-           const double distance_from_center
-             = sqrt(vector_to_center.square());
-           
-           if (fabs(distance_from_center - inner_radius) < 1e-10)
-             {
-               cell->set_refine_flag ();
-               break;
-             };
-         };
-
-      triangulation.execute_coarsening_and_refinement ();
-    };
-};
-
-
-                                // Up to now, we only have a grid,
-                                // i.e. some geometrical (the
-                                // position of the vertices and which
-                                // vertices make up which cell) and
-                                // some topological information
-                                // (neighborhoods of cells). To use
-                                // numerical algorithms, one needs
-                                // some logic information in addition
-                                // to that: we would like to
-                                // associate degree of freedom
-                                // numbers to each vertex (or line,
-                                // or cell, in case we were using
-                                // higher order elements) to later
-                                // generate matrices and vectors
-                                // which describe a finite element
-                                // field on the triangulation.
-void distribute_dofs (DoFHandler<2> &dof_handler) 
-{
-                                  // In order to associate degrees of
-                                  // freedom with features of a
-                                  // triangulation (vertices, lines,
-                                  // quadrilaterals), we need an
-                                  // object which describes how many
-                                  // degrees of freedom are to be
-                                  // associated to each of these
-                                  // objects. For (bi-, tri-)linear
-                                  // finite elements, this is done
-                                  // using the FEQ1 class, which
-                                  // states that one degree of
-                                  // freedom is to be assigned to
-                                  // each vertex, while there are
-                                  // none on lines and inside the
-                                  // quadrilateral. We first need to
-                                  // create an object of this class
-                                  // and use it to distribute the
-                                  // degrees of freedom. Note that
-                                  // the DoFHandler object will store
-                                  // a reference to this object, so
-                                  // we need to make it static as
-                                  // well, in order to prevent its
-                                  // preemptive
-                                  // destruction. (However, the
-                                  // library would warn us about this
-                                  // and exit the program if that
-                                  // occured. You can check this, if
-                                  // you want, by removing the
-                                  // 'static' declaration.)
-  static const FEQ1<2> finite_element;
-  dof_handler.distribute_dofs (finite_element);
-
-                                  // Now we have associated a number
-                                  // to each vertex, but how can we
-                                  // visualize this? Unfortunately,
-                                  // presently there is no way
-                                  // implemented to directly show the
-                                  // DoF number associated with each
-                                  // vertex. However, such
-                                  // information would hardly ever be
-                                  // truly important, since the
-                                  // numbering itself is more or less
-                                  // arbitrary. There are more
-                                  // important factors, of which we
-                                  // will visualize one in the
-                                  // following.
-                                  //
-                                  // Associated with each vertex of
-                                  // the triangulation is a shape
-                                  // function. Assume we want to
-                                  // solve something like Laplace's
-                                  // equation, then the different
-                                  // matrix entries will be the
-                                  // integrals over the gradient of
-                                  // each two such shape
-                                  // functions. Obviously, since the
-                                  // shape functions are not equal to
-                                  // zero only on the cells adjacent
-                                  // to the vertex they are
-                                  // associated to, matrix entries
-                                  // will be nonzero only of the
-                                  // supports of the shape functions
-                                  // associated to the column and row
-                                  // numbers intersect. This is only
-                                  // the case for adjacent shape
-                                  // functions, and therefore only
-                                  // for adjacent vertices. Now,
-                                  // since the vertices are numbered
-                                  // more or less randomly be the
-                                  // above function
-                                  // (distribute_dofs), the pattern
-                                  // of nonzero entries in the matrix
-                                  // will be somewhat ragged, and we
-                                  // will take a look at it now.
-                                  //
-                                  // First we have to create a
-                                  // structure which we use to store
-                                  // the places of nonzero
-                                  // elements. We have to give it the
-                                  // size of the matrix, which in our
-                                  // case will be square with that
-                                  // many rows and columns as there
-                                  // are degrees of freedom on the
-                                  // grid:
-  SparsityPattern sparsity_pattern (dof_handler.n_dofs(),
-                                   dof_handler.n_dofs());
-                                  // We fill it with the places where
-                                  // nonzero elements will be located
-                                  // given the present numbering of
-                                  // degrees of freedom:
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-                                  // Before further work can be done
-                                  // on the object, we have to allow
-                                  // for some internal
-                                  // reorganization:
-  sparsity_pattern.compress ();
-
-                                  // Now write the results to a file
-  ofstream out ("sparsity_pattern.1");
-  sparsity_pattern.print_gnuplot (out);
-                                  // The result is in GNUPLOT format,
-                                  // where in each line of the output
-                                  // file, the coordinates of one
-                                  // nonzero entry are listed. The
-                                  // output will be shown below.
-                                  //
-                                  // If you look at it, you will note
-                                  // that the sparsity pattern is
-                                  // symmetric, which is quite often
-                                  // so, unless you have a rather
-                                  // special equation you want to
-                                  // solve. You will also note that
-                                  // it has several distinct region,
-                                  // which stem from the fact that
-                                  // the numbering starts from the
-                                  // coarsest cells and moves on to
-                                  // the finer ones; since they are
-                                  // all distributed symmetrically
-                                  // around the origin, this shows up
-                                  // again in the sparsity pattern.
-};
-
-
-
-                                // In the sparsity pattern produced
-                                // above, the nonzero entries
-                                // extended quite far off from the
-                                // diagonal. For some algorithms,
-                                // this is unfavorable, and we will
-                                // show a simple way how to improve
-                                // this situation.
-                                //
-                                // Remember that for an entry (i,j)
-                                // in the matrix to be nonzero, the
-                                // supports of the shape functions i
-                                // and j needed to intersect
-                                // (otherwise in the integral, the
-                                // integrand would be zero everywhere
-                                // since either the one or the other
-                                // shape function is zero at some
-                                // point). However, the supports of
-                                // shape functions intersected only
-                                // of they were adjacent to each
-                                // other, so in order to have the
-                                // nonzero entries clustered around
-                                // the diagonal (where i equals j),
-                                // we would like to have adjacent
-                                // shape functions to be numbered
-                                // with indices (DoF numbers) that
-                                // differ not too much.
-                                //
-                                // This can be accomplished by a
-                                // simple front marching algorithm,
-                                // where one starts at a given vertex
-                                // and gives it the index zero. Then,
-                                // its neighbors are numbered
-                                // successively, making their indices
-                                // close to the original one. Then,
-                                // their neighbors, if not yet
-                                // numbered, are numbered, and so
-                                // on. One such algorithm is the one
-                                // by Cuthill and McKee, which is a
-                                // little more complicated, but works
-                                // along the same lines. We will use
-                                // it to renumber the degrees of
-                                // freedom such that the resulting
-                                // sparsity pattern is more localized
-                                // around the diagonal.
-void renumber_dofs (DoFHandler<2> &dof_handler) 
-{
-                                  // Renumber the degrees of freedom...
-  DoFRenumbering::Cuthill_McKee (dof_handler);
-                                  // ...regenerate the sparsity pattern...
-  SparsityPattern sparsity_pattern (dof_handler.n_dofs(),
-                                   dof_handler.n_dofs());
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-  sparsity_pattern.compress ();
-                                  // ...and output the result:
-  ofstream out ("sparsity_pattern.2");
-  sparsity_pattern.print_gnuplot (out);
-                                  // Again, the output is shown
-                                  // below. Note that the nonzero
-                                  // entries are clustered far better
-                                  // around the diagonal than
-                                  // before. This effect is even more
-                                  // distinguished for larger
-                                  // matrices (the present one has
-                                  // 1260 rows and columns, but large
-                                  // matrices often have several
-                                  // 100,000s).
-};
-
-
-
-
-                                // This is the main program, which
-                                // only calls the other functions in
-                                // their respective order.
-int main () 
-{
-                                  // Allocate space for a triangulation...
-  Triangulation<2> triangulation;
-                                  // ...and create it
-  make_grid (triangulation);
-
-                                  // A variable that will hold the
-                                  // information which vertex has
-                                  // which number. The geometric
-                                  // information is passed as
-                                  // parameter and a pointer to the
-                                  // triangulation will be stored
-                                  // inside the DoFHandler object.
-  DoFHandler<2> dof_handler (triangulation);
-                                  // Associate vertices and degrees
-                                  // of freedom.
-  distribute_dofs (dof_handler);
-
-                                  // Show the effect of renumbering
-                                  // of degrees of freedom to the
-                                  // sparsity pattern of the matrix.
-  renumber_dofs (dof_handler);
-};
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-3/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-3/Makefile
deleted file mode 100644 (file)
index 4459137..0000000
+++ /dev/null
@@ -1,167 +0,0 @@
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g   = $(lib-deal2-2d.g) \
-          $(lib-lac.g)      \
-           $(lib-base.g)
-libs.o   = $(lib-deal2-2d.o) \
-          $(lib-lac.o)      \
-           $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
-  libraries = $(target).go $(libs.g)
-  flags     = $(CXXFLAGS.g)
-else
-  libraries = $(target).go $(libs.o)
-  flags     = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
-  libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
-       @echo ============================ Linking $@
-       @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
-       @echo ============================ Running $<
-       @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
-       -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
-       @echo ==============debug========= $(<F)
-       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
-       @echo ==============optimized===== $(<F)
-       @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script.  Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
-              $(shell echo $(include-path-base)/base/*.h    \
-                           $(include-path-lac)/lac/*.h      \
-                           $(include-path-deal2)/*/*.h)
-       @echo ============================ Remaking Makefile
-       @perl $D/common/scripts/make_dependencies.pl  $(INCLUDE) $(target).cc \
-               | perl -pi -e 's!lib/g?o/!!g;' \
-               > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-3/step-3.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-3/step-3.cc
deleted file mode 100644 (file)
index 990d8e4..0000000
+++ /dev/null
@@ -1,829 +0,0 @@
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */
-
-                                // These include files are already
-                                // known to you. They declare the
-                                // classes which handle
-                                // triangulations and enumerate the
-                                // degrees of freedom.
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-                                // And this is the file in which the
-                                // functions are declared which
-                                // create grids.
-#include <grid/grid_generator.h>
-
-                                // The next three files contain
-                                // classes which are needed for loops
-                                // over all cells and to get the
-                                // information from the cell objects.
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <dofs/dof_accessor.h>
-
-                                // In this file are the finite
-                                // element descriptions.
-#include <fe/fe_lib.lagrange.h>
-
-                                // And this file is needed for the
-                                // creation of sparsity patterns of
-                                // sparse matrices, as shown in
-                                // previous examples:
-#include <dofs/dof_tools.h>
-
-                                // The next two file are needed for
-                                // assembling the matrix using
-                                // quadrature on each cell. The
-                                // classes declared in them will be
-                                // explained below.
-#include <fe/fe_values.h>
-#include <base/quadrature_lib.h>
-
-                                // The following three include files
-                                // we need for the treatment of
-                                // boundary values:
-#include <base/function.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
-
-                                // These include files are for the
-                                // linear algebra which we employ to
-                                // solve the system of equations
-                                // arising from the finite element
-                                // discretization of the Laplace
-                                // equation. We will use vectors and
-                                // full matrices for assembling the
-                                // system of equations locally on
-                                // each cell, and transfer the
-                                // results into a sparse matrix. We
-                                // will then use a Conjugate Gradient
-                                // solver to solve the problem, for
-                                // which we need a preconditioner (in
-                                // this program, we use the identity
-                                // preconditioner which does nothing,
-                                // but we need to include the file
-                                // anyway), and a class which
-                                // provides the solver with some
-                                // memory for temporary vectors.
-#include <lac/vector.h>
-#include <lac/full_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/solver_cg.h>
-#include <lac/vector_memory.h>
-#include <lac/precondition.h>
-
-                                // Finally, this is for output to a
-                                // file.
-#include <numerics/data_out.h>
-#include <fstream>
-
-
-                                // Instead of the procedural
-                                // programming of previous examples,
-                                // we encapsulate everything into a
-                                // class for this program. The class
-                                // consists of functions which do
-                                // certain aspects of a finite
-                                // element program, a `main' function
-                                // which controls what is done first
-                                // and what is done next, and a list
-                                // of member variables.
-class LaplaceProblem 
-{
-  public:
-                                    // This is the constructor:
-    LaplaceProblem ();
-
-                                    // And the top-level function,
-                                    // which is called from the
-                                    // outside to start the whole
-                                    // program (see the `main'
-                                    // function at the bottom of this
-                                    // file):
-    void run ();
-    
-                                    // Then there are some member
-                                    // functions that mostly do what
-                                    // their names suggest. Since
-                                    // they do not need to be called
-                                    // from outside, they are made
-                                    // private to this class.
-  private:
-    void make_grid_and_dofs ();
-    void assemble_system ();
-    void solve ();
-    void output_results () const;
-
-                                    // And then we have the member
-                                    // variables. There are variables
-                                    // describing the triangulation
-                                    // and the numbering of the
-                                    // degrees of freedom...
-    Triangulation<2>     triangulation;
-    FEQ1<2>              fe;
-    DoFHandler<2>        dof_handler;
-
-                                    // ...variables for the sparsity
-                                    // pattern and values of the
-                                    // system matrix resulting from
-                                    // the discretization of the
-                                    // Laplace equation...
-    SparsityPattern      sparsity_pattern;
-    SparseMatrix<double> system_matrix;
-
-                                    // ...and variables which will
-                                    // hold the right hand side and
-                                    // solution vectors.
-    Vector<double>       solution;
-    Vector<double>       system_rhs;
-};
-
-
-                                // Here comes the constructor. It
-                                // does not much more than associate
-                                // the dof_handler variable to the
-                                // triangulation we use. All the
-                                // other member variables of the
-                                // LaplaceProblem class have a
-                                // default constructor which does all
-                                // we want.
-LaplaceProblem::LaplaceProblem () :
-               dof_handler (triangulation)
-{};
-
-
-                                // Now, the first thing we've got to
-                                // do is to generate the
-                                // triangulation on which we would
-                                // like to do our computation and
-                                // number each vertex with a degree
-                                // of freedom. We have seen this in
-                                // the previous examples before. Then
-                                // we have to set up space for the
-                                // system matrix and right hand side
-                                // of the discretized problem. This
-                                // is what this function does:
-void LaplaceProblem::make_grid_and_dofs ()
-{
-                                  // First create the grid and refine
-                                  // all cells five times. Since the
-                                  // initial grid (which is the
-                                  // square [-1,1]x[-1,1]) consists
-                                  // of only one cell, the final grid
-                                  // has 32 times 32 cells, for a
-                                  // total of 1024.
-  GridGenerator::hyper_cube (triangulation, -1, 1);
-  triangulation.refine_global (5);
-                                  // Unsure that 1024 is the correct
-                                  // number? Let's see:
-                                  // n_active_cells return the number
-                                  // of terminal cells. By terminal
-                                  // we mean the cells on the finest
-                                  // grid.
-  cout << "Number of active cells: "
-       << triangulation.n_active_cells()
-       << endl;
-                                  // We stress the adjective
-                                  // `terminal' or `active', since
-                                  // there are more cells, namely the
-                                  // parent cells of the finest
-                                  // cells, their parents, etc, up to
-                                  // the one cell which made up the
-                                  // initial grid. Of course, on the
-                                  // next coarser level, the number
-                                  // of cells is one quarter that of
-                                  // the cells on the finest level,
-                                  // i.e. 256, then 64, 16, 4, and
-                                  // 1. We can get the total number
-                                  // of cells like this:
-  cout << "Total number of cells: "
-       << triangulation.n_cells()
-       << endl;
-                                  // Note the distinction between
-                                  // n_active_cells() and n_cells().
-  
-                                  // Next we enumerate all the
-                                  // degrees of freedom. This is done
-                                  // by using the distribute_dofs
-                                  // function, as we have seen in
-                                  // previous examples. Since we use
-                                  // the FEQ1 class, i.e. bilinear
-                                  // elements, this associates one
-                                  // degree of freedom with each
-                                  // vertex.
-  dof_handler.distribute_dofs (fe);
-
-                                  // Now that we have the degrees of
-                                  // freedom, we can take a look at
-                                  // how many there are:
-  cout << "Number of degrees of freedom: "
-       << dof_handler.n_dofs()
-       << endl;
-                                  // There should be one DoF for each
-                                  // vertex. Since we have a 32 times
-                                  // 32 grid, the number of DoFs
-                                  // should be 33 times 33, or 1089.
-
-                                  // As we have seen in the previous
-                                  // example, we set up a sparse
-                                  // matrix for the system matrix and
-                                  // tag those entries that might be
-                                  // nonzero. Since that has already
-                                  // been done, we won't discuss the
-                                  // next few lines:
-  sparsity_pattern.reinit (dof_handler.n_dofs(),
-                          dof_handler.n_dofs(),
-                          dof_handler.max_couplings_between_dofs());
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-  sparsity_pattern.compress();
-
-                                  // Now the sparsity pattern is
-                                  // built and fixed (after
-                                  // `compress' has been called, you
-                                  // can't add nonzero entries
-                                  // anymore; the sparsity pattern is
-                                  // `sealed', so to say), and we can
-                                  // initialize the matrix itself
-                                  // with it. Note that the
-                                  // SparsityPattern object does
-                                  // not hold the values of the
-                                  // matrix, it only stores the
-                                  // places where entries are. The
-                                  // entries are themselves stored in
-                                  // objects of type SparseMatrix, of
-                                  // which our variable system_matrix
-                                  // is one.
-                                  //
-                                  // The distinction between sparsity
-                                  // pattern and matrix was made to
-                                  // allow several matrices to use
-                                  // the same sparsity pattern. This
-                                  // may not seem relevant, but when
-                                  // you consider the size which
-                                  // matrices can have, and that it
-                                  // may take some time to build the
-                                  // sparsity pattern, this becomes
-                                  // important in large-scale
-                                  // problems.
-  system_matrix.reinit (sparsity_pattern);
-
-                                  // The last thing to do in this
-                                  // function is to set the sizes of
-                                  // the right hand side vector and
-                                  // the solution vector to the right
-                                  // values:
-  solution.reinit (dof_handler.n_dofs());
-  system_rhs.reinit (dof_handler.n_dofs());
-};
-
-
-                                // Now comes the difficult part:
-                                // assembling matrices and
-                                // vectors. In fact, this is not
-                                // overly difficult, but it is
-                                // something that the library can't
-                                // do for you as for most of the
-                                // other things in the functions
-                                // above and below.
-                                //
-                                // The general way to assemble
-                                // matrices and vectors is to loop
-                                // over all cells, and on each cell
-                                // compute the contribution of that
-                                // cell to the global matrix and
-                                // right hand side by quadrature. The
-                                // idea now is that since we only
-                                // need the finite element shape
-                                // functions on the quadrature points
-                                // of each cell, we don't need the
-                                // shape functions of the finite
-                                // element themselves any
-                                // more. Therefore, we won't deal
-                                // with the finite element object
-                                // `fe' (which was of type FEQ1), but
-                                // with another object which only
-                                // provides us with the values,
-                                // gradients, etc of the shape
-                                // functions at the quadrature
-                                // points. The objects which do this
-                                // are of type FEValues.
-void LaplaceProblem::assemble_system () 
-{
-                                  // Ok, let's start: we need a
-                                  // quadrature formula for the
-                                  // evaluation of the integrals on
-                                  // each cell. Let's take a Gauss
-                                  // formula with two quadrature
-                                  // points in each direction, i.e. a
-                                  // total of four points since we
-                                  // are in 2D. This quadrature
-                                  // formula integrates polynomials
-                                  // of degrees up to three exactly
-                                  // (in 1D). Since the integrands in
-                                  // the matrix entries are quadratic
-                                  // (in 1D), this is sufficient. The
-                                  // same holds for 2D.
-  QGauss2<2>  quadrature_formula;
-                                  // And we initialize the object
-                                  // which we have briefly talked
-                                  // about above. It needs to be told
-                                  // which the finite element is that
-                                  // we want to use, the quadrature
-                                  // points and their
-                                  // weights. Finally, we have to
-                                  // tell it what we want it to
-                                  // compute on each cell: we need
-                                  // the values of the shape
-                                  // functions at the quadrature
-                                  // points, their gradients, and
-                                  // also the weights of the
-                                  // quadrature points and the
-                                  // determinants of the Jacobian
-                                  // transformations from the unit
-                                  // cell to the real cells. The
-                                  // values of the shape functions
-                                  // computed by specifying
-                                  // update_values; the gradients are
-                                  // done alike, using
-                                  // update_gradients. The
-                                  // determinants of the Jacobians
-                                  // and the weights are always used
-                                  // together, so only the products
-                                  // (Jacobians times weights, or
-                                  // short JxW) are computed; since
-                                  // we also need them, we have to
-                                  // list them as well:
-  FEValues<2> fe_values (fe, quadrature_formula, 
-                        UpdateFlags(update_values    |
-                                    update_gradients |
-                                    update_JxW_values));
-
-                                  // For use further down below, we
-                                  // define two short cuts for the
-                                  // number of degrees of freedom on
-                                  // each cell (since we are in 2D
-                                  // and degrees of freedom are
-                                  // associated with vertices only,
-                                  // this number is four). We also
-                                  // define an abbreviation for the
-                                  // number of quadrature points
-                                  // (here that should be nine). In
-                                  // general, it is a good idea to
-                                  // use their symbolic names instead
-                                  // of hard-coding these number even
-                                  // if you know them, since you may
-                                  // want to change the quadrature
-                                  // formula and/or finite element at
-                                  // some time; the program will just
-                                  // work with these changes, without
-                                  // the need to change the matrix
-                                  // assemblage.
-                                  //
-                                  // The shortcuts, finally, are only
-                                  // defined to make the following
-                                  // loops a bit more readable. You
-                                  // will see them in many places in
-                                  // larger programs, and
-                                  // `dofs_per_cell' and `n_q_points'
-                                  // are more or less standard names
-                                  // for these purposes.
-  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int   n_q_points    = quadrature_formula.n_quadrature_points;
-
-                                  // Now, we said that we wanted to
-                                  // assemble the global matrix and
-                                  // vector cell-by-cell. We could
-                                  // write the results directly into
-                                  // the global matrix, but this is
-                                  // not very efficient since access
-                                  // to the elements of a sparse
-                                  // matrix is slow. Rather, we first
-                                  // compute the contribution of each
-                                  // ell in a small matrix with the
-                                  // degrees of freedom on the
-                                  // present cell, and only transfer
-                                  // them to the global matrix when
-                                  // the copmutations are finished
-                                  // for this cell. We do the same
-                                  // for the right hand side vector,
-                                  // although access times are not so
-                                  // problematic for them.
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       cell_rhs (dofs_per_cell);
-
-                                  // When assembling the
-                                  // contributions of each cell, we
-                                  // do this with the local numbering
-                                  // of the degrees of freedom
-                                  // (i.e. the number running from
-                                  // zero through
-                                  // dofs_per_cell-1). However, when
-                                  // we transfer the result into the
-                                  // global matrix, we have to know
-                                  // the global numbers of the
-                                  // degrees of freedom. When we get
-                                  // them, we need a scratch array
-                                  // for these numbers:
-  vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-                                  // Now for th loop over all
-                                  // cells. You have seen before how
-                                  // this works, so this should be
-                                  // familiar to you:
-  DoFHandler<2>::active_cell_iterator cell = dof_handler.begin_active(),
-                                     endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-                                      // We are on one cell, and we
-                                      // would like the values and
-                                      // gradients of the shape
-                                      // functions be computed, as
-                                      // well as the determinants of
-                                      // the Jacobian matrices of the
-                                      // mapping between unit cell
-                                      // and true cell, at the
-                                      // quadrature points. Since all
-                                      // these values depend on the
-                                      // geometry of the cell, we
-                                      // have to have the FEValues
-                                      // object re-compute them on
-                                      // each cell:
-      fe_values.reinit (cell);
-
-                                      // Reset the values of the
-                                      // contributions of this cell
-                                      // to global matrix and global
-                                      // right hand side to zero,
-                                      // before we fill them.
-      cell_matrix.clear ();
-      cell_rhs.clear ();
-
-                                      // Assemble the matrix: For the
-                                      // Laplace problem, the matrix
-                                      // on each cell is the integral
-                                      // over the gradients of shape
-                                      // function i and j. Since we
-                                      // do not integrate, but rather
-                                      // use quadrature, this is the
-                                      // sum over all quadrature
-                                      // points of the integrands
-                                      // times the determinant of the
-                                      // Jacobian matrix at the
-                                      // quadrature point times the
-                                      // weight of this quadrature
-                                      // point. You can get the
-                                      // gradient of shape function i
-                                      // at quadrature point q_point
-                                      // by using
-                                      // fe_values.shape_grad(i,q_point);
-                                      // this gradient is a
-                                      // 2-dimensional vector (in
-                                      // fact it is of type
-                                      // Tensor<1,dim>, with here
-                                      // dim=2) and the product of
-                                      // two such vectors is the
-                                      // scalar product, i.e. the
-                                      // product of the two
-                                      // shape_grad function calls is
-                                      // the dot product.
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       for (unsigned int j=0; j<dofs_per_cell; ++j)
-         for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-           cell_matrix(i,j) += (fe_values.shape_grad (i, q_point) *
-                                fe_values.shape_grad (j, q_point) *
-                                fe_values.JxW (q_point));
-
-                                      // We then do the same thing
-                                      // for the right hand
-                                      // side. Here, the integral is
-                                      // over the shape function i
-                                      // times the right hand side
-                                      // function, which we choose to
-                                      // be the function with
-                                      // constant value one (more
-                                      // interesting examples will be
-                                      // considered in the following
-                                      // programs). Again, we compute
-                                      // the integral by quadrature,
-                                      // which transforms the
-                                      // integral to a sum over all
-                                      // quadrature points of the
-                                      // value of the shape function
-                                      // at that point times the
-                                      // right hand side function
-                                      // (i.e. 1) times the Jacobian
-                                      // determinant times the weight
-                                      // of that quadrature point:
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-         cell_rhs(i) += (fe_values.shape_value (i, q_point) *
-                         1 *
-                         fe_values.JxW (q_point));
-
-                                      // Now that we have the
-                                      // contribution of this cell,
-                                      // we have to transfer it to
-                                      // the global matrix and right
-                                      // hand side. To this end, we
-                                      // first have to find out which
-                                      // global numbers the degrees
-                                      // of freedom on this cell
-                                      // have. Let's simply ask the
-                                      // cell for that information:
-      cell->get_dof_indices (local_dof_indices);
-
-                                      // Then again loop over all
-                                      // shape functions i and j and
-                                      // transfer the local elements
-                                      // to the global matrix. The
-                                      // global numbers can be
-                                      // obtained using
-                                      // local_dof_indices[i]:
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       for (unsigned int j=0; j<dofs_per_cell; ++j)
-         system_matrix.add (local_dof_indices[i],
-                            local_dof_indices[j],
-                            cell_matrix(i,j));
-
-                                      // And again, we do the same
-                                      // thing for the right hand
-                                      // side vector.
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       system_rhs(local_dof_indices[i]) += cell_rhs(i);
-    };
-
-
-                                  // Now almost everything is set up
-                                  // for the solution of the discrete
-                                  // system. However, we have not yet
-                                  // taken care of boundary values
-                                  // (in fact, Laplace's equation
-                                  // without Dirichlet boundary
-                                  // values is not even uniquely
-                                  // solvable, since you can add an
-                                  // arbitrary constant to the
-                                  // discrete solution). We therefore
-                                  // have to take into account
-                                  // boundary values.
-                                  //
-                                  // For this, we first obtain a list
-                                  // of the degrees of freedom on the
-                                  // boundary and the value the shape
-                                  // function shall have there. For
-                                  // simplicity, we only interpolate
-                                  // the boundary value function,
-                                  // rather than projecting them onto
-                                  // the boundary. There is a
-                                  // function in the library which
-                                  // does exactly this:
-                                  // interpolate_boundary_values. Its
-                                  // parameters are (omitting
-                                  // parameters for which default
-                                  // values exist which are
-                                  // sufficient here): the DoFHandler
-                                  // object to get the global numbers
-                                  // of the degrees of freedom on the
-                                  // boundary; the component of the
-                                  // boundary where the boundary
-                                  // values shall be interpolated;
-                                  // the boundary value function
-                                  // itself; and the output object.
-                                  //
-                                  // The component of the boundary is
-                                  // meant as follows: in many cases,
-                                  // you may want to impose certain
-                                  // boundary values only on parts of
-                                  // the boundary. For example, you
-                                  // may have inflow and outflow
-                                  // boundaries in fluid dynamics,
-                                  // are clamped and free parts of
-                                  // bodies in deformation
-                                  // computations of bodies. Then you
-                                  // will want to denote these
-                                  // different parts of the boundary
-                                  // by different numbers and tell
-                                  // the interpolate_boundary_values
-                                  // function to only compute the
-                                  // boundary values on a certain
-                                  // part of the boundary (e.g. the
-                                  // clamped part, or the inflow
-                                  // boundary). By default, all
-                                  // boundaries have the number `0',
-                                  // and since we have not changed
-                                  // that, this is still so;
-                                  // therefore, if we give `0' as the
-                                  // desired portion of the boundary,
-                                  // this means we get the whole
-                                  // boundary.
-                                  //
-                                  // The function describing the
-                                  // boundary values is an object of
-                                  // type `Function' or of a derived
-                                  // class. One of the derived
-                                  // classes is ZeroFunction, which
-                                  // described a function which is
-                                  // zero everywhere. We create such
-                                  // an object in-place and pass it
-                                  // to the
-                                  // interpolate_boundary_values
-                                  // function.
-                                  //
-                                  // Finally, the output object is a
-                                  // list of pairs of global degree
-                                  // of freedom numbers (i.e. the
-                                  // number of the degrees of freedom
-                                  // on the boundary) and their
-                                  // boundary values (which are zero
-                                  // here for all entries). This
-                                  // mapping of DoF numbers to
-                                  // boundary values is done by the
-                                  // `map' class.
-  map<unsigned int,double> boundary_values;
-  VectorTools::interpolate_boundary_values (dof_handler,
-                                           0,
-                                           ZeroFunction<2>(),
-                                           boundary_values);
-                                  // Now that we got the list of
-                                  // boundary DoFs and their
-                                  // respective boundary values,
-                                  // let's use them to modify the
-                                  // system of equations
-                                  // accordingly. This is done by the
-                                  // following function call:
-  MatrixTools<2>::apply_boundary_values (boundary_values,
-                                        system_matrix,
-                                        solution,
-                                        system_rhs);
-};
-
-
-                                // The following function simply
-                                // solves the discretized
-                                // equation. As the system is quite a
-                                // large one for direct solvers such
-                                // as Gauss elimination or LU
-                                // decomposition, we use a Conjugate
-                                // Gradient algorithm. You should
-                                // remember that the number of
-                                // variables here (only 1089) is a
-                                // very small number for finite
-                                // element computations, where
-                                // 100.000 is a more usual number;
-                                // for this number of variables,
-                                // direct methods are no longer
-                                // usable and you are forced to use
-                                // methods like CG.
-void LaplaceProblem::solve () 
-{
-                                  // We need to tell the algorithm
-                                  // where to stop. This is done by
-                                  // using a SolverControl object,
-                                  // and as stopping criterion we
-                                  // say: maximally 1000 iterations
-                                  // (which is far more than is
-                                  // needed for 1089 variables; see
-                                  // the results section to find out
-                                  // how many were really used), and
-                                  // stop if the norm of the residual
-                                  // is below 1e-12. In practice, the
-                                  // latter criterion will be the one
-                                  // which stops the iteration.
-  SolverControl           solver_control (1000, 1e-12);
-                                  // Furthermore, the CG algorithm
-                                  // needs some space for temporary
-                                  // vectors. Rather than allocating
-                                  // it on the stack or heap itself,
-                                  // it relies on helper objects,
-                                  // which can sometimes do a better
-                                  // job at this. The
-                                  // PrimitiveVectorMemory class is
-                                  // such a helper class which the
-                                  // solver can ask for memory. The
-                                  // angle brackets indicate that
-                                  // this class really takes a
-                                  // template parameter (here the
-                                  // data type of the vectors we
-                                  // use), which however has a
-                                  // default value, which is
-                                  // appropriate here.
-  PrimitiveVectorMemory<> vector_memory;
-                                  // Then we need the solver
-                                  // itself. The template parameters
-                                  // here are the matrix type and the
-                                  // type of the vectors. They
-                                  // default to the ones we use here.
-  SolverCG<>              cg (solver_control, vector_memory);
-
-                                  // Now solve the system of
-                                  // equations. The CG solver takes a
-                                  // preconditioner, but we don't
-                                  // want to use one, so we tell it
-                                  // to use the identity operation as
-                                  // preconditioner.
-  cg.solve (system_matrix, solution, system_rhs,
-           PreconditionIdentity());
-                                  // Now that the solver has done its
-                                  // job, the solution variable
-                                  // contains the nodal values of the
-                                  // solution function.
-};
-
-
-                                // The last part of a typical finite
-                                // element program is to output the
-                                // results and maybe do some
-                                // postprocessing (for example
-                                // compute the maximal stress values
-                                // at the boundary, or the average
-                                // flux across the outflow, etc). We
-                                // have no such postprocessing here,
-                                // but we would like to write the
-                                // solution to a file.
-void LaplaceProblem::output_results () const
-{
-                                  // To write the output to a file,
-                                  // we need an object which knows
-                                  // about output formats and the
-                                  // like. This is the DataOut class,
-                                  // and we need an object of that
-                                  // type:
-  DataOut<2> data_out;
-                                  // Now we have to tell it where to
-                                  // take the values from which it
-                                  // shall write. We tell it which
-                                  // DoFHandler object to use, and we
-                                  // add the solution vector (and the
-                                  // name by which it shall be
-                                  // written to disk) to the list of
-                                  // data that is to be written. If
-                                  // we had more than one vector
-                                  // which we would like to look at
-                                  // in the output (for example right
-                                  // hand sides, errors per cell,
-                                  // etc) we would add them as well:
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (solution, "solution");
-                                  // After the DataOut object knows
-                                  // which data it is to work on, we
-                                  // have to tell it to process them
-                                  // into something the backends can
-                                  // handle. The reason is that we
-                                  // have separated the frontend
-                                  // (which knows about how to treat
-                                  // DoFHandler objects and data
-                                  // vectors) from the backend (which
-                                  // knows several output formats)
-                                  // and use an intermediate data
-                                  // format to transfer data from the
-                                  // front- to the backend. The data
-                                  // is transformed into this
-                                  // intermediate format by the
-                                  // following function:
-  data_out.build_patches ();
-
-                                  // Now we have everything in place
-                                  // for the actual output. Just open
-                                  // a file and write the data into
-                                  // it, using GNUPLOT format (there
-                                  // are other functions which write
-                                  // their data in postscript, AVS,
-                                  // GMV, or some other format):
-  ofstream output ("solution.gpl");
-  data_out.write_gnuplot (output);
-};
-
-
-                                // The following function is the main
-                                // function which calls all the other
-                                // functions of the LaplaceProblem
-                                // class. The order in which this is
-                                // done resembles the order in which
-                                // most finite element programs
-                                // work. Since the names are mostly
-                                // self-explanatory, there is not
-                                // much to comment about:
-void LaplaceProblem::run () 
-{
-  make_grid_and_dofs ();
-  assemble_system ();
-  solve ();
-  output_results ();
-};
-
-    
-
-                                // This is the main function of the
-                                // program. Since the concept of a
-                                // main function is mostly a remnant
-                                // from the pre-object era in C/C++
-                                // programming, it often does not
-                                // much more than creating an object
-                                // of the top-level class and calling
-                                // it principle function. This is
-                                // what is done here as well.
-int main () 
-{
-  LaplaceProblem laplace_problem;
-  laplace_problem.run ();
-  return 0;
-};
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-4/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-4/Makefile
deleted file mode 100644 (file)
index bd4dad5..0000000
+++ /dev/null
@@ -1,169 +0,0 @@
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g   = $(lib-deal2-2d.g) \
-          $(lib-deal2-3d.g) \
-          $(lib-lac.g)      \
-           $(lib-base.g)
-libs.o   = $(lib-deal2-2d.o) \
-          $(lib-deal2-3d.o) \
-          $(lib-lac.o)      \
-           $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
-  libraries = $(target).go $(libs.g)
-  flags     = $(CXXFLAGS.g)
-else
-  libraries = $(target).go $(libs.o)
-  flags     = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
-  libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
-       @echo ============================ Linking $@
-       @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
-       @echo ============================ Running $<
-       @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
-       -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
-       @echo ==============debug========= $(<F)
-       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
-       @echo ==============optimized===== $(<F)
-       @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script.  Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
-              $(shell echo $(include-path-base)/base/*.h    \
-                           $(include-path-lac)/lac/*.h      \
-                           $(include-path-deal2)/*/*.h)
-       @echo ============================ Remaking Makefile
-       @perl $D/common/scripts/make_dependencies.pl  $(INCLUDE) $(target).cc \
-               | perl -pi -e 's!lib/g?o/!!g;' \
-               > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-4/step-4.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-4/step-4.cc
deleted file mode 100644 (file)
index bac3800..0000000
+++ /dev/null
@@ -1,607 +0,0 @@
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */
-
-                                // The first few (many?) include
-                                // files have already been used in
-                                // the previous example, so we will
-                                // not explain their meaning here
-                                // again.
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <grid/grid_generator.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <dofs/dof_accessor.h>
-#include <fe/fe_lib.lagrange.h>
-#include <dofs/dof_tools.h>
-#include <fe/fe_values.h>
-#include <base/quadrature_lib.h>
-#include <base/function.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
-#include <lac/vector.h>
-#include <lac/full_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/solver_cg.h>
-#include <lac/vector_memory.h>
-#include <lac/precondition.h>
-
-#include <numerics/data_out.h>
-#include <fstream>
-
-                                // This is new, however: in the
-                                // previous example we got some
-                                // unwanted output from the linear
-                                // solvers. If we want to suppress
-                                // it, we have to include this file
-                                // and add a line somewhere to the
-                                // program; in this program, it was
-                                // added to the main function.
-#include <base/logstream.h>
-
-
-
-                                // This is again the same
-                                // LaplaceProblem class as in the
-                                // previous example. The only
-                                // difference is that we have now
-                                // declared it as a class with a
-                                // template parameter, and the
-                                // template parameter is of course
-                                // the spatial dimension in which we
-                                // would like to solve the Laplace
-                                // equation. Of course, several of
-                                // the member variables depend on
-                                // this dimension as well, in
-                                // particular the Triangulation
-                                // class, which has to represent
-                                // quadrilaterals or hexahedra,
-                                // respectively. Apart from this,
-                                // everything is as before.
-template <int dim>
-class LaplaceProblem 
-{
-  public:
-    LaplaceProblem ();
-    void run ();
-    
-  private:
-    void make_grid_and_dofs ();
-    void assemble_system ();
-    void solve ();
-    void output_results () const;
-
-    Triangulation<dim>   triangulation;
-    FEQ1<dim>            fe;
-    DoFHandler<dim>      dof_handler;
-
-    SparsityPattern      sparsity_pattern;
-    SparseMatrix<double> system_matrix;
-
-    Vector<double>       solution;
-    Vector<double>       system_rhs;
-};
-
-
-                                // In the following, we declare two
-                                // more classes, which will represent
-                                // the functions of the
-                                // dim-dimensional space denoting the
-                                // right hand side and the
-                                // non-homogeneous Dirichlet boundary
-                                // values.
-                                //
-                                // Each of these classes is derived
-                                // from a common, abstract base class
-                                // Function, which declares the
-                                // common interface which all
-                                // functions have to follow. In
-                                // particular, concrete classes have
-                                // to overload the `value' function,
-                                // which takes a point in
-                                // dim-dimensional space as
-                                // parameters and shall return the
-                                // value at that point as a `double'
-                                // variable.
-                                //
-                                // The `value' function takes a
-                                // second argument, which we have
-                                // here named `component': This is
-                                // only meant for vector valued
-                                // functions, where you may want to
-                                // access a certain component of the
-                                // vector at the point `p'. However,
-                                // our functions are scalar, so we
-                                // need not worry about this
-                                // parameter and we will not use it
-                                // in the implementation of the
-                                // functions. Note that in the base
-                                // class (Function), the declaration
-                                // of the `value' function has a
-                                // default value of zero for the
-                                // component, so we will access the
-                                // `value' function of the right hand
-                                // side with only one parameter,
-                                // namely the point where we want to
-                                // evaluate the function.
-template <int dim>
-class RightHandSide : public Function<dim> 
-{
-  public:
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
-
-
-
-template <int dim>
-class BoundaryValues : public Function<dim> 
-{
-  public:
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
-
-
-
-
-                                // We wanted the right hand side
-                                // function to be 4*(x**4+y**4) in
-                                // 2D, or 4*(x**4+y**4+z**4) in
-                                // 3D. Unfortunately, this is not as
-                                // elegantly feasible dimension
-                                // independently as much of the rest
-                                // of this program, so we have to do
-                                // it using a small
-                                // loop. Fortunately, the compiler
-                                // knows the size of the loop at
-                                // compile time, i.e. the number of
-                                // times the body will be executed,
-                                // so it can optimize away the
-                                // overhead needed for the loop and
-                                // the result will be as fast as if
-                                // we had used the formulas above
-                                // right away.
-                                //
-                                // Note that the different
-                                // coordinates (i.e. `x', `y', ...)
-                                // of the point are accessed using
-                                // the () operator.
-template <int dim>
-double RightHandSide<dim>::value (const Point<dim> &p,
-                                 const unsigned int) const 
-{
-  double return_value = 0;
-  for (unsigned int i=0; i<dim; ++i)
-    return_value += 4*pow(p(i), 4);
-
-  return return_value;
-};
-
-
-                                // The boundary values were to be
-                                // chosen to be x*x+y*y in 2D, and
-                                // x*x+y*y+z*z in 3D. This happens to
-                                // be equal to the square of the
-                                // vector from the origin to the
-                                // point at which we would like to
-                                // evaluate the function,
-                                // irrespective of the dimension. So
-                                // that is what we return:
-template <int dim>
-double BoundaryValues<dim>::value (const Point<dim> &p,
-                                  const unsigned int) const 
-{
-  return p.square();
-};
-
-
-
-
-                                // This is the constructor of the
-                                // LaplaceProblem class. It
-                                // associates the DoFHandler to the
-                                // triangulation just as in the
-                                // previous example.
-template <int dim>
-LaplaceProblem<dim>::LaplaceProblem () :
-               dof_handler (triangulation)
-{};
-
-
-
-                                // Grid creation is something
-                                // inherently dimension
-                                // dependent. However, as long as the
-                                // domains are sufficiently similar
-                                // in 2D or 3D, the library can
-                                // abstract for you. In our case, we
-                                // would like to again solve on the
-                                // square [-1,1]x[-1,1] in 2D, or on
-                                // the cube [-1,1]x[-1,1]x[-1,1] in
-                                // 3D; both can be termed
-                                // ``hyper_cube'', so we may use the
-                                // same function in whatever
-                                // dimension we are. Of course, the
-                                // functions that create a hypercube
-                                // in two and three dimensions are
-                                // very much different, but that is
-                                // something you need not care
-                                // about. Let the library handle the
-                                // difficult things.
-                                //
-                                // Likewise, associating a degree of
-                                // freedom with each vertex is
-                                // something which certainly looks
-                                // different in 2D and 3D, but that
-                                // does not need to bother you. This
-                                // function therefore looks exactly
-                                // like in the previous example,
-                                // although it performs actions that
-                                // in their details are quite
-                                // different. The only significant
-                                // difference is the number of cells
-                                // resulting, which is much higher in
-                                // three than in two space
-                                // dimensions!
-template <int dim>
-void LaplaceProblem<dim>::make_grid_and_dofs ()
-{
-  GridGenerator::hyper_cube (triangulation, -1, 1);
-  triangulation.refine_global (4);
-  
-  cout << "   Number of active cells: "
-       << triangulation.n_active_cells()
-       << endl
-       << "   Total number of cells: "
-       << triangulation.n_cells()
-       << endl;
-
-  dof_handler.distribute_dofs (fe);
-
-  cout << "   Number of degrees of freedom: "
-       << dof_handler.n_dofs()
-       << endl;
-
-  sparsity_pattern.reinit (dof_handler.n_dofs(),
-                          dof_handler.n_dofs(),
-                          dof_handler.max_couplings_between_dofs());
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-  sparsity_pattern.compress();
-
-  system_matrix.reinit (sparsity_pattern);
-
-  solution.reinit (dof_handler.n_dofs());
-  system_rhs.reinit (dof_handler.n_dofs());
-};
-
-
-
-                                // Unlike in the previous example, we
-                                // would now like to use a
-                                // non-constant right hand side
-                                // function and non-zero boundary
-                                // values. Both are tasks that are
-                                // readily achieved with a only a few
-                                // new lines of code in the
-                                // assemblage of the matrix and right
-                                // hand side.
-                                //
-                                // More interesting, though, is they
-                                // way we assemble matrix and right
-                                // hand side vector dimension
-                                // independently: there is simply no
-                                // difference to the pure
-                                // two-dimensional case. Since the
-                                // important objects used in this
-                                // function (quadrature formula,
-                                // FEValues) depend on the dimension
-                                // by way of a template parameter as
-                                // well, they can take care of
-                                // setting up properly everything for
-                                // the dimension for which this
-                                // function is compiled. By declaring
-                                // all classes which might depend on
-                                // the dimension using a template
-                                // parameter, the library can make
-                                // nearly all work for you and you
-                                // don't have to care about most
-                                // things.
-template <int dim>
-void LaplaceProblem<dim>::assemble_system () 
-{  
-  QGauss2<dim>  quadrature_formula;
-
-                                  // We wanted to have a non-constant
-                                  // right hand side, so we use an
-                                  // object of the class declared
-                                  // above to generate the necessary
-                                  // data. Since this right hand side
-                                  // object is only used in this
-                                  // function, we only declare it
-                                  // here, rather than as a member
-                                  // variable of the LaplaceProblem
-                                  // class, or somewhere else.
-  const RightHandSide<dim> right_hand_side;
-
-                                  // Compared to the previous
-                                  // example, in order to evaluate
-                                  // the non-constant right hand side
-                                  // function we now also need the
-                                  // quadrature points on the cell we
-                                  // are presently on (previously,
-                                  // they were only needed on the
-                                  // unit cell, in order to compute
-                                  // the values and gradients of the
-                                  // shape function, which are
-                                  // defined on the unit cell
-                                  // however). We can tell the
-                                  // FEValues object to do for us by
-                                  // giving it the update_q_points
-                                  // flag:
-  FEValues<dim> fe_values (fe, quadrature_formula, 
-                          UpdateFlags(update_values    |
-                                      update_gradients |
-                                      update_q_points  |
-                                      update_JxW_values));
-
-                                  // Note that the following numbers
-                                  // depend on the dimension which we
-                                  // are presently using. However,
-                                  // the FE and Quadrature classes do
-                                  // all the necessary work for you
-                                  // and you don't have to care about
-                                  // the dimension dependent parts:
-  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int   n_q_points    = quadrature_formula.n_quadrature_points;
-
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       cell_rhs (dofs_per_cell);
-
-  vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-                                  // Note here, that a cell is a
-                                  // quadrilateral in two space
-                                  // dimensions, but a hexahedron in
-                                  // 3D. In fact, the
-                                  // active_cell_iterator data type
-                                  // is something different,
-                                  // depending on the dimension we
-                                  // are in, but to the outside world
-                                  // they look alike and you will
-                                  // probably never see a difference
-                                  // although they are totally
-                                  // unrelated.
-  DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
-                                       endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      fe_values.reinit (cell);
-      cell_matrix.clear ();
-      cell_rhs.clear ();
-
-                                      // Now we have to assemble the
-                                      // local matrix and right hand
-                                      // side. This is done exactly
-                                      // like in the previous
-                                      // example, but now we revert
-                                      // the order of the loops
-                                      // (which we can safely do
-                                      // since they are independent
-                                      // of each other) and merge the
-                                      // loops for the local matrix
-                                      // and the local vector as far
-                                      // as possible; this makes
-                                      // things a bit faster.
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-       for (unsigned int i=0; i<dofs_per_cell; ++i)
-         {
-           for (unsigned int j=0; j<dofs_per_cell; ++j)
-             cell_matrix(i,j) += (fe_values.shape_grad (i, q_point) *
-                                  fe_values.shape_grad (j, q_point) *
-                                  fe_values.JxW (q_point));
-
-                                            // Here is about the only
-                                            // difference to the
-                                            // previous example:
-                                            // instead of using a
-                                            // constant right hand
-                                            // side, we use the
-                                            // respective object and
-                                            // evaluate it at the
-                                            // quadrature points.
-           cell_rhs(i) += (fe_values.shape_value (i, q_point) *
-                           right_hand_side.value (fe_values.quadrature_point (q_point)) *
-                           fe_values.JxW (q_point));
-         };
-
-
-                                      // The transfer into the global
-                                      // matrix and right hand side
-                                      // is done exactly as before,
-                                      // but here we have again
-                                      // merged some loops for
-                                      // efficiency:
-      cell->get_dof_indices (local_dof_indices);
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       {
-         for (unsigned int j=0; j<dofs_per_cell; ++j)
-           system_matrix.add (local_dof_indices[i],
-                              local_dof_indices[j],
-                              cell_matrix(i,j));
-         
-         system_rhs(local_dof_indices[i]) += cell_rhs(i);
-       };
-    };
-
-  
-                                  // We wanted to have
-                                  // non-homogeneous boundary values
-                                  // in this example, contrary to the
-                                  // one before. This is a simple
-                                  // task, we only have to replace
-                                  // the ZeroFunction used there by
-                                  // an object of the class which
-                                  // describes the boundary values we
-                                  // would like to use (i.e. the
-                                  // BoundaryValues class declared
-                                  // above):
-  map<unsigned int,double> boundary_values;
-  VectorTools::interpolate_boundary_values (dof_handler,
-                                           0,
-                                           BoundaryValues<dim>(),
-                                           boundary_values);
-  MatrixTools<dim>::apply_boundary_values (boundary_values,
-                                          system_matrix,
-                                          solution,
-                                          system_rhs);
-};
-
-
-                                // Solving the linear system of
-                                // equation is something that looks
-                                // almost identical in most
-                                // programs. In particular, it is
-                                // dimension independent, so this
-                                // function is mostly copied from the
-                                // previous example.
-template <int dim>
-void LaplaceProblem<dim>::solve () 
-{
-  SolverControl           solver_control (1000, 1e-12);
-  PrimitiveVectorMemory<> vector_memory;
-  SolverCG<>              cg (solver_control, vector_memory);
-  cg.solve (system_matrix, solution, system_rhs,
-           PreconditionIdentity());
-
-                                  // We have made one addition,
-                                  // though: since we suppress output
-                                  // from the linear solvers, we have
-                                  // to print the number of
-                                  // iterations by hand.
-  cout << "   " << solver_control.last_step()
-       << " CG iterations needed to obtain convergence."
-       << endl;
-};
-
-
-
-                                // This function also does what the
-                                // respective one did in the previous
-                                // example. No changes here for
-                                // dimension independentce either.
-template <int dim>
-void LaplaceProblem<dim>::output_results () const
-{
-  DataOut<dim> data_out;
-
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (solution, "solution");
-
-  data_out.build_patches ();
-
-                                  // Only difference to the previous
-                                  // example: write output in GMV
-                                  // format, rather than for
-                                  // gnuplot. We use the dimension in
-                                  // the filename to generate
-                                  // distinct filenames for each run
-                                  // (in a better program, one would
-                                  // check whether `dim' can have
-                                  // other values than 2 or 3, but we
-                                  // neglect this here for the sake
-                                  // of brevity).
-  ofstream output (dim == 2 ?
-                  "solution-2d.gmv" :
-                  "solution-3d.gmv");
-  data_out.write_gmv (output);
-};
-
-
-
-                                // This is the function which has the
-                                // top-level control over
-                                // everything. Apart from one line of
-                                // additional output, it is the same
-                                // as for the previous example.
-template <int dim>
-void LaplaceProblem<dim>::run () 
-{
-  cout << "Solving problem in " << dim << " space dimensions." << endl;
-  
-  make_grid_and_dofs();
-  assemble_system ();
-  solve ();
-  output_results ();
-};
-
-    
-
-                                // And this is the main function. It
-                                // also looks mostly like in the
-                                // previous example:
-int main () 
-{
-                                  // In the previous example, we had
-                                  // the output from the linear
-                                  // solvers about the starting
-                                  // residual and the number of the
-                                  // iteration where convergence was
-                                  // detected. This can be suppressed
-                                  // like this:
-  deallog.depth_console (0);
-                                  // The rationale here is the
-                                  // following: the deallog
-                                  // (i.e. deal-log, not de-allog)
-                                  // variable represents a stream to
-                                  // which some parts of the library
-                                  // write output. It redirects this
-                                  // output to the console and if
-                                  // required to a file. The output
-                                  // is nested in a way that each
-                                  // function can use a prefix string
-                                  // (separated by colons) for each
-                                  // line of output; if it calls
-                                  // another function, that may also
-                                  // use its prefix which is then
-                                  // printed after the one of the
-                                  // calling function. Since output
-                                  // from functions which are nested
-                                  // deep below is usually not as
-                                  // important as top-level output,
-                                  // you can give the deallog
-                                  // variable a maximal depth of
-                                  // nested output for output to
-                                  // console and file. The depth zero
-                                  // which we gave here means that no
-                                  // output is written.
-
-                                  // After having done this
-                                  // administrative stuff, we can go
-                                  // on just as before: define one of
-                                  // these top-level objects and
-                                  // transfer control to
-                                  // it. Actually, now is the point
-                                  // where we have to tell the
-                                  // compiler which dimension we
-                                  // would like to use; all functions
-                                  // up to now including the classes
-                                  // were only templates and nothing
-                                  // has been compiled by now, but by
-                                  // declaring the following objects,
-                                  // the compiler will start to
-                                  // compile all the functions at the
-                                  // top using the template parameter
-                                  // replaced with a concrete value.
-                                  //
-                                  // For demonstration, we will first
-                                  // let the whole thing run in 2D
-                                  // and then in 3D:
-  LaplaceProblem<2> laplace_problem_2d;
-  laplace_problem_2d.run ();
-
-  LaplaceProblem<3> laplace_problem_3d;
-  laplace_problem_3d.run ();
-  
-  return 0;
-};
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-5/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-5/Makefile
deleted file mode 100644 (file)
index 4459137..0000000
+++ /dev/null
@@ -1,167 +0,0 @@
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g   = $(lib-deal2-2d.g) \
-          $(lib-lac.g)      \
-           $(lib-base.g)
-libs.o   = $(lib-deal2-2d.o) \
-          $(lib-lac.o)      \
-           $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
-  libraries = $(target).go $(libs.g)
-  flags     = $(CXXFLAGS.g)
-else
-  libraries = $(target).go $(libs.o)
-  flags     = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
-  libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
-       @echo ============================ Linking $@
-       @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
-       @echo ============================ Running $<
-       @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
-       -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
-       @echo ==============debug========= $(<F)
-       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
-       @echo ==============optimized===== $(<F)
-       @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script.  Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
-              $(shell echo $(include-path-base)/base/*.h    \
-                           $(include-path-lac)/lac/*.h      \
-                           $(include-path-deal2)/*/*.h)
-       @echo ============================ Remaking Makefile
-       @perl $D/common/scripts/make_dependencies.pl  $(INCLUDE) $(target).cc \
-               | perl -pi -e 's!lib/g?o/!!g;' \
-               > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-5/circle-grid.inp b/deal.II/deal.II/Attic/examples/step-by-step/step-5/circle-grid.inp
deleted file mode 100644 (file)
index f28a7a2..0000000
+++ /dev/null
@@ -1,46 +0,0 @@
-25 20 0 0 0
-1  -0.7071 -0.7071 0
-2  0.7071 -0.7071 0
-3  -0.2668 -0.2668 0
-4  0.2668 -0.2668 0
-5  -0.2668 0.2668 0
-6  0.2668 0.2668 0
-7  -0.7071 0.7071 0
-8  0.7071 0.7071 0
-9  0 -1 0
-10  0.5 -0.5 0
-11  0 -0.3139 0
-12  -0.5 -0.5 0
-13  0 -0.6621 0
-14  -0.3139 0 0
-15  -0.5 0.5 0
-16  -1 0 0
-17  -0.6621 0 0
-18  0.3139 0 0
-19  0 0.3139 0
-20  0 0 0
-21  1 0 0
-22  0.5 0.5 0
-23  0.6621 0 0
-24  0 1 0
-25  0 0.6621 0
-1 0 quad    1 9 13 12 
-2 0 quad    9 2 10 13 
-3 0 quad    13 10 4 11 
-4 0 quad    12 13 11 3 
-5 0 quad    1 12 17 16 
-6 0 quad    12 3 14 17 
-7 0 quad    17 14 5 15 
-8 0 quad    16 17 15 7 
-9 0 quad    3 11 20 14 
-10 0 quad    11 4 18 20 
-11 0 quad    20 18 6 19 
-12 0 quad    14 20 19 5 
-13 0 quad    2 21 23 10 
-14 0 quad    21 8 22 23 
-15 0 quad    23 22 6 18 
-16 0 quad    10 23 18 4 
-17 0 quad    7 15 25 24 
-18 0 quad    15 5 19 25 
-19 0 quad    25 19 6 22 
-20 0 quad    24 25 22 8 
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-5/step-5.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-5/step-5.cc
deleted file mode 100644 (file)
index a131374..0000000
+++ /dev/null
@@ -1,940 +0,0 @@
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */
-
-                                // Again, the first few include files
-                                // are already known, so we won't
-                                // comment on them:
-#include <base/quadrature_lib.h>
-#include <base/function.h>
-#include <base/logstream.h>
-#include <lac/vector.h>
-#include <lac/full_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/solver_cg.h>
-#include <lac/vector_memory.h>
-#include <lac/precondition.h>
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <dofs/dof_accessor.h>
-#include <dofs/dof_tools.h>
-#include <fe/fe_lib.lagrange.h>
-#include <fe/fe_values.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
-#include <numerics/data_out.h>
-
-                                // This one is new. We want to read a
-                                // triangulation from disk, and the
-                                // class which does this is declared
-                                // in the following file:
-#include <grid/grid_in.h>
-
-                                // We will use a circular domain, and
-                                // the object describing the boundary
-                                // of it comes from this file:
-#include <grid/tria_boundary_lib.h>
-
-                                // This is C++ ...
-#include <fstream>
-                                // ... and this is too. We will
-                                // convert integers to strings using
-                                // the classes inside this file:
-#include <strstream>
-
-
-
-                                // The main class is mostly as in the
-                                // previous example. The most visible
-                                // change is that the function
-                                // ``make_grid_and_dofs'' has been
-                                // removed, since making of the grid
-                                // is now done in the ``run''
-                                // function and the rest of its
-                                // functionality now is in
-                                // ``setup_system''. Apart from this,
-                                // everything is as before.
-template <int dim>
-class LaplaceProblem 
-{
-  public:
-    LaplaceProblem ();
-    void run ();
-    
-  private:
-    void setup_system ();
-    void assemble_system ();
-    void solve ();
-    void output_results (const unsigned int cycle) const;
-
-    Triangulation<dim>   triangulation;
-    FEQ1<dim>            fe;
-    DoFHandler<dim>      dof_handler;
-
-    SparsityPattern      sparsity_pattern;
-    SparseMatrix<double> system_matrix;
-
-    Vector<double>       solution;
-    Vector<double>       system_rhs;
-};
-
-
-
-                                // In this example, we want to use a
-                                // variable coefficient in the
-                                // elliptic operator. Of course, the
-                                // suitable object is a Function, as
-                                // we have used it for the right hand
-                                // side and boundary values in the
-                                // last example. We will use it
-                                // again, but we implement another
-                                // function ``value_list'' which
-                                // takes a list of points and returns
-                                // the values of the function at
-                                // these points as a list. The reason
-                                // why such a function is reasonable
-                                // although we can get all the
-                                // information from the ``value''
-                                // function as well will be explained
-                                // below when assembling the matrix.
-template <int dim>
-class Coefficient : public Function<dim> 
-{
-  public:
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-    
-    virtual void value_list (const vector<Point<dim> > &points,
-                            vector<double>            &values,
-                            const unsigned int         component = 0) const;
-};
-
-
-
-                                // This is the implementation of the
-                                // coefficient function for a single
-                                // point. We let it return 20 if the
-                                // distance to the point of origin is
-                                // less than 0.5, and 1 otherwise:
-template <int dim>
-double Coefficient<dim>::value (const Point<dim> &p,
-                               const unsigned int) const 
-{
-  if (p.square() < 0.5*0.5)
-    return 20;
-  else
-    return 1;
-};
-
-
-
-                                // And this is the function that
-                                // returns the value of the
-                                // coefficient at a whole list of
-                                // points at once. Of course, the
-                                // values are the same as if we would
-                                // ask the ``value'' function.
-template <int dim>
-void Coefficient<dim>::value_list (const vector<Point<dim> > &points,
-                                  vector<double>            &values,
-                                  const unsigned int component) const 
-{
-                                  // Use n_q_points as an
-                                  // abbreviation for the number of
-                                  // points for which function values
-                                  // are requested:
-  const unsigned int n_points = points.size();
-
-                                  // Now, of course the size of the
-                                  // output array (``values'') must
-                                  // be the same as that of the input
-                                  // array (``points''), and we could
-                                  // simply assume that. However, in
-                                  // practice more than 90 per cent
-                                  // of programming errors are
-                                  // invalid function parameters such
-                                  // as invalid array sizes, etc, so
-                                  // we should try to make sure that
-                                  // the parameters are valid. For
-                                  // this, the Assert macro is a good
-                                  // means, since it asserts that the
-                                  // condition which is given as
-                                  // first argument is valid, and if
-                                  // not throws an exception (its
-                                  // second argument) which will
-                                  // usually terminate the program
-                                  // giving information where the
-                                  // error occured and what the
-                                  // reason was. This generally
-                                  // reduces the time to find
-                                  // programming errors dramatically
-                                  // and we have found assertions an
-                                  // invaluable means to program
-                                  // fast.
-                                  //
-                                  // On the other hand, all these
-                                  // checks (there are more than 2000
-                                  // of them in the library) should
-                                  // not slow down the program too
-                                  // much, which is why the Assert
-                                  // macro is only used in debug mode
-                                  // and expands to nothing if in
-                                  // optimized mode. Therefore, while
-                                  // you test your program and debug
-                                  // it, the assertions will tell you
-                                  // where the problems are, and once
-                                  // your program is stable you can
-                                  // switch off debugging and the
-                                  // program will run without the
-                                  // assertions and at maximum speed.
-                                  //
-                                  // Here, as has been said above, we
-                                  // would like to make sure that the
-                                  // size of the two arrays is equal,
-                                  // and if not throw an
-                                  // exception. Since the following
-                                  // test is rather frequent for the
-                                  // classes derived from
-                                  // ``Function'', that class
-                                  // declares an exception
-                                  // ``ExcVectorHasWrongSize'' which
-                                  // takes the sizes of two vectors
-                                  // and prints some output in case
-                                  // the condition is violated:
-  Assert (values.size() == n_points, 
-         ExcVectorHasWrongSize (values.size(), n_points));
-                                  // Since examples are not very good
-                                  // if they do not demonstrate their
-                                  // point, we will show how to
-                                  // trigger this exception at the
-                                  // end of the main program, and
-                                  // what output results from this
-                                  // (see the ``Results'' section of
-                                  // this example program). You will
-                                  // certainly notice that the output
-                                  // is quite well suited to quickly
-                                  // find what the problem is and
-                                  // what parameters are expected. An
-                                  // additional plus is that if the
-                                  // program is run inside a
-                                  // debugger, it will stop at the
-                                  // point where the exception is
-                                  // triggered, so you can go up the
-                                  // call stack to immediately find
-                                  // the place where the the array
-                                  // with the wrong size was set up.
-  
-                                  // While we're at it, we can do
-                                  // another check: the coefficient
-                                  // is a scalar, but the Function
-                                  // class also represents
-                                  // vector-valued function. A scalar
-                                  // function must therefore be
-                                  // considered as a vector-valued
-                                  // function with only one
-                                  // component, so the only valid
-                                  // component for which a user might
-                                  // ask is zero (we always count
-                                  // from zero). The following
-                                  // assertion checks this. (The
-                                  // ``1'' is denotes the number of
-                                  // components that this function
-                                  // has.)
-  Assert (component == 0, 
-         ExcWrongComponent (component, 1));
-  
-  for (unsigned int i=0; i<n_points; ++i)
-    {
-      if (points[i].square() < 0.5*0.5)
-       values[i] = 20;
-      else
-       values[i] = 1;
-    };
-};
-
-
-                                // This function is as before.
-template <int dim>
-LaplaceProblem<dim>::LaplaceProblem () :
-               dof_handler (triangulation)
-{};
-
-
-
-                                // This is the function
-                                // ``make_grid_and_dofs'' from the
-                                // previous example, minus the
-                                // generation of the grid. Everything
-                                // else is unchanged.
-template <int dim>
-void LaplaceProblem<dim>::setup_system ()
-{
-  dof_handler.distribute_dofs (fe);
-
-  cout << "   Number of degrees of freedom: "
-       << dof_handler.n_dofs()
-       << endl;
-
-  sparsity_pattern.reinit (dof_handler.n_dofs(),
-                          dof_handler.n_dofs(),
-                          dof_handler.max_couplings_between_dofs());
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-  sparsity_pattern.compress();
-
-  system_matrix.reinit (sparsity_pattern);
-
-  solution.reinit (dof_handler.n_dofs());
-  system_rhs.reinit (dof_handler.n_dofs());
-};
-
-
-
-                                // As in the previous examples, this
-                                // function is not changed much with
-                                // regard to its functionality, but
-                                // there are still some optimizations
-                                // which we will show. For this, it
-                                // is important to note that if
-                                // efficient solvers are used (such
-                                // as the preconditions CG method),
-                                // assembling the matrix and right
-                                // hand side can take a comparable
-                                // time, and it is worth the effort
-                                // to use one or two optimizations at
-                                // some places.
-                                //
-                                // What we will show here is how we
-                                // can avoid calls to the
-                                // shape_value, shape_grad, and
-                                // quadrature_point functions of the
-                                // FEValues object, and in particular
-                                // optimize away most of the virtual
-                                // function calls of the Function
-                                // object. The way to do so will be
-                                // explained in the following, while
-                                // those parts of this function that
-                                // are not changed with respect to
-                                // the previous example are not
-                                // commented on.
-template <int dim>
-void LaplaceProblem<dim>::assemble_system () 
-{  
-                                  // This time, we will again use a
-                                  // constant right hand side
-                                  // function, but a variable
-                                  // coefficient. The following
-                                  // object will be used for this:
-  const Coefficient<dim> coefficient;
-
-  QGauss2<dim>  quadrature_formula;
-
-  FEValues<dim> fe_values (fe, quadrature_formula, 
-                          UpdateFlags(update_values    |
-                                      update_gradients |
-                                      update_q_points  |
-                                      update_JxW_values));
-
-  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int   n_q_points    = quadrature_formula.n_quadrature_points;
-
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       cell_rhs (dofs_per_cell);
-
-  vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-                                  // Below, we will ask the
-                                  // Coefficient class to compute the
-                                  // values of the coefficient at all
-                                  // quadrature points on one cell at
-                                  // once. For this, we need some
-                                  // space to store the values in,
-                                  // which we use the following
-                                  // variable for:
-  vector<double>     coefficient_values (n_q_points);
-
-  DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
-                                       endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      cell_matrix.clear ();
-      cell_rhs.clear ();
-
-                                      // As before, we want the
-                                      // FEValues object to compute
-                                      // the quantities which we told
-                                      // him to compute in the
-                                      // constructor using the update
-                                      // flags.
-      fe_values.reinit (cell);
-                                      // Now, these quantities are
-                                      // stored in arrays in the
-                                      // FEValues object. Usually,
-                                      // the internals of how and
-                                      // where they are stored is not
-                                      // something that the outside
-                                      // world should know, but since
-                                      // this is a time critical
-                                      // function we decided to
-                                      // publicize these arrays a
-                                      // little bit, and provide
-                                      // facilities to export the
-                                      // address where this data is
-                                      // stored.
-                                      //
-                                      // For example, the values of
-                                      // shape function j at
-                                      // quadrature point q is stored
-                                      // in a matrix, of which we can
-                                      // get the address as follows
-                                      // (note that this is a
-                                      // reference to the matrix,
-                                      // symbolized by the ampersand,
-                                      // and that it must be a
-                                      // constant reference, since
-                                      // only read-only access is
-                                      // granted):
-      const FullMatrix<double> 
-       & shape_values = fe_values.get_shape_values();
-                                      // Instead of writing
-                                      // fe_values.shape_value(j,q)
-                                      // we can now write
-                                      // shape_values(j,q), i.e. the
-                                      // function call needed
-                                      // previously for each access
-                                      // has been otimized away.
-                                      //
-                                      // There are alike functions
-                                      // for almost all data elements
-                                      // in the FEValues class. The
-                                      // gradient are accessed as
-                                      // follows:
-      const vector<vector<Tensor<1,dim> > >
-       & shape_grads  = fe_values.get_shape_grads();
-                                      // The data type looks a bit
-                                      // unwieldy, since each entry
-                                      // in the matrix (j,q) now
-                                      // needs to be the gradient of
-                                      // the shape function, which is
-                                      // a vector.
-                                      //
-                                      // Similarly, access to the
-                                      // place where quadrature
-                                      // points and the determinants
-                                      // of the Jacobian matrices
-                                      // times the weights of the
-                                      // respective quadrature points
-                                      // are stored, can be obtained
-                                      // like this:
-      const vector<double>
-       & JxW_values   = fe_values.get_JxW_values();
-      const vector<Point<dim> >
-       & q_points     = fe_values.get_quadrature_points();
-                                      // Admittedly, the declarations
-                                      // above are not easily
-                                      // readable, but they can save
-                                      // many function calls in the
-                                      // inner loops and can thus
-                                      // make assemblage faster.
-                                      //
-                                      // An additional advantage is
-                                      // that the inner loops are
-                                      // simpler to read, since the
-                                      // fe_values object is no more
-                                      // explicitely needed to access
-                                      // the different fields (see
-                                      // below). Unfortunately,
-                                      // things became a bit
-                                      // inconsistent, since the
-                                      // shape values are accessed
-                                      // via the FullMatrix operator
-                                      // (), i.e. using parentheses,
-                                      // while all the other fields
-                                      // are accessed through vector
-                                      // operator [], i.e. using
-                                      // brackets. This is due to
-                                      // historical reasons and
-                                      // frequently leads to a bit of
-                                      // confusion, but since the
-                                      // places where this happens
-                                      // are few in well-written
-                                      // programs, this is not too
-                                      // big a problem.
-
-                                      // There is one more thing: in
-                                      // this example, we want to use
-                                      // a non-constant
-                                      // coefficient. In the previous
-                                      // example, we have called the
-                                      // ``value'' function of the
-                                      // right hand side object for
-                                      // each quadrature
-                                      // point. Unfortunately, that
-                                      // is a virtual function, so
-                                      // calling it is relatively
-                                      // expensive. Therefore, we use
-                                      // a function of the Function
-                                      // class which returns the
-                                      // values at all quadrature
-                                      // points at once; that
-                                      // function is still virtual,
-                                      // but it needs to be computed
-                                      // once per cell only, not once
-                                      // in the inner loop:
-      coefficient.value_list (q_points, coefficient_values);
-                                      // It should be noted that the
-                                      // creation of the
-                                      // coefficient_values object is
-                                      // done outside the loop over
-                                      // all cells to avoid memory
-                                      // allocation each time we
-                                      // visit a new cell. Contrary
-                                      // to this, the other variables
-                                      // above were created inside
-                                      // the loop, but they were only
-                                      // references to memory that
-                                      // has already been allocated
-                                      // (i.e. they are pointers to
-                                      // that memory) and therefore,
-                                      // no new memory needs to be
-                                      // allocated; in particular, by
-                                      // declaring the pointers as
-                                      // close to their use as
-                                      // possible, we give the
-                                      // compiler a better choice to
-                                      // optimize them away
-                                      // altogether, something which
-                                      // it definitely can't do with
-                                      // the coefficient_values
-                                      // object since it is too
-                                      // complicated, but mostly
-                                      // because it's address is
-                                      // passed to a virtual function
-                                      // which is not knows at
-                                      // compile time.
-      
-                                      // Using the various
-                                      // abbreviations, the loops
-                                      // then look like this (the
-                                      // parentheses around the
-                                      // product of the two gradients
-                                      // are needed to indicate the
-                                      // dot product; we have to
-                                      // overrule associativity of
-                                      // the operator* here, since
-                                      // the compiler would otherwise
-                                      // complain about an undefined
-                                      // product of double*gradient
-                                      // since it parses
-                                      // left-to-right):
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-       for (unsigned int i=0; i<dofs_per_cell; ++i)
-         {
-           for (unsigned int j=0; j<dofs_per_cell; ++j)
-             cell_matrix(i,j) += (coefficient_values[q_point] *
-                                  (shape_grads[i][q_point]    *
-                                   shape_grads[j][q_point])   *
-                                  JxW_values[q_point]);
-
-                                            // For the right hand
-                                            // side, a constant value
-                                            // is used again:
-           cell_rhs(i) += (shape_values (i,q_point) *
-                           1.0 *
-                           fe_values.JxW (q_point));
-         };
-
-
-      cell->get_dof_indices (local_dof_indices);
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       {
-         for (unsigned int j=0; j<dofs_per_cell; ++j)
-           system_matrix.add (local_dof_indices[i],
-                              local_dof_indices[j],
-                              cell_matrix(i,j));
-         
-         system_rhs(local_dof_indices[i]) += cell_rhs(i);
-       };
-    };
-
-                                  // Again use zero boundary values:
-  map<unsigned int,double> boundary_values;
-  VectorTools::interpolate_boundary_values (dof_handler,
-                                           0,
-                                           ZeroFunction<dim>(),
-                                           boundary_values);
-  MatrixTools<dim>::apply_boundary_values (boundary_values,
-                                          system_matrix,
-                                          solution,
-                                          system_rhs);
-};
-
-
-
-                                // The solution process again looks
-                                // mostly like in the previous
-                                // examples. However, we will now use
-                                // a preconditioned conjugate
-                                // gradient algorithm. It is not very
-                                // difficult to make this change:
-template <int dim>
-void LaplaceProblem<dim>::solve () 
-{
-  SolverControl           solver_control (1000, 1e-12);
-  PrimitiveVectorMemory<> vector_memory;
-  SolverCG<>              cg (solver_control, vector_memory);
-
-                                  // The only thing we have to alter
-                                  // is that we need an object which
-                                  // will act as a preconditioner. We
-                                  // will use SSOR (symmetric
-                                  // successive overrelaxation), with
-                                  // a relaxation factor of 1.2. For
-                                  // this purpose, the SparseMatrix
-                                  // class has a function which does
-                                  // one SSOR step, and we need to
-                                  // package the address of this
-                                  // function together with the
-                                  // matrix on which it should act
-                                  // (which is the matrix to be
-                                  // inverted) and the relaxation
-                                  // factor into one object. This can
-                                  // be done like this:
-  PreconditionRelaxation<>
-    preconditioner(system_matrix,
-                  &SparseMatrix<double>::template precondition_SSOR<double>,
-                  1.2);
-                                  // The default template parameters
-                                  // of the PreconditionRelaxation
-                                  // class are the matrix and the
-                                  // vector type, which default to
-                                  // the types used in this program.
-
-                                  // Calling the solver now looks
-                                  // mostly like in the example
-                                  // before, but where there was an
-                                  // object of type
-                                  // PreconditionIdentity before,
-                                  // there now is the newly generated
-                                  // preconditioner object.
-  cg.solve (system_matrix, solution, system_rhs,
-           preconditioner);
-
-  cout << "   " << solver_control.last_step()
-       << " CG iterations needed to obtain convergence."
-       << endl;
-};
-
-
-
-                                // Writing output to a file is mostly
-                                // the same as for the previous
-                                // example, but here we will show how
-                                // to modify some output options and
-                                // how to construct a different
-                                // filename for each refinement
-                                // cycle.
-template <int dim>
-void LaplaceProblem<dim>::output_results (const unsigned int cycle) const
-{
-  DataOut<dim> data_out;
-
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (solution, "solution");
-
-  data_out.build_patches ();
-
-                                  // For this example, we would like
-                                  // to write the output directly to
-                                  // a file in Encapsulated
-                                  // Postscript (EPS) format. The
-                                  // library supports this, but
-                                  // things may be a bit more
-                                  // difficult sometimes, since EPS
-                                  // is a printing format, unlike
-                                  // most other supported formats
-                                  // which serve as input for
-                                  // graphical tools. Therefore, you
-                                  // can't scale or rotate the image
-                                  // after it has been written to
-                                  // disk, and you have to decide
-                                  // about the viewpoint or the
-                                  // scaling in advance.
-                                  //
-                                  // The defaults in the library are
-                                  // usually quite reasonable, and
-                                  // regarding viewpoint and scaling
-                                  // they coincide with the defaults
-                                  // of Gnuplot. However, since this
-                                  // is a tutorial, we will
-                                  // demonstrate how to change
-                                  // them. For this, we first have to
-                                  // generate an object describing
-                                  // the flags for EPS output:
-  DataOutBase::EpsFlags eps_flags;
-                                  // They are initialized with the
-                                  // default values, so we only have
-                                  // to change those that we don't
-                                  // like. For example, we would like
-                                  // to scale the z-axis differently
-                                  // (stretch each data point in
-                                  // z-direction by a factor of four):
-  eps_flags.z_scaling = 4;
-                                  // Then we would also like to alter
-                                  // the viewpoint from which we look
-                                  // at the solution surface. The
-                                  // default is at an angle of 60
-                                  // degrees down from the vertical
-                                  // axis, and 30 degrees rotated
-                                  // against it in mathematical
-                                  // positive sense. We raise our
-                                  // viewpoint a bit and look more
-                                  // along the y-axis:
-  eps_flags.azimut_angle = 40;
-  eps_flags.turn_angle   = 10;
-                                  // That shall suffice. There are
-                                  // more flags, for example whether
-                                  // to draw the mesh lines, which
-                                  // data vectors to use for
-                                  // colorization of the interior of
-                                  // the cells, and so on. You may
-                                  // want to take a look at the
-                                  // documentation of the EpsFlags
-                                  // structure to get an overview of
-                                  // what is possible.
-                                  //
-                                  // The only thing still to be done,
-                                  // is to tell the output object to
-                                  // use these flags:
-  data_out.set_flags (eps_flags);
-                                  // The above way to modify flags
-                                  // requires recompilation each time
-                                  // we would like to use different
-                                  // flags. This is inconvenient, and
-                                  // we will see more advanced ways
-                                  // in following examples where the
-                                  // output flags are determined at
-                                  // run time using an input file.
-
-                                  // Finally, we need the filename to
-                                  // which the results is to be
-                                  // written. We would like to have
-                                  // it of the form
-                                  // ``solution-N.eps'', where N is
-                                  // the number of refinement
-                                  // cycle. Thus, we have to convert
-                                  // an integer to a part of a
-                                  // string; this can be done using
-                                  // the ``sprintf'' function, but in
-                                  // C++ there is a more elegant way:
-                                  // write everything into a special
-                                  // stream (just like writing into a
-                                  // file or to the screen) and
-                                  // retrieve that as a string. This
-                                  // applies the usual conversions
-                                  // from integer to strings, and one
-                                  // could as well give stream
-                                  // modifiers such as ``setf'',
-                                  // ``setprecision'', and so on.
-  ostrstream filename;
-  filename << "solution-"
-          << cycle
-          << ".eps";
-                                  // In order to append the final
-                                  // '\0', we have to put an ``ends''
-                                  // to the end of the string:
-  filename << ends;
-  
-                                  // We can get whatever we wrote to
-                                  // the stream using the ``str()''
-                                  // function. Use that as filename
-                                  // for the output stream:
-  ofstream output (filename.str());
-                                  // And then write the data to the
-                                  // file.
-  data_out.write_eps (output);
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::run () 
-{
-  for (unsigned int cycle=0; cycle<6; ++cycle)
-    {
-      cout << "Cycle " << cycle << ':' << endl;
-
-                                      // If this is the first round,
-                                      // then we have no grid yet,
-                                      // and we will create it
-                                      // here. In previous examples,
-                                      // we have already used some of
-                                      // the functions from the
-                                      // GridGenerator class. Here we
-                                      // would like to read a grid
-                                      // from a file where the cells
-                                      // are stored and which may
-                                      // originate from someone else,
-                                      // or may be the product of a
-                                      // mesh generator tool.
-                                      //
-                                      // In order to read a grid from
-                                      // a file, we generate an
-                                      // object of data type GridIn
-                                      // and associate the
-                                      // triangulation to it (i.e. we
-                                      // tell it to fill our
-                                      // triangulation object when we
-                                      // ask it to read the
-                                      // file). Then we open the
-                                      // respective file and fill the
-                                      // triangulation with it:
-      if (cycle == 0)
-       {
-         GridIn<dim> grid_in;
-         grid_in.attach_triangulation (triangulation);
-
-                                          // We would now like to
-                                          // read the file. However,
-                                          // the input file is only
-                                          // for a two-dimensional
-                                          // triangulation, while
-                                          // this function is a
-                                          // template for arbitrary
-                                          // dimension. Since this is
-                                          // only a demonstration
-                                          // program, we will not use
-                                          // different input files
-                                          // for the different
-                                          // dimensions, but rather
-                                          // kill the whole program
-                                          // if we are not in 2D:
-         Assert (dim==2, ExcInternalError());
-                                          // ExcInternalError is a
-                                          // globally defined
-                                          // exception, which may be
-                                          // thrown whenever
-                                          // something is terribly
-                                          // wrong. Usually, one
-                                          // would like to use more
-                                          // specific exceptions, and
-                                          // particular in this case
-                                          // one would of course try
-                                          // to do something else if
-                                          // ``dim'' is not equal to
-                                          // two, e.g. create a grid
-                                          // using library
-                                          // functions. Aborting a
-                                          // program is usually not a
-                                          // good idea and assertions
-                                          // should really only be
-                                          // used for exceptional
-                                          // cases which should not
-                                          // occur, but might due to
-                                          // stupidity of the
-                                          // programmer, user, or
-                                          // someone else. The
-                                          // situation above is not a
-                                          // very clever use of
-                                          // Assert, but again: this
-                                          // is a tutorial and it
-                                          // might be worth to show
-                                          // what not to do, after
-                                          // all.
-         
-                                          // We can now actually read
-                                          // the grid. It is in UCD
-                                          // (unstructured cell data)
-                                          // format, as supported by
-                                          // AVS Explorer, for
-                                          // example:
-         ifstream input_file("circle-grid.inp");
-         grid_in.read_ucd (input_file);
-
-                                          // The grid in the file
-                                          // describes a
-                                          // circle. Therefore we
-                                          // have to use a boundary
-                                          // object which tells the
-                                          // triangulation where to
-                                          // put new points on the
-                                          // boundary when the grid
-                                          // is refined. This works
-                                          // in the same way as in
-                                          // the first example. Note
-                                          // that the
-                                          // HyperBallBoundary
-                                          // constructor takes two
-                                          // parameters, the center
-                                          // of the ball and the
-                                          // radius, but that their
-                                          // default (the origin and
-                                          // 1.0) are the ones which
-                                          // we would like to use
-                                          // here.
-         static const HyperBallBoundary<dim> boundary;
-         triangulation.set_boundary (0, boundary);
-       }
-                                      // If this is not the first
-                                      // cycle, then simply refine
-                                      // the grid once globally.
-      else
-       triangulation.refine_global (1);
-
-                                      // Write some output and do all
-                                      // the things that we have
-                                      // already seen in the previous
-                                      // examples.
-      cout << "   Number of active cells: "
-          << triangulation.n_active_cells()
-          << endl
-          << "   Total number of cells: "
-          << triangulation.n_cells()
-          << endl;
-
-      setup_system ();
-      assemble_system ();
-      solve ();
-      output_results (cycle);
-    };
-};
-
-    
-
-                                // The main function looks mostly
-                                // like the one in the previous
-                                // example, so we won't comment on it
-                                // further.
-int main () 
-{
-  deallog.depth_console (0);
-
-  LaplaceProblem<2> laplace_problem_2d;
-  laplace_problem_2d.run ();
-
-                                  // Finally, we have promised to
-                                  // trigger an exception in the
-                                  // Coefficient class. For this, we
-                                  // have to call its ``value_list''
-                                  // function with two arrays of
-                                  // different size (the number in
-                                  // parentheses behind the name of
-                                  // the object). We have commented
-                                  // out these lines in order to
-                                  // allow the program to exit
-                                  // gracefully in normal situations
-                                  // (we use the program in
-                                  // day-to-day testing of changes to
-                                  // the library as well), so you
-                                  // will only get the exception by
-                                  // un-commenting the following
-                                  // lines.
-/*  
-  Coefficient<2>    coefficient;
-  vector<Point<2> > points (2);
-  vector<double>    coefficient_values (1);
-  coefficient.value_list (points, coefficient_values);
-*/
-  
-  return 0;
-};
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-6/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-6/Makefile
deleted file mode 100644 (file)
index 4459137..0000000
+++ /dev/null
@@ -1,167 +0,0 @@
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g   = $(lib-deal2-2d.g) \
-          $(lib-lac.g)      \
-           $(lib-base.g)
-libs.o   = $(lib-deal2-2d.o) \
-          $(lib-lac.o)      \
-           $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
-  libraries = $(target).go $(libs.g)
-  flags     = $(CXXFLAGS.g)
-else
-  libraries = $(target).go $(libs.o)
-  flags     = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
-  libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
-       @echo ============================ Linking $@
-       @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
-       @echo ============================ Running $<
-       @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
-       -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
-       @echo ==============debug========= $(<F)
-       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
-       @echo ==============optimized===== $(<F)
-       @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script.  Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
-              $(shell echo $(include-path-base)/base/*.h    \
-                           $(include-path-lac)/lac/*.h      \
-                           $(include-path-deal2)/*/*.h)
-       @echo ============================ Remaking Makefile
-       @perl $D/common/scripts/make_dependencies.pl  $(INCLUDE) $(target).cc \
-               | perl -pi -e 's!lib/g?o/!!g;' \
-               > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-6/step-6.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-6/step-6.cc
deleted file mode 100644 (file)
index 0629bdc..0000000
+++ /dev/null
@@ -1,1035 +0,0 @@
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 2000 */
-
-                                // The first few files have already
-                                // been covered in previous examples
-                                // and will thus not be further
-                                // commented on.
-#include <base/quadrature_lib.h>
-#include <base/function.h>
-#include <base/logstream.h>
-#include <lac/vector.h>
-#include <lac/full_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/solver_cg.h>
-#include <lac/vector_memory.h>
-#include <lac/precondition.h>
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <grid/grid_generator.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_boundary_lib.h>
-#include <dofs/dof_accessor.h>
-#include <dofs/dof_tools.h>
-#include <fe/fe_values.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
-#include <numerics/data_out.h>
-                                // From the following include file we
-                                // will import the declaration of the
-                                // quadratic finite element class,
-                                // which in analogy to ``FEQ1'' for
-                                // the linear element is called
-                                // ``FEQ2''. The Lagrange elements of
-                                // poynomial degrees one through four
-                                // are all declared in this file.
-#include <fe/fe_lib.lagrange.h>
-
-                                // We will not read the grid from a
-                                // file as in the previous example,
-                                // but generate it using a function
-                                // of the library. However, we will
-                                // want to write out the locally
-                                // refined grids in each step, so we
-                                // need the following include file
-                                // instead of ``grid_in.h'':
-#include <grid/grid_out.h>
-
-                                // When using locally refined grids,
-                                // we will get so-called ``hanging
-                                // nodes''. However, the standard
-                                // finite element methods assumes
-                                // that the discrete solution spaces
-                                // be continuous, so we need to make
-                                // sure that the degrees of freedom
-                                // on hanging nodes conform to some
-                                // constraints such that the global
-                                // solution is continuous. The
-                                // following file contains a class
-                                // which is used to handle these
-                                // constraints:
-#include <dofs/dof_constraints.h>
-
-                                // Finally, we would like to use a
-                                // simple way to adaptively refine
-                                // the grid. While in general,
-                                // adaptivity is very
-                                // problem-specific, the error
-                                // indicator in the following file
-                                // often yields quite nicely adapted
-                                // grids for a wide class of
-                                // problems.
-#include <numerics/error_estimator.h>
-
-#include <fstream>
-
-
-                                // The main class is again almost
-                                // unchanged. Two additions, however,
-                                // are made: we have added the
-                                // ``refine'' function, which is used
-                                // to adaptively refine the grid
-                                // (instead of the global refinement
-                                // in the previous examples), and a
-                                // variable which will hold the
-                                // constraints associated to the
-                                // hanging nodes.
-template <int dim>
-class LaplaceProblem 
-{
-  public:
-    LaplaceProblem ();
-                                    // For educational purposes, we
-                                    // add a destructor here. The
-                                    // reason why we do so will be
-                                    // explained in the definition of
-                                    // this function.
-    ~LaplaceProblem ();
-    void run ();
-    
-  private:
-    void setup_system ();
-    void assemble_system ();
-    void solve ();
-    void refine_grid ();
-    void output_results (const unsigned int cycle) const;
-
-    Triangulation<dim>   triangulation;
-    DoFHandler<dim>      dof_handler;
-
-                                    // In order to use the quadratic
-                                    // element, we only have to
-                                    // replace the declaration of the
-                                    // ``fe'' variable like this:
-    FEQ2<dim>            fe;
-
-                                    // This is the new variable in
-                                    // the main class. We need an
-                                    // object which holds a list of
-                                    // the constraints from the
-                                    // hanging nodes:
-    ConstraintMatrix     hanging_node_constraints;
-
-    SparsityPattern      sparsity_pattern;
-    SparseMatrix<double> system_matrix;
-
-    Vector<double>       solution;
-    Vector<double>       system_rhs;
-};
-
-
-
-template <int dim>
-class Coefficient : public Function<dim> 
-{
-  public:
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-    
-    virtual void value_list (const vector<Point<dim> > &points,
-                            vector<double>            &values,
-                            const unsigned int         component = 0) const;
-};
-
-
-
-template <int dim>
-double Coefficient<dim>::value (const Point<dim> &p,
-                               const unsigned int) const 
-{
-  if (p.square() < 0.5*0.5)
-    return 20;
-  else
-    return 1;
-};
-
-
-
-template <int dim>
-void Coefficient<dim>::value_list (const vector<Point<dim> > &points,
-                                  vector<double>            &values,
-                                  const unsigned int component) const 
-{
-  const unsigned int n_points = points.size();
-
-  Assert (values.size() == n_points, 
-         ExcVectorHasWrongSize (values.size(), n_points));
-  
-  Assert (component == 0, 
-         ExcWrongComponent (component, 1));
-  
-  for (unsigned int i=0; i<n_points; ++i)
-    {
-      if (points[i].square() < 0.5*0.5)
-       values[i] = 20;
-      else
-       values[i] = 1;
-    };
-};
-
-
-template <int dim>
-LaplaceProblem<dim>::LaplaceProblem () :
-               dof_handler (triangulation)
-{};
-
-
-                                // Here comes the added destructor of
-                                // the class. The reason why we
-                                // needed to do so is a subtle change
-                                // in the order of data elements in
-                                // the class as compared to all
-                                // previous examples: the
-                                // ``dof_handler'' object was defined
-                                // before and not after the ``fe''
-                                // object. Of course we could have
-                                // left this order unchanged, but we
-                                // would like to show what happens if
-                                // the order is reversed since this
-                                // produces a rather nasty effect and
-                                // results in an error which is
-                                // difficult to track down if one
-                                // does not know what happens.
-                                //
-                                // Basically what happens is the
-                                // following: when we distribute the
-                                // degrees of freedom using the
-                                // function call
-                                // ``dof_handler.distribute_dofs()'',
-                                // the ``dof_handler'' also stores a
-                                // pointer to the finite element in
-                                // use. Since this pointer is used
-                                // every now and then until either
-                                // the degrees of freedom are
-                                // re-distributed using another
-                                // finite element object or until the
-                                // ``dof_handler'' object is
-                                // detroyed, it would be unwise if we
-                                // would allow the finite element
-                                // object to be deleted before
-                                // ``dof_handler'' object. To
-                                // disallow this, the DoF handler
-                                // increases a counter inside the
-                                // finite element object which counts
-                                // how many objects use that finite
-                                // element (this is what the
-                                // ``Subscriptor'' class is used for,
-                                // in case you want something like
-                                // this for your own programs). The
-                                // finite element object will refuse
-                                // its destruction if that counter is
-                                // larger than zero, since then some
-                                // other objects might rely on the
-                                // persistence of the finite element
-                                // object. An exception will then be
-                                // thrown and the program will
-                                // usually abort upon the attempt to
-                                // destroy the finite element.
-                                //
-                                // As a sidenote, we remark that
-                                // these exception are not
-                                // particularly popular among
-                                // programmers, since they only tell
-                                // us that some other object is still
-                                // using the object that is presently
-                                // destructed, but not which one. It
-                                // is therefore often rather
-                                // time-consuming to find out where
-                                // the problem exactly is, although
-                                // it is then usually straightforward
-                                // to remedy the situation. However,
-                                // we believe that the effort to find
-                                // invalid references to objects that
-                                // do no longer exist is less if the
-                                // problem is detected once the
-                                // reference becomes invalid, rather
-                                // than when non-existent objects are
-                                // actually accessed again, since
-                                // then usually only invalid data is
-                                // accessed, but no error is
-                                // immediately raised.
-                                //
-                                // Coming back to the present
-                                // situation, if we did not write
-                                // this destructor, the compiler will
-                                // generate code that triggers
-                                // exactly the behavious sketched
-                                // above. The reason is that member
-                                // variables of the
-                                // ``LaplaceProblem'' class are
-                                // destructed bottom-up, as always in
-                                // C++. Thus, the finite element
-                                // object will be destructed before
-                                // the DoF handler object, since its
-                                // declaration is below the one of
-                                // the DoF handler. This triggers the
-                                // situation above, and an exception
-                                // will be raised when the ``fe''
-                                // object is destructed. What needs
-                                // to be done is to tell the
-                                // ``dof_handler'' object to release
-                                // its lock to the finite element. Of
-                                // course, the ``dof_handler'' will
-                                // only release its lock if it really
-                                // does not need the finite element
-                                // any more, i.e. when all finite
-                                // element related data is deleted
-                                // from it. For this purpose, the
-                                // ``DoFHandler'' class has a
-                                // function ``clear'' which deletes
-                                // all degrees of freedom, releases
-                                // its lock to the finite element and
-                                // sets its internal pointer to a
-                                // null pointer. After this, you can
-                                // safely destruct the finite element
-                                // object since its internal counter
-                                // is then zero.
-                                //
-                                // For completeness, we add the
-                                // output of the exception that would
-                                // be triggered without this
-                                // destructor to the end of the
-                                // results section of this example.
-template <int dim>
-LaplaceProblem<dim>::~LaplaceProblem () 
-{
-  dof_handler.clear ();
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::setup_system ()
-{
-                                  // To distribute degrees of
-                                  // freedom, the ``dof_handler''
-                                  // variable takes only the finite
-                                  // element object. In this case, it
-                                  // will distribute one degree of
-                                  // freedom per vertex, one per line
-                                  // and one in the interior of the
-                                  // cell. You need not specify these
-                                  // details since they are encoded
-                                  // into the finite element object
-                                  // from which the ``dof_handler''
-                                  // gets the necessary information.
-  dof_handler.distribute_dofs (fe);
-
-                                  // After setting up all the degrees
-                                  // of freedoms, we can make up the
-                                  // list of constraints associated
-                                  // with the hanging nodes. This is
-                                  // done using the following
-                                  // function calls (the first clears
-                                  // the contents of the object,
-                                  // which is still there from the
-                                  // previous cycle, i.e. before the
-                                  // grid was refined):
-  hanging_node_constraints.clear ();
-  DoFTools::make_hanging_node_constraints (dof_handler,
-                                          hanging_node_constraints);
-                                  // In principle, the
-                                  // ConstraintMatrix class can hold
-                                  // other constraints as well,
-                                  // i.e. constraints that do not
-                                  // stem from hanging
-                                  // nodes. Sometimes, it is useful
-                                  // to use such constraints, in
-                                  // which case they may be added to
-                                  // the ConstraintMatrix object
-                                  // after the hanging node
-                                  // constraints were computed. After
-                                  // all constraints have been added,
-                                  // they need to be sorted and
-                                  // rearranged to perform some
-                                  // actions more efficiently. This
-                                  // postprocessing is done using the
-                                  // ``close'' function, after which
-                                  // no further constraints may be
-                                  // added any more.
-  hanging_node_constraints.close ();
-
-                                  // Since we use higher order finite
-                                  // elements, the maximum number of
-                                  // entries per line of the matrix
-                                  // is larger than for the linear
-                                  // elements. The
-                                  // ``max_couplings_between_dofs()''
-                                  // function takes care of this:
-  sparsity_pattern.reinit (dof_handler.n_dofs(),
-                          dof_handler.n_dofs(),
-                          dof_handler.max_couplings_between_dofs());
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-
-                                  // The constrained hanging nodes
-                                  // will later be eliminated from
-                                  // the linear system of
-                                  // equations. When doing so, some
-                                  // additional entries in the global
-                                  // matrix will be set to non-zero
-                                  // values, so we have to reserve
-                                  // some space for them here. Since
-                                  // the process of elimination of
-                                  // these constrained nodes is
-                                  // called ``condensation'', the
-                                  // functions that eliminate them
-                                  // are called ``condense'' for both
-                                  // the system matrix and right hand
-                                  // side, as well as for teh
-                                  // sparsity pattern.
-  hanging_node_constraints.condense (sparsity_pattern);
-
-                                  // Now all non-zero entries of the
-                                  // matrix are known (i.e. those
-                                  // from regularly assembling the
-                                  // matrix and those that were
-                                  // introduced by eliminating
-                                  // constraints). We can thus close
-                                  // the sparsity pattern and remove
-                                  // unneeded space:
-  sparsity_pattern.compress();
-
-  system_matrix.reinit (sparsity_pattern);
-
-  solution.reinit (dof_handler.n_dofs());
-  system_rhs.reinit (dof_handler.n_dofs());
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::assemble_system () 
-{  
-  const Coefficient<dim> coefficient;
-                                  // Since we use a higher order
-                                  // finite element, we also need to
-                                  // adjust the order of the
-                                  // quadrature formula in order to
-                                  // integrate the matrix entries
-                                  // with sufficient accuracy. For
-                                  // the quadratic polynomials of
-                                  // which the finite element which
-                                  // we use consist, a Gauss formula
-                                  // with three points in each
-                                  // direction is sufficient.
-  QGauss3<dim>  quadrature_formula;
-
-                                  // The ``FEValues'' object
-                                  // automatically adjusts the
-                                  // computation of values to the
-                                  // finite element. In fact, the
-                                  // ``FEValues'' class does not do
-                                  // many computations itself, but
-                                  // mostly delegates its work to the
-                                  // finite element class to which
-                                  // its first parameter
-                                  // belongs. That class then knows
-                                  // how to compute the values of
-                                  // shape functions, etc.
-  FEValues<dim> fe_values (fe, quadrature_formula, 
-                          UpdateFlags(update_values    |
-                                      update_gradients |
-                                      update_q_points  |
-                                      update_JxW_values));
-
-                                  // Here it comes handy that we have
-                                  // introduced an abbreviation for
-                                  // the number of degrees of freedom
-                                  // per cell before: the following
-                                  // value will be set to 9 (in 2D)
-                                  // now, where it was 4 before.
-  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int   n_q_points    = quadrature_formula.n_quadrature_points;
-
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       cell_rhs (dofs_per_cell);
-
-  vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-  vector<double>       coefficient_values (n_q_points);
-
-                                  // We can now go on with assembling
-                                  // the matrix and right hand
-                                  // side. Note that this code is
-                                  // copied without change from the
-                                  // previous example, even though we
-                                  // are now using another finite
-                                  // element. The actual difference
-                                  // in what is done is inside the
-                                  // call to ``fe_values.reinit
-                                  // (cell)'', but you need not care
-                                  // about what happens there. For
-                                  // the user of the ``fe_values''
-                                  // object, the actual finite
-                                  // element type is transparent.
-  DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
-                                       endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      cell_matrix.clear ();
-      cell_rhs.clear ();
-
-      fe_values.reinit (cell);
-      const FullMatrix<double> 
-       & shape_values = fe_values.get_shape_values();
-      const vector<vector<Tensor<1,dim> > >
-       & shape_grads  = fe_values.get_shape_grads();
-      const vector<double>
-       & JxW_values   = fe_values.get_JxW_values();
-      const vector<Point<dim> >
-       & q_points     = fe_values.get_quadrature_points();
-
-      coefficient.value_list (q_points, coefficient_values);
-      
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-       for (unsigned int i=0; i<dofs_per_cell; ++i)
-         {
-           for (unsigned int j=0; j<dofs_per_cell; ++j)
-             cell_matrix(i,j) += (coefficient_values[q_point] *
-                                  (shape_grads[i][q_point]    *
-                                   shape_grads[j][q_point])   *
-                                  JxW_values[q_point]);
-
-           cell_rhs(i) += (shape_values (i,q_point) *
-                           1.0 *
-                           fe_values.JxW (q_point));
-         };
-
-
-      cell->get_dof_indices (local_dof_indices);
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       {
-         for (unsigned int j=0; j<dofs_per_cell; ++j)
-           system_matrix.add (local_dof_indices[i],
-                              local_dof_indices[j],
-                              cell_matrix(i,j));
-         
-         system_rhs(local_dof_indices[i]) += cell_rhs(i);
-       };
-    };
-
-                                  // After the system of equations
-                                  // has been assembled just as for
-                                  // the previous examples, we still
-                                  // have to eliminate the
-                                  // constraints due to hanging
-                                  // nodes. This is done using the
-                                  // following two function calls:
-  hanging_node_constraints.condense (system_matrix);
-  hanging_node_constraints.condense (system_rhs);
-                                  // Using them, degrees of freedom
-                                  // associated to hanging nodes have
-                                  // been removed from the linear
-                                  // system and the independent
-                                  // variables are only regular
-                                  // nodes. The constrained nodes are
-                                  // still in the linear system
-                                  // (there is a one on the diagonal
-                                  // of the matrix and all other
-                                  // entries for this line are set to
-                                  // zero) but the computed values
-                                  // are invalid. They are set to
-                                  // reasonable values in the
-                                  // ``solve'' function.
-
-                                  // As almost all the stuff before,
-                                  // the interpolation of boundary
-                                  // values works also for higher
-                                  // order elements, but you need not
-                                  // change your code for that. We
-                                  // note that for proper results, it
-                                  // is important that the
-                                  // elimination of boundary nodes
-                                  // from the system of equations
-                                  // happens *after* the elimination
-                                  // of hanging nodes.
-  map<unsigned int,double> boundary_values;
-  VectorTools::interpolate_boundary_values (dof_handler,
-                                           0,
-                                           ZeroFunction<dim>(),
-                                           boundary_values);
-  MatrixTools<dim>::apply_boundary_values (boundary_values,
-                                          system_matrix,
-                                          solution,
-                                          system_rhs);
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::solve () 
-{
-  SolverControl           solver_control (1000, 1e-12);
-  PrimitiveVectorMemory<> vector_memory;
-  SolverCG<>              cg (solver_control, vector_memory);
-
-  PreconditionRelaxation<>
-    preconditioner(system_matrix,
-                  &SparseMatrix<double>::template precondition_SSOR<double>,
-                  1.2);
-
-  cg.solve (system_matrix, solution, system_rhs,
-           preconditioner);
-
-                                  // To set the constrained nodes to
-                                  // resonable values, you have to
-                                  // use the following function. It
-                                  // computes the values of these
-                                  // nodes from the values of the
-                                  // unconstrained nodes, which are
-                                  // the solutions of the linear
-                                  // system just solved.
-  hanging_node_constraints.distribute (solution);
-};
-
-
-                                // Instead of global refinement, we
-                                // now use a slightly more elaborate
-                                // scheme. We will use the
-                                // ``KellyErrorEstimator'' class
-                                // which implements an error
-                                // estimator for the Laplace
-                                // equation; it can in principle
-                                // handle variable coefficients, but
-                                // we will not use these advanced
-                                // features, but rather use its most
-                                // simple form since we are not
-                                // interested in quantitative results
-                                // but only in a quick way to
-                                // generate locally refined grids.
-                                //
-                                // Although the error estimator
-                                // derived by Kelly et al. was
-                                // originally developed for Laplace's
-                                // equation, we have found that it is
-                                // also well suited to quickly
-                                // generate locally refined grids for
-                                // a wide class of
-                                // problems. Basically, it looks at
-                                // the jumps of the gradients of the
-                                // solution over the faces of cells
-                                // (which is a measure for the second
-                                // derivatives) and scales it by the
-                                // size of the cell. It is therefore
-                                // a measure for the local smoothness
-                                // of the solution at the place of
-                                // each cell and it is thus
-                                // understandable that it yields
-                                // reasonable grids also for
-                                // hyperbolic transport problems or
-                                // the wave equation as well,
-                                // although these grids are certainly
-                                // suboptimal compared to approaches
-                                // specially tailored to the
-                                // problem. This error estimator may
-                                // therefore be understood as a quick
-                                // way to test an adaptive program.
-template <int dim>
-void LaplaceProblem<dim>::refine_grid ()
-{
-                                  // The output of the error
-                                  // estimator class is an error
-                                  // indicator for each cell. We
-                                  // therefore need a vector with as
-                                  // many elements as there are
-                                  // active cells. Since accuracy is
-                                  // not that important here, the
-                                  // data type for the error values
-                                  // on each cell is ``float''
-                                  // instead of ``double''.
-  Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
-
-                                  // Next, the error estimator can
-                                  // handle Neumann boundary
-                                  // conditions. For this, it needs
-                                  // to know which parts of the
-                                  // boundary have Neumann boundary
-                                  // conditions and teh respective
-                                  // boundary values there. This
-                                  // information is mediated by a map
-                                  // in which the keys are the
-                                  // boundary part numbers and the
-                                  // values are pointers to the
-                                  // boundary value functions. We
-                                  // create such a map, but since we
-                                  // do not use Neumann boundary
-                                  // conditions, the map will not
-                                  // contain entries.
-  KellyErrorEstimator<dim>::FunctionMap neumann_boundary;
-
-                                  // Now we call the error
-                                  // estimator. The parameters should
-                                  // be clear apart from the
-                                  // quadrature formula: as said
-                                  // above, the jump of the gradients
-                                  // of the solution across the faces
-                                  // of a cell are considered. They
-                                  // are integrated along the face,
-                                  // but as usual in finite element
-                                  // programs the integration is done
-                                  // using quadrature. Since the
-                                  // error estimator class can't know
-                                  // itself which quadrature formula
-                                  // might be appropriate, we have to
-                                  // pass one to the function (of
-                                  // course, the order of the
-                                  // quadrature formula should be
-                                  // adapted to the finite element
-                                  // under consideration). Note that
-                                  // since the quadrature has to take
-                                  // place along faces, the dimension
-                                  // of the quadrature formula is
-                                  // ``dim-1'' rather then ``dim''.
-                                  //
-                                  // (What constitutes a suitable
-                                  // quadrature rule here of course
-                                  // depends on knowledge of the way
-                                  // the error estimator evaluates
-                                  // the solution field. As said
-                                  // above, the jump of the gradient
-                                  // is integrated over each face,
-                                  // which would be a quadratic
-                                  // function on each face for the
-                                  // quadratic elements in use in
-                                  // this example. In fact, however,
-                                  // it is the square of the jump of
-                                  // the gradient, as explained in
-                                  // the documentation of that class,
-                                  // and that is a quartic function,
-                                  // for which a 3 point Gauss
-                                  // formula is sufficient since it
-                                  // integrates polynomials up to
-                                  // order 5 exactly.)
-  KellyErrorEstimator<dim>::estimate (dof_handler,
-                                     QGauss3<dim-1>(),
-                                     neumann_boundary,
-                                     solution,
-                                     estimated_error_per_cell);
-
-                                  // The above function returned one
-                                  // error indicator value for each
-                                  // cell in the
-                                  // ``estimated_error_per_cell''
-                                  // array. Refinement is now done as
-                                  // follows: refine those 30 per
-                                  // cent of the cells with the
-                                  // highest error values, and
-                                  // coarsen the 3 per cent of cells
-                                  // with the lowest values.
-                                  //
-                                  // One can easily verify that if
-                                  // the second number were zero,
-                                  // this would approximately result
-                                  // in a doubling of cells in each
-                                  // step in two space dimensions,
-                                  // since for each of the 30 per
-                                  // cent of cells four new would be
-                                  // replaced. In practice, some more
-                                  // cells are usually produced since
-                                  // it is disallowed that a cell is
-                                  // refined twice while the neighbor
-                                  // cell is not refined; in that
-                                  // case, the neighbor cell would be
-                                  // refined as well.
-                                  //
-                                  // In many applications, the number
-                                  // of cells to be coarsened would
-                                  // be set to something larger than
-                                  // only three per cent. A non-zero
-                                  // value is useful especially if
-                                  // for some reason the initial
-                                  // (coarse) grid is already rather
-                                  // refined. In that case, it might
-                                  // be necessary to refine it in
-                                  // some regions, while coarsening
-                                  // in some other regions is
-                                  // useful. In our case here, the
-                                  // initial grid is very coarse, so
-                                  // coarsening is only necessary in
-                                  // a few regions where
-                                  // over-refinement may have taken
-                                  // place. Thus a small, non-zero
-                                  // value is appropriate here.
-  triangulation.refine_and_coarsen_fixed_number (estimated_error_per_cell,
-                                                0.3, 0.03);
-
-                                  // After the previous function has
-                                  // exited, some cells are flagged
-                                  // for refinement, and some other
-                                  // for coarsening. The refinement
-                                  // or coarsening itself is not
-                                  // performed by now, however, since
-                                  // there are many cases where
-                                  // further modifications of these
-                                  // flags is useful. Here, we don't
-                                  // want to do any such thing, so we
-                                  // can tell the triangulation to
-                                  // perform the actions for which
-                                  // the cells are flagged.
-  triangulation.execute_coarsening_and_refinement ();
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::output_results (const unsigned int cycle) const
-{
-                                  // We want to write the grid in
-                                  // each cycle. Here is another way
-                                  // to quickly produce a filename
-                                  // based on the cycle number. It
-                                  // assumes that the numbers `0'
-                                  // through `9' are represented
-                                  // consecutively in the character
-                                  // set (which is the case in all
-                                  // known character sets). However,
-                                  // this will only work if the cycle
-                                  // number is less than ten, which
-                                  // we check by an assertion.
-  string filename = "grid-";
-  filename += ('0' + cycle);
-  Assert (cycle < 10, ExcInternalError());
-  
-  filename += ".eps";
-  ofstream output (filename.c_str());
-
-                                  // Using this filename, we write
-                                  // each grid as a postscript file.
-  GridOut grid_out;
-  grid_out.write_eps (triangulation, output);
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::run () 
-{
-  for (unsigned int cycle=0; cycle<8; ++cycle)
-    {
-      cout << "Cycle " << cycle << ':' << endl;
-
-      if (cycle == 0)
-       {
-                                          // Instead of reading the
-                                          // grid from a file on disk
-                                          // as in the previous
-                                          // example, we now again
-                                          // create it using a
-                                          // library function. The
-                                          // domain is again a
-                                          // circle, which is why we
-                                          // have to provide a
-                                          // suitable boundary object
-                                          // as well.
-                                          //
-                                          // You will notice by
-                                          // looking at the coarse
-                                          // grid that it is of
-                                          // inferior quality than
-                                          // the one which we read
-                                          // from the file in the
-                                          // previous example: the
-                                          // cells are less equally
-                                          // formed. However, using
-                                          // the library function
-                                          // this program works in
-                                          // any space dimension,
-                                          // which was not the case
-                                          // before.
-         GridGenerator::hyper_ball (triangulation);
-
-         static const HyperBallBoundary<dim> boundary;
-         triangulation.set_boundary (0, boundary);
-
-         triangulation.refine_global (1);
-       }
-      else
-                                        // In case this is not the
-                                        // first cycle, we want to
-                                        // refine the grid. Unlike
-                                        // the global refinement
-                                        // employed in the last
-                                        // example, we now use the
-                                        // adaptive procedure
-                                        // described in the function
-                                        // which we now call:
-       {
-         refine_grid ();
-       };
-      
-
-      cout << "   Number of active cells:       "
-          << triangulation.n_active_cells()
-          << endl;
-
-      setup_system ();
-
-      cout << "   Number of degrees of freedom: "
-          << dof_handler.n_dofs()
-          << endl;
-      
-      assemble_system ();
-      solve ();
-      output_results (cycle);
-    };
-
-                                  // The solution on the final grid
-                                  // is now written to a file. As
-                                  // already done in one of the
-                                  // previous examples, we use the
-                                  // EPS format for output, and to
-                                  // obtain a reasonable view on the
-                                  // solution, we rescale the z-axis
-                                  // by a factor of four.
-  DataOut<dim>::EpsFlags eps_flags;
-  eps_flags.z_scaling = 4;
-  
-  DataOut<dim> data_out;
-  data_out.set_flags (eps_flags);
-
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (solution, "solution");
-  data_out.build_patches ();
-  
-  ofstream output ("final-solution.eps");
-  data_out.write_eps (output);
-};
-
-    
-                                // The main function is unaltered in
-                                // its functionality against the
-                                // previous example, but we have
-                                // taken a step of additional
-                                // caution. Sometimes, something goes
-                                // wrong (such as insufficient disk
-                                // space upon writing an output file,
-                                // not enough memory when trying to
-                                // allocate a vector or a matrix, or
-                                // if we can't read from or write to
-                                // a file for whatever reason), and
-                                // in these cases the library will
-                                // throw exceptions. Since they do
-                                // not constitute programming errors,
-                                // these exceptions also are not
-                                // switched off in optimized mode, in
-                                // constrast to the ``Assert'' macro
-                                // which we have used to test against
-                                // programming errors. If uncought,
-                                // these exceptions propagate the
-                                // call tree up to the ``main''
-                                // function, and if they are not
-                                // caught there either, the program
-                                // is aborted. In many cases, like if
-                                // there is not enough memory or disk
-                                // space, we can't do anything but we
-                                // can at least print some text
-                                // trying to explain the reason why
-                                // the program failed. A way to do so
-                                // is shown in the following. It is
-                                // certainly useful to write any
-                                // larger program in this way, and
-                                // you can do so by more or less
-                                // copying this function apart from
-                                // the ``try'' block which contains
-                                // the code that constitutes the
-                                // actual functionality.
-int main () 
-{
-
-                                  // The general idea behind the
-                                  // layout of this function is as
-                                  // follows: let's try to run the
-                                  // program as we did before...
-  try
-    {
-      deallog.depth_console (0);
-
-      LaplaceProblem<2> laplace_problem_2d;
-      laplace_problem_2d.run ();
-    }
-                                  // ...and if this should fail, try
-                                  // to gather as much information as
-                                  // possible. Specifically, if the
-                                  // exception that was thrown is an
-                                  // object of a class that is
-                                  // derived from the C++ standard
-                                  // class ``exception'', then we can
-                                  // use the ``what'' member function
-                                  // to get a string which describes
-                                  // the reason why the exception was
-                                  // thrown. 
-                                  //
-                                  // The deal.II exception classes
-                                  // are all derived from the
-                                  // standard class, and in
-                                  // particular, the ``exc.what()''
-                                  // function will return
-                                  // approximately the same string as
-                                  // would be generated if the
-                                  // exception was thrown using the
-                                  // ``Assert'' macro. You have seen
-                                  // the output of such an exception
-                                  // in the previous example, and you
-                                  // then know that it contains the
-                                  // file and line number of where
-                                  // the exception occured, and some
-                                  // other information. This is also
-                                  // what would be printed in the
-                                  // following.
-  catch (exception &exc)
-    {
-      cerr << endl << endl
-          << "----------------------------------------------------"
-          << endl;
-      cerr << "Exception on processing: " << endl
-          << exc.what() << endl
-          << "Aborting!" << endl
-          << "----------------------------------------------------"
-          << endl;
-                                      // We can't do much more than
-                                      // printing as much information
-                                      // as we can get to, so abort
-                                      // with error:
-      return 1;
-    }
-                                  // If the exception that was thrown
-                                  // somewhere was not an object of a
-                                  // class derived from the standard
-                                  // ``exception'' class, then we
-                                  // can't do anything at all. We
-                                  // then simply print an error
-                                  // message and exit.
-  catch (...) 
-    {
-      cerr << endl << endl
-          << "----------------------------------------------------"
-          << endl;
-      cerr << "Unknown exception!" << endl
-          << "Aborting!" << endl
-          << "----------------------------------------------------"
-          << endl;
-      return 1;
-    };
-
-                                  // If we got to this point, there
-                                  // was no exception which
-                                  // propagated up to the main
-                                  // functino (maybe there were some,
-                                  // but they were caught somewhere
-                                  // in the program or the
-                                  // library). Therefore, the program
-                                  // performed as was expected and we
-                                  // can return without error.
-  return 0;
-};
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-7/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-7/Makefile
deleted file mode 100644 (file)
index 4459137..0000000
+++ /dev/null
@@ -1,167 +0,0 @@
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g   = $(lib-deal2-2d.g) \
-          $(lib-lac.g)      \
-           $(lib-base.g)
-libs.o   = $(lib-deal2-2d.o) \
-          $(lib-lac.o)      \
-           $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
-  libraries = $(target).go $(libs.g)
-  flags     = $(CXXFLAGS.g)
-else
-  libraries = $(target).go $(libs.o)
-  flags     = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
-  libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
-       @echo ============================ Linking $@
-       @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
-       @echo ============================ Running $<
-       @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
-       -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
-       @echo ==============debug========= $(<F)
-       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
-       @echo ==============optimized===== $(<F)
-       @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script.  Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
-              $(shell echo $(include-path-base)/base/*.h    \
-                           $(include-path-lac)/lac/*.h      \
-                           $(include-path-deal2)/*/*.h)
-       @echo ============================ Remaking Makefile
-       @perl $D/common/scripts/make_dependencies.pl  $(INCLUDE) $(target).cc \
-               | perl -pi -e 's!lib/g?o/!!g;' \
-               > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-7/step-7.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-7/step-7.cc
deleted file mode 100644 (file)
index db7a49f..0000000
+++ /dev/null
@@ -1,1242 +0,0 @@
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 2000 */
-
-                                // These first include files have all
-                                // been treated in previous examples,
-                                // so we won't explain what is in
-                                // them again.
-#include <base/quadrature_lib.h>
-#include <base/function.h>
-#include <base/logstream.h>
-#include <lac/vector.h>
-#include <lac/full_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/solver_cg.h>
-#include <lac/vector_memory.h>
-#include <lac/precondition.h>
-#include <grid/tria.h>
-#include <grid/grid_generator.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_boundary_lib.h>
-#include <dofs/dof_handler.h>
-#include <dofs/dof_constraints.h>
-#include <dofs/dof_accessor.h>
-#include <dofs/dof_tools.h>
-#include <fe/fe_lib.lagrange.h>
-#include <numerics/matrices.h>
-#include <numerics/error_estimator.h>
-#include <numerics/data_out.h>
-
-                                // In this example, we will not use
-                                // the numeration scheme which is
-                                // used per default by the
-                                // ``DoFHandler'' class, but will
-                                // renumber them using the
-                                // Cuthill-McKee algorithm. The
-                                // necessary functions are declared
-                                // in the following file:
-#include <numerics/dof_renumbering.h>
-                                // Then we will show a little trick
-                                // how we can make sure that objects
-                                // are not deleted while they are
-                                // still in use. For this purpose,
-                                // there is the ``SmartPointer''
-                                // helper class, which is declared in
-                                // this file:
-#include <base/smartpointer.h>
-                                // Then we will want to use the
-                                // ``integrate_difference'' function
-                                // mentioned in the introduction. It
-                                // comes from this file:
-#include <numerics/vectors.h>
-                                // And finally, we need to use the
-                                // ``FEFaceValues'' class, which is
-                                // declare in the same file as the
-                                // ``FEValues'' class:
-#include <fe/fe_values.h>
-
-#include <fstream>
-
-
-
-                                // Since we want to compare the
-                                // exactly known continuous solution
-                                // to the computed one, we need a
-                                // function object which represents
-                                // the continuous solution. On the
-                                // other hand, we need the right hand
-                                // side function, and that one of
-                                // course shares some characteristics
-                                // with the solution. In order to
-                                // reduce dependencies which arise if
-                                // we have to change something in
-                                // both classes at the same time, we
-                                // exclude the common characteristics
-                                // of both functions into a base
-                                // class.
-                                //
-                                // The common characteristics for the
-                                // given solution, which as explained
-                                // in the introduction is a sum of
-                                // three exponentials, are here: the
-                                // number of exponentials, their
-                                // centers, and their half width. We
-                                // declare them in the following
-                                // class. Since the number of
-                                // exponentials is a constant scalar
-                                // integral quantity, C++ allows its
-                                // definition (i.e. assigning a
-                                // value) right at the place of
-                                // declaration (i.e. where we declare
-                                // that such a variable exists).
-template <int dim>
-class SolutionBase 
-{
-  protected:
-    static const unsigned int n_source_centers = 3;    
-    static const Point<dim>   source_centers[n_source_centers];
-    static const double       width;
-};
-
-
-                                // The variables which denote the
-                                // centers and the width of the
-                                // exponentials have just been
-                                // declared, now we still need to
-                                // assign values to them. Here, we
-                                // can show another small piece of
-                                // template sourcery, namely how we
-                                // can assign different values to
-                                // these variables depending on the
-                                // dimension. We will only use the 2d
-                                // case in the program, but we show
-                                // the 1d case for exposition of a
-                                // useful technique.
-                                //
-                                // First we assign values to the
-                                // centers for the 1d case, where we
-                                // place the centers equidistanly at
-                                // -1/3, 0, and 1/3:
-template <>
-const Point<1>
-SolutionBase<1>::source_centers[SolutionBase<1>::n_source_centers]
-= { Point<1>(-1.0 / 3.0), 
-    Point<1>(0.0), 
-    Point<1>(+1.0 / 3.0)   };
-
-                                // Then we place the centers for the
-                                // 2d case as follows:
-template <>
-const Point<2>
-SolutionBase<2>::source_centers[SolutionBase<2>::n_source_centers]
-= { Point<2>(-0.5, +0.5), 
-    Point<2>(-0.5, -0.5), 
-    Point<2>(+0.5, -0.5)   };
-
-                                // There remains to assign a value to
-                                // the half-width of the
-                                // exponentials. We would like to use
-                                // the same value for all dimensions,
-                                // so here is how that works:
-template <int dim>
-const double SolutionBase<dim>::width = 1./3.;
-
-
-
-                                // After declaring and defining the
-                                // characteristics of solution and
-                                // right hand side, we can declare
-                                // the classes representing these
-                                // two. They both represent
-                                // continuous functions, so they are
-                                // derived from the ``Function<dim>''
-                                // base class, and they also inherit
-                                // the characteristics defined in the
-                                // ``SolutionBase'' class.
-                                //
-                                // The actual classes are declared in
-                                // the following. Note that in order
-                                // to compute the error of the
-                                // numerical solution against the
-                                // continuous one in the L2 and H1
-                                // norms, we have to export value and
-                                // gradient of the exact solution,
-                                // which is done by overloading the
-                                // respective virtual member
-                                // functions in the ``Function'' base
-                                // class.
-template <int dim>
-class Solution : public Function<dim>,
-                protected SolutionBase<dim>
-{
-  public:
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
-                                   const unsigned int  component = 0) const;
-};
-
-
-                                // The actual definition of the
-                                // values and gradients of the exact
-                                // solution class is according to
-                                // their mathematical definition and
-                                // probably needs not much
-                                // explanation.
-template <int dim>
-double Solution<dim>::value (const Point<dim>   &p,
-                            const unsigned int) const
-{
-  double return_value = 0;
-  for (unsigned int i=0; i<n_source_centers; ++i)
-    {
-                                      // One of the few things worth
-                                      // mentioning is the following
-                                      // variables, which represents
-                                      // the vector (x-x_i). It is
-                                      // computed in the way that one
-                                      // would intuitively expect:
-      const Point<dim> shifted_point = p-source_centers[i];
-      
-                                      // The ``Point<dim>'' class
-                                      // offers a member function
-                                      // ``square'' that does what
-                                      // it's name suggests.
-      return_value += exp(-shifted_point.square() / (width*width));
-    };
-  
-  return return_value;
-};
-
-
-
-template <int dim>
-Tensor<1,dim> Solution<dim>::gradient (const Point<dim>   &p,
-                                      const unsigned int) const
-{
-                                  // In order to accumulate the
-                                  // gradient from the contributions
-                                  // of the exponentials, we allocate
-                                  // an object which denotes the
-                                  // mathematical quantity of a
-                                  // tensor of rank ``1'' and
-                                  // dimension ``dim''. Its default
-                                  // constructor sets it to the
-                                  // vector containing only zeroes,
-                                  // so we need not explicitely care
-                                  // for its initialization.
-  Tensor<1,dim> return_value;
-                                  // Note that we could as well have
-                                  // taken the type of the object to
-                                  // be ``Point<dim>''. Tensors of
-                                  // rank 1 and points are almost
-                                  // exchangeable, and have only very
-                                  // slightly different mathematical
-                                  // meanings. In fact, the
-                                  // ``Point<dim>'' class is derived
-                                  // from the ``Tensor<1,dim>''
-                                  // class, which makes up for their
-                                  // mutual exchangeability.
-
-  for (unsigned int i=0; i<n_source_centers; ++i)
-    {
-      const Point<dim> shifted_point = p-source_centers[i];
-      
-                                      // For the gradient, note that
-                                      // it's direction is along
-                                      // (x-x_i), so we add up
-                                      // multiples of this distance
-                                      // vector, where the factor is
-                                      // given by the exponentials.
-      return_value += (-2 / (width*width) *
-                      exp(-shifted_point.square() / (width*width)) *
-                      shifted_point);
-    };
-  
-  return return_value;
-};
-
-
-
-                                // Besides the function that
-                                // represents the exact solution, we
-                                // also need a function which we can
-                                // use as right hand side when
-                                // assembling the linear system of
-                                // discretized equations. This is
-                                // accomplished using the following
-                                // class and the following definition
-                                // of its function. Note that here we
-                                // only need the value of the
-                                // function, not its gradients or
-                                // higher derivatives.
-template <int dim>
-class RightHandSide : public Function<dim>,
-                     protected SolutionBase<dim>
-{
-  public:
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
-
-
-                                // The value of the right hand side
-                                // is given by the negative Laplacian
-                                // of the solution plus the solution
-                                // itself, since we wanted to solve
-                                // Helmholtz's equation:
-template <int dim>
-double RightHandSide<dim>::value (const Point<dim>   &p,
-                                 const unsigned int) const
-{
-  double return_value = 0;
-  for (unsigned int i=0; i<n_source_centers; ++i)
-    {
-      const Point<dim> shifted_point = p-source_centers[i];
-      
-                                      // The first contribution is
-                                      // the Laplacian:
-      return_value += ((2*dim - 4*shifted_point.square()/(width*width)) / 
-                      (width*width) *
-                      exp(-shifted_point.square() / (width*width)));
-                                      // And the second is the
-                                      // solution itself:
-      return_value += exp(-shifted_point.square() / (width*width));
-    };
-  
-  return return_value;
-};
-
-
-
-                                // Then we need the class that does
-                                // all the work.
-//.......................
-template <int dim>
-class LaplaceProblem 
-{
-  public:
-//.........
-    enum RefinementMode {
-         global_refinement, adaptive_refinement
-    };
-    
-//.......
-    LaplaceProblem (const FiniteElement<dim> &fe,
-                   const RefinementMode      refinement_mode);
-    ~LaplaceProblem ();
-
-    void run ();
-    
-  private:
-//.......
-    void setup_system ();
-    void assemble_system ();
-    void solve ();
-    void refine_grid ();
-    void process_solution (const unsigned int cycle) const;
-
-    Triangulation<dim>                      triangulation;
-    DoFHandler<dim>                         dof_handler;
-
-                                    // The finite elements which the
-                                    // objects of this class operate
-                                    // on are passed to the
-                                    // constructor of this class. It
-                                    // has to store a pointer to the
-                                    // finite element for the member
-                                    // functions to use. Now, for the
-                                    // present class there is no big
-                                    // deal in that, but since we
-                                    // want to show techniques rather
-                                    // than solutions in these
-                                    // programs, we will here point
-                                    // out a problem that often
-                                    // occurs -- and of course the
-                                    // right solution as well.
-                                    //
-                                    // Consider the following
-                                    // situation that occurs in all
-                                    // the example programs: we have
-                                    // a triangulation object, and we
-                                    // have a finite element object,
-                                    // and we also have an object of
-                                    // type ``DoFHandler'' that uses
-                                    // both of the first two. These
-                                    // three objects all have a
-                                    // lifetime that is rather long
-                                    // compared to most other
-                                    // objects: they are basically
-                                    // set at the beginning of the
-                                    // program or an outer loop, and
-                                    // they are destroyed at the very
-                                    // end. The question is: can we
-                                    // guarantee that the two objects
-                                    // which the ``DoFHandler'' uses,
-                                    // live at least as long as they
-                                    // are in use? This means that
-                                    // the ``DoFHandler'' must have a
-                                    // kind of lock on the
-                                    // destruction of the other
-                                    // objects, and it can only
-                                    // release this lock once it has
-                                    // cleared all active references
-                                    // to these objects. We have seen
-                                    // what happens if we violate
-                                    // this order of destruction in
-                                    // the previous example program:
-                                    // an exception is thrown that
-                                    // terminates the program in
-                                    // order to notify the programmer
-                                    // of this potentially dangerous
-                                    // state where an object is
-                                    // pointed to that no longer
-                                    // persists.
-                                    //
-                                    // We will show here how the
-                                    // library managed to find out
-                                    // that there are still active
-                                    // references to an
-                                    // object. Basically, the method
-                                    // is along the following line:
-                                    // all objects that are subject
-                                    // to such potentially dangerous
-                                    // pointers are derived from a
-                                    // class called
-                                    // ``Subscriptor''. For example,
-                                    // the ``Triangulation'',
-                                    // ``DoFHandler'', and a base
-                                    // class of the ``FiniteElement''
-                                    // class are derived from
-                                    // ``Subscriptor``. This latter
-                                    // class does not offer much
-                                    // functionality, but it has a
-                                    // built-in counter which we can
-                                    // subscribe to, thus the name of
-                                    // the class. Whenever we
-                                    // initialize a pointer to that
-                                    // object, we can increase it use
-                                    // counter, and when we move away
-                                    // our pointer or do not need it
-                                    // any more, we decrease the
-                                    // counter again. This way, we
-                                    // can always check how many
-                                    // objects still use that
-                                    // object. If an object of a
-                                    // class that is derived from the
-                                    // ``Subscriptor'' class is
-                                    // destroyed, it also has to call
-                                    // the destructor of the
-                                    // ``Subscriptor'' class; this
-                                    // will then check whether the
-                                    // counter is really zero. If
-                                    // yes, then there are no active
-                                    // references to this object any
-                                    // more, and we can safely
-                                    // destroy it. If the counter is
-                                    // non-zero, however, then the
-                                    // destruction would result in
-                                    // stale and thus potentially
-                                    // dangerous pointers, and we
-                                    // rather throw an exception to
-                                    // alert the programmer that she
-                                    // is doing something dangerous
-                                    // and better had her program
-                                    // fixed.
-                                    //
-                                    // While this certainly all
-                                    // sounds very well, it has some
-                                    // problems in terms of
-                                    // usability: what happens if I
-                                    // forget to increase the counter
-                                    // when I let a pointer point to
-                                    // such an object? And what
-                                    // happens if I forget to
-                                    // decrease it again? Note that
-                                    // this may lead to extremely
-                                    // difficult to find bugs, since
-                                    // the place where we have
-                                    // forgotten something may be
-                                    // very far away from the place
-                                    // where the check for zeroness
-                                    // of the counter upon
-                                    // destruction actually
-                                    // fails. This kind of bug is
-                                    // very annoying and usually very
-                                    // hard to fix.
-                                    //
-                                    // The solution to this problem
-                                    // is to again use some C++
-                                    // trickery: we create a class
-                                    // that acts just like a pointer,
-                                    // i.e. can be dereferenced, can
-                                    // be assigned to and from other
-                                    // pointers, and so on. This can
-                                    // be done by overloading the
-                                    // several dereferencing
-                                    // operators of that
-                                    // class. Withing the
-                                    // constructors, destructors, and
-                                    // assignement operators of that
-                                    // class, we can however also
-                                    // manage increasing or
-                                    // decreasing the use counters of
-                                    // the objects we point
-                                    // to. Objects of that class
-                                    // therefore can be used just
-                                    // like ordinary pointers to
-                                    // objects, but they also serve
-                                    // to change the use counters of
-                                    // those objects without the need
-                                    // for the programmer to do so
-                                    // herself. The class that
-                                    // actually does all this is
-                                    // called ``SmartPointer'' and
-                                    // takes as template parameter
-                                    // the data type of the object
-                                    // which it shall point to. The
-                                    // latter type may be any class,
-                                    // as long as it is derived from
-                                    // the ``Subscriptor'' class.
-                                    //
-                                    // In the present example
-                                    // program, we protect object
-                                    // using the pointer to the
-                                    // finite element, i.e. the
-                                    // following member variable,
-                                    // from the situation that for
-                                    // some reason the finite element
-                                    // pointed to is destroyed while
-                                    // still in use. Note that the
-                                    // pointer is assigned at
-                                    // construction time of this
-                                    // object, and destroyed upon
-                                    // destruction of this object, so
-                                    // the lock on the destruction of
-                                    // the finite element object is
-                                    // basically all through the
-                                    // lifetime of this object.
-    SmartPointer<const FiniteElement<dim> > fe;
-
-                                    // The next few member variables
-                                    // are unspectacular, since they
-                                    // have already been discussed in
-                                    // detail:
-    ConstraintMatrix                        hanging_node_constraints;
-
-    SparsityPattern                         sparsity_pattern;
-    SparseMatrix<double>                    system_matrix;
-
-    Vector<double>                          solution;
-    Vector<double>                          system_rhs;
-//.............
-    RefinementMode                          refinement_mode;
-};
-
-
-
-//........
-template <int dim>
-LaplaceProblem<dim>::LaplaceProblem (const FiniteElement<dim> &fe,
-                                    const RefinementMode refinement_mode) :
-               dof_handler (triangulation),
-               fe (&fe),
-               refinement_mode (refinement_mode)
-{};
-
-
-
-template <int dim>
-LaplaceProblem<dim>::~LaplaceProblem () 
-{
-  dof_handler.clear ();
-};
-
-
-                                // The following function sets up the
-                                // degrees of freedom, sizes of
-                                // matrices and vectors, etc. Most of
-                                // its functionality has been showed
-                                // in previous examples, the only
-                                // difference being the renumbering
-                                // step.
-template <int dim>
-void LaplaceProblem<dim>::setup_system ()
-{
-  dof_handler.distribute_dofs (*fe);
-                                  // Renumbering the degrees of
-                                  // freedom is not overly difficult,
-                                  // as long as you use one of the
-                                  // algorithms included in the
-                                  // library. It requires just one
-                                  // line of code, namely the
-                                  // following:
-  DoFRenumbering::Cuthill_McKee (dof_handler);
-                                  // Note, however, that when you
-                                  // renumber the degrees of freedom,
-                                  // you must do so immediately after
-                                  // distributing them, since such
-                                  // things as hanging nodes, the
-                                  // sparsity pattern etc. depend on
-                                  // the absolute numbers which are
-                                  // altered by renumbering.
-                                  //
-                                  // Renumbering does not serve any
-                                  // specific purpose in this
-                                  // example, it is done only for
-                                  // exposition of the technique. To
-                                  // see the effect of renumbering on
-                                  // the sparsity pattern of the
-                                  // matrix, refer to the second
-                                  // example program.
-
-                                  // The rest of the function is
-                                  // almost identitcally taken over
-                                  // from previous examples:
-  hanging_node_constraints.clear ();
-  DoFTools::make_hanging_node_constraints (dof_handler,
-                                          hanging_node_constraints);
-  hanging_node_constraints.close ();
-
-  sparsity_pattern.reinit (dof_handler.n_dofs(),
-                          dof_handler.n_dofs(),
-                          dof_handler.max_couplings_between_dofs());
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-  hanging_node_constraints.condense (sparsity_pattern);
-  sparsity_pattern.compress();
-
-  system_matrix.reinit (sparsity_pattern);
-
-  solution.reinit (dof_handler.n_dofs());
-  system_rhs.reinit (dof_handler.n_dofs());
-};
-
-
-
-                                // Assembling the system of equations
-                                // for the problem at hand is mostly
-                                // as for the example programs
-                                // before. However, some things have
-                                // changed anyway, so we comment on
-                                // this function fairly extensively.
-template <int dim>
-void LaplaceProblem<dim>::assemble_system () 
-{  
-                                  // First we need to define objects
-                                  // which will be used as quadrature
-                                  // formula for domain and face
-                                  // integrals.
-                                  //
-                                  // Note the way in which we define
-                                  // a quadrature rule for the faces:
-                                  // it is simply a quadrature rule
-                                  // for one dimension less!
-  QGauss3<dim>   quadrature_formula;
-  QGauss3<dim-1> face_quadrature_formula;
-                                  // For simpler use later on, we
-                                  // alias the number of quadrature
-                                  // points to local variables:
-  const unsigned int n_q_points    = quadrature_formula.n_quadrature_points;
-  const unsigned int n_face_q_points = face_quadrature_formula.n_quadrature_points;
-  
-                                  // Then we need objects which can
-                                  // evaluate the values, gradients,
-                                  // etc of the shape functions at
-                                  // the quadrature points. While it
-                                  // seems that it should be feasible
-                                  // to do it with one object for
-                                  // both domain and face integrals,
-                                  // there is a subtle difference
-                                  // since the weights in the domain
-                                  // integrals include the measure of
-                                  // the cell in the domain, while
-                                  // the face integral quadrature
-                                  // requires the measure of the face
-                                  // in a lower-dimensional
-                                  // mannifold. Internally these two
-                                  // classes are rooted on a common
-                                  // base class which does most of
-                                  // the work; that, however, is
-                                  // something that you need not
-                                  // worry about.
-                                  //
-                                  // For the domain integrals in the
-                                  // bilinear form for Helmholtz's
-                                  // equation, we need to compute the
-                                  // values and gradients, as well as
-                                  // the weights at the quadrature
-                                  // points. Furthermore, we need the
-                                  // quadrature points on the real
-                                  // cell (rather than on the unit
-                                  // cell) to evaluate the right hand
-                                  // side function.
-  FEValues<dim>  fe_values (*fe, quadrature_formula, 
-                           UpdateFlags(update_values    |
-                                       update_gradients |
-                                       update_q_points  |
-                                       update_JxW_values));
-
-                                  // For the face integrals, we only
-                                  // need the values of the shape
-                                  // functions, as well as the
-                                  // weights. We also need the normal
-                                  // vectors and quadrature points on
-                                  // the real cell since we want to
-                                  // determine the Neumann values
-                                  // from the exact solution object
-                                  // (see below).
-  FEFaceValues<dim> fe_face_values (*fe, face_quadrature_formula, 
-                                   UpdateFlags(update_values         |
-                                               update_q_points       |
-                                               update_normal_vectors |
-                                               update_JxW_values));
-
-                                  // In order to make programming
-                                  // more readable below, we alias
-                                  // the number of degrees of freedom
-                                  // per cell to a local variable, as
-                                  // already done for the number of
-                                  // quadrature points above:
-  const unsigned int   dofs_per_cell = fe->dofs_per_cell;
-
-                                  // Then we need some objects
-                                  // already known from previous
-                                  // examples: An object denoting the
-                                  // right hand side function, its
-                                  // values at the quadrature points
-                                  // on a cell, the cell matrix and
-                                  // right hand side, and the indices
-                                  // of the degrees of freedom on a
-                                  // cell.
-  RightHandSide<dim>   right_hand_side;
-  vector<double>       rhs_values (n_q_points);
-
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       cell_rhs (dofs_per_cell);
-
-  vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-                                  // Then we define an object
-                                  // denoting the exact solution
-                                  // function. We will use it to
-                                  // compute the Neumann values at
-                                  // the boundary from it. Usually,
-                                  // one would of course do so using
-                                  // a separate object, in particular
-                                  // since the exact solution is not
-                                  // known while the Neumann values
-                                  // are prescribed. We will,
-                                  // however, be a little bit lazy
-                                  // and use what we already have in
-                                  // information. Real-life programs
-                                  // would to go other ways here, of
-                                  // course.
-  Solution<dim> exact_solution;
-
-                                  // Now for the main loop over all
-                                  // cells. This is mostly unchanged
-                                  // from previous examples, so we
-                                  // only comment on the things that
-                                  // have changed.
-  DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
-                                       endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      cell_matrix.clear ();
-      cell_rhs.clear ();
-
-      fe_values.reinit (cell);
-      const FullMatrix<double> 
-       & shape_values = fe_values.get_shape_values();
-      const vector<vector<Tensor<1,dim> > >
-       & shape_grads  = fe_values.get_shape_grads();
-      const vector<double>
-       & JxW_values   = fe_values.get_JxW_values();
-      const vector<Point<dim> >
-       & q_points     = fe_values.get_quadrature_points();
-
-      right_hand_side.value_list (q_points, rhs_values);
-      
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-       for (unsigned int i=0; i<dofs_per_cell; ++i)
-         {
-           for (unsigned int j=0; j<dofs_per_cell; ++j)
-                                              // The first thing that
-                                              // has changed is the
-                                              // bilinear form. It
-                                              // now contains the
-                                              // additional term from
-                                              // the Helmholtz
-                                              // equation, namely the
-                                              // scalar products of
-                                              // the two function
-                                              // values, rather than
-                                              // their gradients,
-                                              // which is the second
-                                              // term below:
-             cell_matrix(i,j) += ((shape_grads[i][q_point] *
-                                   shape_grads[j][q_point] *
-                                   JxW_values[q_point])
-                                  +
-                                  (shape_values(i,q_point) *
-                                   shape_values(j,q_point) *
-                                   JxW_values[q_point]));
-
-           cell_rhs(i) += (shape_values (i,q_point) *
-                           rhs_values [q_point] *
-                           fe_values.JxW (q_point));
-         };
-
-                                      // Then there is that second
-                                      // term on the right hand side,
-                                      // the contour integral. First
-                                      // we have to find out whether
-                                      // the intersection of the face
-                                      // of this cell with the
-                                      // boundary part Gamma2 is
-                                      // nonzero. To this end, we
-                                      // loop over all faces and
-                                      // check whether its boundary
-                                      // indicator equals ``1'',
-                                      // which is the value that we
-                                      // have assigned to that
-                                      // portions of the boundary
-                                      // composing Gamma2 in a
-                                      // function further below. The
-                                      // default value of boundary
-                                      // indicators is ``0'' for
-                                      // external faces, and ``255''
-                                      // for internal faces (the
-                                      // latter value should never be
-                                      // changed, and there is also
-                                      // no need to do so), so faces
-                                      // can only have an indicator
-                                      // equal to ``1'' if we have
-                                      // explicitely set it.
-      for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
-       if (cell->face(face)->boundary_indicator() == 1)
-         {
-                                            // If we came into here,
-                                            // then we have found an
-                                            // external face
-                                            // belonging to
-                                            // Gamma2. Next, we have
-                                            // to compute the values
-                                            // of the shape functions
-                                            // and the other
-                                            // quantities which we
-                                            // will need for the
-                                            // computation of the
-                                            // contour integral. This
-                                            // is done using the
-                                            // ``reinit'' function
-                                            // which we already know
-                                            // from the ``FEValue''
-                                            // class:
-           fe_face_values.reinit (cell, face);
-
-                                            // Then, for simpler
-                                            // access, we alias the
-                                            // various quantities to
-                                            // local variables:
-           const FullMatrix<double> 
-             & face_shape_values   = fe_face_values.get_shape_values();
-           const vector<double>
-             & face_JxW_values     = fe_face_values.get_JxW_values();
-           const vector<Point<dim> >
-             & face_q_points       = fe_face_values.get_quadrature_points();
-           const vector<Point<dim> >
-             & face_normal_vectors = fe_face_values.get_normal_vectors ();
-
-                                            // And we can then
-                                            // perform the
-                                            // integration by using a
-                                            // loop over all
-                                            // quadrature points.
-           for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
-             {
-                                                // On each quadrature
-                                                // point, we first
-                                                // compute the value
-                                                // of the normal
-                                                // derivative. We do
-                                                // so using the
-                                                // gradient of the
-                                                // exact solution and
-                                                // the normal vector
-                                                // to the face at the
-                                                // present quadrature
-                                                // point:
-               const double neumann_value
-                 = (exact_solution.gradient (face_q_points[q_point]) *
-                    face_normal_vectors[q_point]);
-
-                                                // Using this, we can
-                                                // compute the
-                                                // contribution of
-                                                // this face for each
-                                                // shape function:
-               for (unsigned int i=0; i<dofs_per_cell; ++i)
-                 cell_rhs(i) += (neumann_value *
-                                 face_shape_values(i,q_point) *
-                                 face_JxW_values[q_point]);
-             };
-         };
-
-                                      // Now that we have the
-                                      // contributions of the present
-                                      // cell, we can transfer it to
-                                      // the global matrix and right
-                                      // hand side vector, as in the
-                                      // examples before.
-      cell->get_dof_indices (local_dof_indices);
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       {
-         for (unsigned int j=0; j<dofs_per_cell; ++j)
-           system_matrix.add (local_dof_indices[i],
-                              local_dof_indices[j],
-                              cell_matrix(i,j));
-         
-         system_rhs(local_dof_indices[i]) += cell_rhs(i);
-       };
-    };
-
-                                  // The rest of the function has
-                                  // also been shown previously:
-  hanging_node_constraints.condense (system_matrix);
-  hanging_node_constraints.condense (system_rhs);
-
-                                  // Only with the interpolation of
-                                  // boundary values, there is one
-                                  // notable thing, namely that now
-                                  // the boundary indicator for which
-                                  // we interpolate boundary values
-                                  // (denoted by the second parameter
-                                  // to
-                                  // ``interpolate_boundary_values'')
-                                  // does not represent the whole
-                                  // boundary an more. Rather, it is
-                                  // that portion of the boundary
-                                  // which we have not assigned
-                                  // another indicator (see
-                                  // below). The degrees of freedom
-                                  // at the boundary that do not
-                                  // belong to Gamma1 are therefore
-                                  // excluded from the interpolation
-                                  // of boundary values.
-  map<unsigned int,double> boundary_values;
-  VectorTools::interpolate_boundary_values (dof_handler,
-                                           0,
-                                           Solution<dim>(),
-                                           boundary_values);
-  MatrixTools<dim>::apply_boundary_values (boundary_values,
-                                          system_matrix,
-                                          solution,
-                                          system_rhs);
-};
-
-
-                                // Solving the system of equations is
-                                // done in the same way as before.
-template <int dim>
-void LaplaceProblem<dim>::solve () 
-{
-  SolverControl           solver_control (1000, 1e-12);
-  PrimitiveVectorMemory<> vector_memory;
-  SolverCG<>              cg (solver_control, vector_memory);
-
-  PreconditionRelaxation<>
-    preconditioner(system_matrix,
-                  &SparseMatrix<double>::template precondition_SSOR<double>,
-                  1.2);
-
-  cg.solve (system_matrix, solution, system_rhs,
-           preconditioner);
-
-  hanging_node_constraints.distribute (solution);
-};
-
-
-//.....................                                 
-template <int dim>
-void LaplaceProblem<dim>::refine_grid ()
-{
-  switch (refinement_mode) 
-    {
-      case global_refinement:
-      {
-       triangulation.refine_global (1);
-       break;
-      };
-       
-      case adaptive_refinement:
-      {
-       Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
-
-       KellyErrorEstimator<dim>::FunctionMap neumann_boundary;
-       KellyErrorEstimator<dim>::estimate (dof_handler,
-                                           QGauss3<dim-1>(),
-                                           neumann_boundary,
-                                           solution,
-                                           estimated_error_per_cell);
-
-       triangulation.refine_and_coarsen_fixed_number (estimated_error_per_cell,
-                                                      0.3, 0.03);
-       
-       triangulation.execute_coarsening_and_refinement ();
-
-       break;
-      };
-    };
-};
-
-//...............
-template <int dim>
-void LaplaceProblem<dim>::process_solution (const unsigned int cycle) const
-{
-  Vector<float> difference_per_cell (triangulation.n_active_cells());
-  
-  VectorTools::integrate_difference (dof_handler,
-                                    solution,
-                                    Solution<dim>(),
-                                    difference_per_cell,
-                                    QGauss3<dim>(),
-                                    L2_norm);
-  const double L2_error = difference_per_cell.l2_norm();
-
-  VectorTools::integrate_difference (dof_handler,
-                                    solution,
-                                    Solution<dim>(),
-                                    difference_per_cell,
-                                    QGauss3<dim>(),
-                                    H1_seminorm);
-  const double H1_error = difference_per_cell.l2_norm();
-
-  VectorTools::integrate_difference (dof_handler,
-                                    solution,
-                                    Solution<dim>(),
-                                    difference_per_cell,
-                                    QGauss3<dim>(),
-                                    Linfty_norm);
-  const double Linfty_error = difference_per_cell.linfty_norm();
-  
-  cout << "Cycle " << cycle << ':' 
-       << endl
-       << "   Number of active cells:       "
-       << triangulation.n_active_cells()
-       << endl
-       << "   Number of degrees of freedom: "
-       << dof_handler.n_dofs()
-       << endl;
-
-  cout << "   L2     error: " << L2_error      << endl
-       << "   H1     error: " << H1_error      << endl
-       << "   Linfty error: " << Linfty_error  << endl;
-};
-
-
-
-                                // The following function is the main
-                                // one which controls the flow of
-                                // execution. The basic layout is as
-                                // in previous examples: an outer
-                                // loop over successively refined
-                                // grids, and in this loop first
-                                // problem setup, assemblage of the
-                                // linear system, solution, and
-                                // postprocessing.
-template <int dim>
-void LaplaceProblem<dim>::run () 
-{
-  for (unsigned int cycle=0; cycle<9; ++cycle)
-    {
-                                      // The first action in each
-                                      // iteration of the outer loop
-                                      // is setting up the grid on
-                                      // which we will solve in this
-                                      // iteration. In the first
-                                      // iteration, the coarsest grid
-                                      // is generated, in later
-                                      // iterations it is refined,
-                                      // for which we call the
-                                      // ``refine_grid'' function.
-      if (cycle == 0)
-       {
-                                          // Setting up the coarse
-                                          // grid is done as in
-                                          // previous examples: we
-                                          // first create an initial
-                                          // grid, which is the unit
-                                          // square [-1,1]x[-1,1] in
-                                          // the present case. Then
-                                          // we refine it globally a
-                                          // specific number of
-                                          // times.
-         GridGenerator::hyper_cube (triangulation, -1, 1);
-         triangulation.refine_global (1);
-
-                                          // However, here we have to
-                                          // do something else in
-                                          // addition: mark those
-                                          // faces that belong to the
-                                          // different components of
-                                          // the boundary, Gamma1 and
-                                          // Gamma2. We will use the
-                                          // following convention:
-                                          // Faces belonging to
-                                          // Gamma1 will have the
-                                          // boundary indicator ``0''
-                                          // (which is the default,
-                                          // so we don't have to set
-                                          // it explicitely), and
-                                          // faces belonging to
-                                          // Gamma2 will use ``1'' as
-                                          // boundary indicator.
-                                          //
-                                          // To set these values, we
-                                          // loop over all cells,
-                                          // then over all faces of a
-                                          // given cell, check
-                                          // whether it belongs to
-                                          // the boundary Gamma2, and
-                                          // if so set its boundary
-                                          // indicator to ``1''.
-                                          //
-                                          // It is worth noting that
-                                          // we have to loop over all
-                                          // cells here, not only the
-                                          // active ones. The reason
-                                          // is that upon refinement,
-                                          // newly created faces
-                                          // inherit the boundary
-                                          // indicator of their
-                                          // parent face. If we now
-                                          // only set the boundary
-                                          // indicator for active
-                                          // faces, coarsen some
-                                          // cells and refine them
-                                          // later on, they will
-                                          // again have the boundary
-                                          // indicator of the parent
-                                          // cell which we have not
-                                          // modified, instead of the
-                                          // one we
-                                          // intended. Therefore, we
-                                          // have to change the
-                                          // boundary indicators of
-                                          // all faces on Gamma2,
-                                          // irrespective whether
-                                          // they are active or not.
-         Triangulation<dim>::cell_iterator cell = triangulation.begin (),
-                                           endc = triangulation.end();
-         for (; cell!=endc; ++cell)
-           for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
-             if ((cell->face(face)->center()(0) == -1)
-                 ||
-                 (cell->face(face)->center()(1) == -1))
-               cell->face(face)->set_boundary_indicator (1);
-       }
-      else
-                                        // If this is not the first
-                                        // step, the we call
-                                        // ``refine_grid'' to
-                                        // actually refine the grid
-                                        // according to the
-                                        // refinement mode passed to
-                                        // the constructor.
-       refine_grid ();      
-
-                                      // The next steps you already
-                                      // know from previous
-                                      // examples. This is mostly the
-                                      // basic set-up of every finite
-                                      // element program:
-      setup_system ();
-      
-      assemble_system ();
-      solve ();
-
-                                      // The last step in this chain
-                                      // of function calls is usually
-                                      // evaluation of the computed
-                                      // solution for the quantities
-                                      // one is interested in. This
-                                      // is done in the following
-                                      // function. We pass the number
-                                      // of the loop iteration since
-                                      // that might be of interest to
-                                      // see in the logs which this
-                                      // function produces.
-      process_solution (cycle);
-    };
-  
-                                  // After the last iteration we
-                                  // output the solution on the
-                                  // finest grid. This is done using
-                                  // the following sequence of
-                                  // statements which you have
-                                  // already seen in previous
-                                  // examples:
-  string filename;
-  switch (refinement_mode)
-    {
-      case global_refinement:
-           filename = "solution-global";
-           break;
-      case adaptive_refinement:
-           filename = "solution-adaptive";
-           break;
-      default:
-           Assert (false, ExcInternalError());
-    };
-  filename += ".gmv";
-           
-  ofstream output (filename.c_str());
-
-
-  DataOut<dim> data_out;
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (solution, "solution");
-  data_out.build_patches ();
-  data_out.write_gmv (output);
-};
-
-
-//.................
-int main () 
-{
-  try
-    {
-      deallog.depth_console (0);
-
-      FEQ1<2> fe;
-      LaplaceProblem<2> laplace_problem_2d (fe, LaplaceProblem<2>::adaptive_refinement);
-      laplace_problem_2d.run ();
-    }
-  catch (exception &exc)
-    {
-      cerr << endl << endl
-          << "----------------------------------------------------"
-          << endl;
-      cerr << "Exception on processing: " << endl
-          << exc.what() << endl
-          << "Aborting!" << endl
-          << "----------------------------------------------------"
-          << endl;
-      return 1;
-    }
-  catch (...) 
-    {
-      cerr << endl << endl
-          << "----------------------------------------------------"
-          << endl;
-      cerr << "Unknown exception!" << endl
-          << "Aborting!" << endl
-          << "----------------------------------------------------"
-          << endl;
-      return 1;
-    };
-
-  return 0;
-};
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-8/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-8/Makefile
deleted file mode 100644 (file)
index 4459137..0000000
+++ /dev/null
@@ -1,167 +0,0 @@
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g   = $(lib-deal2-2d.g) \
-          $(lib-lac.g)      \
-           $(lib-base.g)
-libs.o   = $(lib-deal2-2d.o) \
-          $(lib-lac.o)      \
-           $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
-  libraries = $(target).go $(libs.g)
-  flags     = $(CXXFLAGS.g)
-else
-  libraries = $(target).go $(libs.o)
-  flags     = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
-  libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
-       @echo ============================ Linking $@
-       @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
-       @echo ============================ Running $<
-       @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
-       -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
-       @echo ==============debug========= $(<F)
-       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
-       @echo ==============optimized===== $(<F)
-       @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script.  Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
-              $(shell echo $(include-path-base)/base/*.h    \
-                           $(include-path-lac)/lac/*.h      \
-                           $(include-path-deal2)/*/*.h)
-       @echo ============================ Remaking Makefile
-       @perl $D/common/scripts/make_dependencies.pl  $(INCLUDE) $(target).cc \
-               | perl -pi -e 's!lib/g?o/!!g;' \
-               > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-8/step-8.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-8/step-8.cc
deleted file mode 100644 (file)
index 51f6741..0000000
+++ /dev/null
@@ -1,1077 +0,0 @@
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 2000 */
-
-                                // As usual, the first few include
-                                // files are already known, so we
-                                // will not comment on them further.
-#include <base/quadrature_lib.h>
-#include <base/function.h>
-#include <base/logstream.h>
-#include <lac/vector.h>
-#include <lac/full_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/solver_cg.h>
-#include <lac/vector_memory.h>
-#include <lac/precondition.h>
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <grid/grid_generator.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_boundary_lib.h>
-#include <dofs/dof_accessor.h>
-#include <dofs/dof_tools.h>
-#include <fe/fe_values.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
-#include <numerics/data_out.h>
-#include <dofs/dof_constraints.h>
-#include <numerics/error_estimator.h>
-
-                                // In this example, we need
-                                // vector-valued finite elements. The
-                                // support for these can be found in
-                                // the following include file:
-#include <fe/fe_system.h>
-                                // We will compose the vector-valued
-                                // finite elements from regular Q1
-                                // elements which can be found here,
-                                // as usual:
-#include <fe/fe_lib.lagrange.h>
-
-                                // This again is C++:
-#include <fstream>
-
-
-                                // The main class is, except for its
-                                // name, almost unchanged with
-                                // respect to the step-6 example. The
-                                // only change is the use of a
-                                // different class for the ``fe''
-                                // variable.
-template <int dim>
-class ElasticProblem 
-{
-  public:
-    ElasticProblem ();
-    ~ElasticProblem ();
-    void run ();
-    
-  private:
-    void setup_system ();
-    void assemble_system ();
-    void solve ();
-    void refine_grid ();
-    void output_results (const unsigned int cycle) const;
-
-    Triangulation<dim>   triangulation;
-    DoFHandler<dim>      dof_handler;
-
-                                    // Instead of a concrete finite
-                                    // element class such as
-                                    // ``FEQ1'', we now use a more
-                                    // generic one, ``FESystem''. In
-                                    // fact, it is not a finite
-                                    // element itself, but rather a
-                                    // class that can be used to
-                                    // stack several usual elements
-                                    // together to form one
-                                    // vector-valued finite
-                                    // element. In our case, we will
-                                    // compose the vector-valued
-                                    // element of ``FEQ1'' objects,
-                                    // as shown below in the
-                                    // constructor of this class.
-    FESystem<dim>        fe;
-
-    ConstraintMatrix     hanging_node_constraints;
-
-    SparsityPattern      sparsity_pattern;
-    SparseMatrix<double> system_matrix;
-
-    Vector<double>       solution;
-    Vector<double>       system_rhs;
-};
-
-
-                                // Before going over to the
-                                // implementation of the main class,
-                                // we declare and define the class
-                                // which describes the right hand
-                                // side. This time, the right hand
-                                // side is vector-valued, as is the
-                                // solution, so we will describe the
-                                // new elements in some more detail.
-template <int dim>
-class RightHandSide :  public Function<dim> 
-{
-  public:
-                                    // The first thing is that
-                                    // vector-valued functions have a
-                                    // constructor, since they need
-                                    // to pass down to the base class
-                                    // of how many components the
-                                    // function consists. The default
-                                    // value in the constructor of
-                                    // the base class is one, so we
-                                    // need not define a constructor
-                                    // for the usual scalar function.
-    RightHandSide ();
-    
-                                    // The next function is a
-                                    // replacement for the ``value''
-                                    // function of the previous
-                                    // examples. There, a second
-                                    // parameter ``component'' was
-                                    // given, which denoted which
-                                    // component was requested. Here,
-                                    // we implement a function that
-                                    // returns the whole vector of
-                                    // values at the given place at
-                                    // once.
-    virtual void vector_value (const Point<dim> &p,
-                              Vector<double>   &values) const;
-
-                                    // Then, in analogy to the
-                                    // ``value_list'' function, there
-                                    // is a function
-                                    // ``vector_value_list'', which
-                                    // returns the values of the
-                                    // vector-valued function at
-                                    // several points at once:
-    virtual void vector_value_list (const vector<Point<dim> > &points,
-                                   vector<Vector<double> >   &value_list) const;
-};
-
-
-                                // This is the constructor of the
-                                // right hand side class. As said
-                                // above, it only passes down to the
-                                // base class the number of
-                                // components, which is ``dim'' in
-                                // the present case. Note that
-                                // although the implementation is
-                                // very short here, we do not move it
-                                // into the class declaration, since
-                                // our style guides require that
-                                // inside the class declaration only
-                                // declarations have to happen and
-                                // that definitions are always to be
-                                // found outside.
-template <int dim>
-RightHandSide<dim>::RightHandSide () :
-               Function<dim> (dim)
-{};
-
-
-                                // This is the function that returns
-                                // the whole vector of values at the
-                                // point ``p'' at once:
-template <int dim>
-inline
-void RightHandSide<dim>::vector_value (const Point<dim> &p,
-                                      Vector<double>   &values) const 
-{
-                                  // To prevent cases where the
-                                  // return value has not previously
-                                  // been set to the right size
-                                  // (which is kind of a convention
-                                  // in the deal.II library), we test
-                                  // for this case and otherwise
-                                  // throw an exception:
-  Assert (values.size() == dim, 
-         ExcVectorHasWrongSize (values.size(), dim));
-                                  // Likewise, if by some accident
-                                  // someone tried to compile and run
-                                  // the program in only one space
-                                  // dimension (in which the elastic
-                                  // equations do not make much sense
-                                  // since they reduce to the
-                                  // ordinary Laplace equation), we
-                                  // terminate the program if the
-                                  // dimension is not as expected.
-  Assert (dim >= 2, ExcInternalError());
-  
-                                  // The rest of the function is as
-                                  // would probably be expected given
-                                  // the form of the right hand side
-                                  // function. First we define the
-                                  // centers of the two points around
-                                  // which are the sources of
-                                  // x-displacement, i.e. (0.5,0) and
-                                  // (-0.5,0). Note that upon
-                                  // construction of the ``Point''
-                                  // objects, all components are set
-                                  // to zero.
-  Point<dim> point_1, point_2;
-  point_1(0) = 0.5;
-  point_2(0) = -0.5;
-  
-                                  // If now the point ``p'' is in the
-                                  // circle of radius 0.2 around one
-                                  // of these points, then set the
-                                  // force in x-direction to one,
-                                  // otherwise to zero:
-  if (((p-point_1).square() < 0.2*0.2) ||
-      ((p-point_2).square() < 0.2*0.2))
-    values(0) = 1;
-  else
-    values(0) = 0;
-  
-                                  // Likewise, if ``p'' is in the
-                                  // vicinity of the origin, then set
-                                  // the y-force to 1, otherwise to
-                                  // zero:
-  if (p.square() < 0.2*0.2)
-    values(1) = 1;
-  else
-    values(1) = 0;    
-};
-
-
-
-                                // Now, this is the function of the
-                                // right hand side class that returns
-                                // the values at several points at
-                                // once.
-template <int dim>
-void RightHandSide<dim>::vector_value_list (const vector<Point<dim> > &points,
-                                           vector<Vector<double> >   &value_list) const 
-{
-                                  // First we define an abbreviation
-                                  // for the number of points which
-                                  // we shall work on:
-  const unsigned int n_points = points.size();
-
-                                  // Then we check whether the number
-                                  // of output slots has been set
-                                  // correctly, i.e. to the number of
-                                  // input points:
-  Assert (value_list.size() == n_points, 
-         ExcVectorHasWrongSize (value_list.size(), n_points));
-
-                                  // Finally we treat each of the
-                                  // points. In one of the previous
-                                  // examples, we have explained why
-                                  // the
-                                  // ``value_list''/``vector_value_list''
-                                  // function had been introduced: to
-                                  // prevent us from calling virtual
-                                  // functions too frequently. On the
-                                  // other hand, we now need to
-                                  // implement the same function
-                                  // twice, which can lead to
-                                  // confusion if one function is
-                                  // changed but the other is
-                                  // not. However, we can prevent
-                                  // this situation using the
-                                  // following construct:
-  for (unsigned int p=0; p<n_points; ++p)
-    RightHandSide<dim>::vector_value (points[p],
-                                     value_list[p]);
-                                  // It calls the ``vector_value''
-                                  // function defined above for each
-                                  // point, and thus preempts all
-                                  // chances for inconsistency. It is
-                                  // important to note how the
-                                  // function was called: using the
-                                  // full class qualification using
-                                  // ``RightHandSide::'', since this
-                                  // calls the function directly and
-                                  // not using the virtual function
-                                  // table. The call is thus as fast
-                                  // as a call to any non-virtual
-                                  // function. In addition, we have
-                                  // declared the ``vector_value''
-                                  // function ``inline'', i.e. the
-                                  // compiler can remove the function
-                                  // call altogether and the
-                                  // resulting code can in principle
-                                  // be as fast as if we had
-                                  // duplicated the code.
-};
-
-
-
-
-template <int dim>
-ElasticProblem<dim>::ElasticProblem () :
-               dof_handler (triangulation),
-                                                // As said before, we
-                                                // would like to
-                                                // construct one
-                                                // vector-valued
-                                                // finite element as
-                                                // outer product of
-                                                // several scala
-                                                // finite
-                                                // elements. Of
-                                                // course, the number
-                                                // of scalar finite
-                                                // element we would
-                                                // like to stack
-                                                // together equals
-                                                // the number of
-                                                // components the
-                                                // solution function
-                                                // has, which is
-                                                // ``dim'' since we
-                                                // consider
-                                                // displacement in
-                                                // each space
-                                                // direction. The
-                                                // ``FESystem'' class
-                                                // can handle this:
-                                                // we pass it the
-                                                // finite element of
-                                                // which we would
-                                                // like to compose
-                                                // the system of, and
-                                                // how often it shall
-                                                // be repeated:
-               fe (FEQ1<dim>(), dim)
-                                // In fact, the ``FESystem'' class
-                                // has several more constructors
-                                // which can perform more complex
-                                // operations that just stacking
-                                // together several scalar finite
-                                // elements of the same type into
-                                // one; we will get to know these
-                                // possibilities in later examples.
-                                //
-                                // It should be noted that the
-                                // ``FESystem'' object thus created
-                                // does not actually use the finite
-                                // element which we have passed to it
-                                // as first parameter. We could thus
-                                // use an anonymous object created
-                                // in-place. The ``FESystem''
-                                // constructor only needs the
-                                // parameter to deduce the type of
-                                // the finite element from this and
-                                // then creates objects of the
-                                // underlying finite element type
-                                // itself.
-{};
-
-
-
-template <int dim>
-ElasticProblem<dim>::~ElasticProblem () 
-{
-  dof_handler.clear ();
-};
-
-
-                                // Setting up the system of equations
-                                // is equal to the function used in
-                                // the step-6 example. The
-                                // ``DoFHandler'' class and all other
-                                // classes used take care of the
-                                // vector-valuedness of the finite
-                                // element themselves (in fact, the
-                                // do not do so, since they only take
-                                // care how many degrees of freedom
-                                // there are per vertex, line and
-                                // cell, and they do not askwhat they
-                                // represent, i.e. whether the finite
-                                // element under consideration is
-                                // vector-valued or whether it is,
-                                // for example, a scalar Hermite
-                                // element with several degrees of
-                                // freedom on each vertex).
-template <int dim>
-void ElasticProblem<dim>::setup_system ()
-{
-  dof_handler.distribute_dofs (fe);
-  hanging_node_constraints.clear ();
-  DoFTools::make_hanging_node_constraints (dof_handler,
-                                          hanging_node_constraints);
-  hanging_node_constraints.close ();
-  sparsity_pattern.reinit (dof_handler.n_dofs(),
-                          dof_handler.n_dofs(),
-                          dof_handler.max_couplings_between_dofs());
-                                  // When making the sparsity
-                                  // pattern, there is some potential
-                                  // for optimization if not all
-                                  // components couple to all
-                                  // others. However, this is not the
-                                  // case for the elastic equations,
-                                  // so we use the standard call:
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-
-  hanging_node_constraints.condense (sparsity_pattern);
-
-  sparsity_pattern.compress();
-
-  system_matrix.reinit (sparsity_pattern);
-
-  solution.reinit (dof_handler.n_dofs());
-  system_rhs.reinit (dof_handler.n_dofs());
-};
-
-
-                                // The big changes in this program
-                                // are in the creation of matrix and
-                                // right hand side, since they are
-                                // problem-dependent. We will go
-                                // through that process step-by-step,
-                                // since it is a bit more complicated
-                                // than in previous examples.
-template <int dim>
-void ElasticProblem<dim>::assemble_system () 
-{  
-                                  // First thing: the quadrature
-                                  // formula does not need
-                                  // modification since we still deal
-                                  // with bilinear functions.
-  QGauss2<dim>  quadrature_formula;
-                                  // Also, the ``FEValues'' objects
-                                  // takes care of everything for us
-                                  // (or better: it does not really
-                                  // so; as in the comment in the
-                                  // function setting up the system,
-                                  // here as well the ``FEValues''
-                                  // object computes the same data on
-                                  // each cell, but it has some
-                                  // functionality to access data
-                                  // stored inside the finite element
-                                  // where they are precomputed upon
-                                  // construction).
-  FEValues<dim> fe_values (fe, quadrature_formula, 
-                          UpdateFlags(update_values    |
-                                      update_gradients |
-                                      update_q_points  |
-                                      update_JxW_values));
-
-                                  // The number of degrees of freedom
-                                  // per cell we now obviously ask
-                                  // from the composed finite element
-                                  // rather than from the underlying
-                                  // scalar Q1 element. Here, it is
-                                  // ``dim'' times the number of
-                                  // degrees of freedom per cell of
-                                  // the Q1 element, but this is not
-                                  // something we need to care about.
-  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int   n_q_points    = quadrature_formula.n_quadrature_points;
-
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       cell_rhs (dofs_per_cell);
-
-  vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-                                  // As was shown in previous
-                                  // examples as well, we need a
-                                  // place where to store the values
-                                  // of the coefficients at all the
-                                  // quadrature points on a cell. In
-                                  // the present situation, we have
-                                  // two coefficients, lambda and mu.
-  vector<double>     lambda_values (n_q_points);
-  vector<double>     mu_values (n_q_points);
-
-                                  // Well, we could as well have
-                                  // omitted the above two arrays
-                                  // since we will use constant
-                                  // coefficients for both lambda and
-                                  // mu, which can be declared like
-                                  // this. They both represent
-                                  // functions always returning the
-                                  // constant value 1.0. Although we
-                                  // could omit the respective
-                                  // factors in the assemblage of the
-                                  // matrix, we use them here for
-                                  // purpose of demonstration.
-  ConstantFunction<dim> lambda(1.), mu(1.);
-
-                                  // Then again, we need to have the
-                                  // same for the right hand
-                                  // side. This is exactly as before
-                                  // in previous examples. However,
-                                  // we now have a vector-valued
-                                  // right hand side, which is why
-                                  // the data type of the
-                                  // ``rhs_values'' array is
-                                  // changed. We initialize it by
-                                  // ``n_q_points'' elements, each of
-                                  // which is a ``Vector<double>''
-                                  // with ``dim'' elements.
-  RightHandSide<dim>      right_hand_side;
-  vector<Vector<double> > rhs_values (n_q_points,
-                                     Vector<double>(dim));
-
-
-                                  // Now we can begin with the loop
-                                  // over all cells:
-  DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
-                                       endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      cell_matrix.clear ();
-      cell_rhs.clear ();
-
-      fe_values.reinit (cell);
-
-                                      // As in previous examples, we
-                                      // define some abbreviations
-                                      // for the various data that
-                                      // the ``FEValues'' class
-                                      // offers:
-      const FullMatrix<double> 
-       & shape_values = fe_values.get_shape_values();
-      const vector<vector<Tensor<1,dim> > >
-       & shape_grads  = fe_values.get_shape_grads();
-      const vector<double>
-       & JxW_values   = fe_values.get_JxW_values();
-      const vector<Point<dim> >
-       & q_points     = fe_values.get_quadrature_points();
-      
-                                      // Next we get the values of
-                                      // the coefficients at the
-                                      // quadrature points:
-      lambda.value_list (q_points, lambda_values);
-      mu.value_list     (q_points, mu_values);
-
-                                      // Then assemble the entries of
-                                      // the local stiffness matrix
-                                      // and right hand side
-                                      // vector. This follows almost
-                                      // one-to-one the pattern
-                                      // described in the
-                                      // introduction of this example
-                                      // and will not comment much on
-                                      // this.
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       {
-                                          // One of the few comments
-                                          // in place is how we acces
-                                          // the function ``comp(i)''
-                                          // used in the
-                                          // introduction. This is
-                                          // possible as follows:
-         const unsigned int 
-           component_i = fe.system_to_component_index(i).first;
-                                          // By accessing the
-                                          // ``first'' variable of
-                                          // the return value of the
-                                          // ``system_to_component_index''
-                                          // function, you might
-                                          // already have guessed
-                                          // that there is more in
-                                          // it. In fact, the
-                                          // function returns a
-                                          // ``pair<unsigned int,
-                                          // unsigned int>'', of
-                                          // which the first element
-                                          // is ``comp(i)'' and the
-                                          // second is the value
-                                          // ``base(i)'' also noted
-                                          // in the text. You will
-                                          // rather seldom need to
-                                          // access this second
-                                          // value, but the first is
-                                          // important when using
-                                          // vector valued elements.
-         
-         for (unsigned int j=0; j<dofs_per_cell; ++j) 
-           {
-             const unsigned int 
-               component_j = fe.system_to_component_index(j).first;
-             
-             for (unsigned int q_point=0; q_point<n_q_points;
-                  ++q_point)
-               {
-                                                  // Now add up the
-                                                  // contribution of
-                                                  // this cell to the
-                                                  // local matrix:
-                 cell_matrix(i,j) 
-                   += 
-                                                    // This first term is
-                                                    // ((lambda+mu) d_i u_i, d_j v_j).
-                                                    // Note that
-                                                    // ``shape_grads[i][q_point]''
-                                                    // returns the
-                                                    // gradient of
-                                                    // the ith shape
-                                                    // function at
-                                                    // quadrature
-                                                    // point
-                                                    // q_point. The
-                                                    // component
-                                                    // ``comp(i)'',
-                                                    // which is the
-                                                    // derivative of
-                                                    // the ith shape
-                                                    // function with
-                                                    // respect to the
-                                                    // comp(i)th
-                                                    // coordinate is
-                                                    // accessed by
-                                                    // the appended
-                                                    // brackets.
-                   (
-                     (shape_grads[i][q_point][component_i] *
-                      shape_grads[j][q_point][component_j] *
-                      (lambda_values[q_point] +
-                       mu_values[q_point]))
-                     +
-                                                      // The second term is
-                                                      // (mu nabla u_i, nabla v_j).
-                                                      // We need not
-                                                      // access a
-                                                      // specific
-                                                      // component of
-                                                      // the
-                                                      // gradient,
-                                                      // since we
-                                                      // only have to
-                                                      // compute the
-                                                      // scalar
-                                                      // product of
-                                                      // the two
-                                                      // gradients,
-                                                      // of which an
-                                                      // overloaded
-                                                      // version of
-                                                      // the
-                                                      // operator*
-                                                      // takes care,
-                                                      // as in
-                                                      // previous
-                                                      // examples.
-                                                      //
-                                                      // Note that by
-                                                      // using the ?:
-                                                      // operator, we
-                                                      // only do this
-                                                      // if comp(i)
-                                                      // equals
-                                                      // comp(j),
-                                                      // otherwise a
-                                                      // zero is
-                                                      // added (which
-                                                      // will be
-                                                      // optimized
-                                                      // away by the
-                                                      // compiler).
-                     ((component_i == component_j) ?
-                      (shape_grads[i][q_point] *
-                       shape_grads[j][q_point] *
-                       mu_values[q_point])  :
-                      0)
-                   )
-                   *
-                   JxW_values[q_point];
-               };
-           };
-       };
-
-                                      // Assembling the right hand
-                                      // side is also just as
-                                      // discussed in the
-                                      // introduction. We will
-                                      // therefore not discuss it
-                                      // further.
-      right_hand_side.vector_value_list (q_points, rhs_values);
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       {
-         const unsigned int 
-           component_i = fe.system_to_component_index(i).first;
-         
-         for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-           cell_rhs(i) += shape_values(i,q_point) *
-                          rhs_values[q_point](component_i) *
-                          JxW_values[q_point];
-       };
-
-                                      // The transfer from local
-                                      // degrees of freedom into the
-                                      // global matrix and right hand
-                                      // side vector does not depend
-                                      // on the equation under
-                                      // consideration, and is thus
-                                      // the same as in all previous
-                                      // examples.
-      cell->get_dof_indices (local_dof_indices);
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       {
-         for (unsigned int j=0; j<dofs_per_cell; ++j)
-           system_matrix.add (local_dof_indices[i],
-                              local_dof_indices[j],
-                              cell_matrix(i,j));
-         
-         system_rhs(local_dof_indices[i]) += cell_rhs(i);
-       };
-    };
-
-  hanging_node_constraints.condense (system_matrix);
-  hanging_node_constraints.condense (system_rhs);
-
-                                  // The interpolation of the
-                                  // boundary values needs a small
-                                  // modification: since the solution
-                                  // function is vector-valued, so
-                                  // needs to be the boundary
-                                  // values. The ``ZeroFunction''
-                                  // constructor accepts a parameter
-                                  // that tells it that it shall
-                                  // represent a vector valued,
-                                  // constant zero function with that
-                                  // many components. By default,
-                                  // this parameter is equal to one,
-                                  // in which case the
-                                  // ``ZeroFunction'' object would
-                                  // represent a scalar
-                                  // function. Since the solution
-                                  // vector has ``dim'' components,
-                                  // we need to pass ``dim'' as
-                                  // number of components to the zero
-                                  // function as well.
-  map<unsigned int,double> boundary_values;
-  VectorTools::interpolate_boundary_values (dof_handler,
-                                           0,
-                                           ZeroFunction<dim>(dim),
-                                           boundary_values);
-  MatrixTools<dim>::apply_boundary_values (boundary_values,
-                                          system_matrix,
-                                          solution,
-                                          system_rhs);
-};
-
-
-
-                                // The solver does not care about
-                                // where the system of equations
-                                // comes, as long as it stays
-                                // positive definite and symmetric
-                                // (which are the requirements for
-                                // the use of the CG solver), which
-                                // the system is. Therefore, we need
-                                // not change anything.
-template <int dim>
-void ElasticProblem<dim>::solve () 
-{
-  SolverControl           solver_control (1000, 1e-12);
-  PrimitiveVectorMemory<> vector_memory;
-  SolverCG<>              cg (solver_control, vector_memory);
-
-  PreconditionRelaxation<>
-    preconditioner(system_matrix,
-                  &SparseMatrix<double>::template precondition_SSOR<double>,
-                  1.2);
-
-  cg.solve (system_matrix, solution, system_rhs,
-           preconditioner);
-
-  hanging_node_constraints.distribute (solution);
-};
-
-
-
-                                // The function that does the
-                                // refinement of the grid is the same
-                                // as in the step-6 example. The
-                                // quadrature formula is adapted to
-                                // the linear elements again. Note
-                                // that the error estimator by
-                                // default adds up the estimated
-                                // obtained from all components of
-                                // the finite element solution, that
-                                // is it uses the displacement in all
-                                // directions with the same
-                                // weight. If we would like the grid
-                                // to be adapted to the
-                                // x-displacement only, we could pass
-                                // the function an additional
-                                // parameter which tells it to do so
-                                // and do not consider the
-                                // displacements in all other
-                                // directions for the error
-                                // indicators.
-template <int dim>
-void ElasticProblem<dim>::refine_grid ()
-{
-  Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
-
-  KellyErrorEstimator<dim>::FunctionMap neumann_boundary;
-  KellyErrorEstimator<dim>::estimate (dof_handler,
-                                     QGauss2<dim-1>(),
-                                     neumann_boundary,
-                                     solution,
-                                     estimated_error_per_cell);
-
-  triangulation.refine_and_coarsen_fixed_number (estimated_error_per_cell,
-                                                0.3, 0.03);
-
-  triangulation.execute_coarsening_and_refinement ();
-};
-
-
-                                // The output happens mostly as has
-                                // been shown in previous examples
-                                // already. The only difference is
-                                // not that the solution function is
-                                // vector values. The ``DataOut''
-                                // class takes care of this
-                                // automatically, but we have to give
-                                // each component of the solution
-                                // vector a different name.
-template <int dim>
-void ElasticProblem<dim>::output_results (const unsigned int cycle) const
-{
-  string filename = "solution-";
-  filename += ('0' + cycle);
-  Assert (cycle < 10, ExcInternalError());
-  
-  filename += ".gmv";
-  ofstream output (filename.c_str());
-
-  DataOut<dim> data_out;
-  data_out.attach_dof_handler (dof_handler);
-
-
-                                  // As said above, we need a
-                                  // different name for each
-                                  // component of the solution
-                                  // function. To pass one name for
-                                  // each component, a vector of
-                                  // strings is used. Since the
-                                  // number of components is the same
-                                  // as the number of dimensions we
-                                  // are working in, the following
-                                  // ``switch'' statement is used.
-                                  //
-                                  // We note that some graphics
-                                  // programs have restriction as to
-                                  // what characters are allowed in
-                                  // the names of variables. The
-                                  // library therefore supports only
-                                  // the minimal subset of these
-                                  // characters that is supported by
-                                  // all programs. Basically, these
-                                  // are letters, numbers,
-                                  // underscores, and some other
-                                  // characters, but in particular no
-                                  // whitespace and minus/hyphen. The
-                                  // library will throw an exception
-                                  // otherwise, at least if in debug
-                                  // mode.
-  vector<string> solution_names;
-  switch (dim)
-    {
-      case 1:
-           solution_names.push_back ("displacement");
-           break;
-      case 2:
-           solution_names.push_back ("x_displacement");            
-           solution_names.push_back ("y_displacement");
-           break;
-      case 3:
-           solution_names.push_back ("x_displacement");            
-           solution_names.push_back ("y_displacement");
-           solution_names.push_back ("z_displacement");
-           break;
-                                            // It is good style to
-                                            // let the program die if
-                                            // we run upon a case
-                                            // which we did not
-                                            // consider. Remember
-                                            // that the ``Assert''
-                                            // macro throws an
-                                            // exception if the
-                                            // condition in the first
-                                            // parameter is not
-                                            // satisfied. Of course,
-                                            // the condition
-                                            // ``false'' can never be
-                                            // satisfied, so the
-                                            // program will always
-                                            // abort whenever it gets
-                                            // to this statement:
-      default:
-           Assert (false, ExcInternalError());
-    };
-            
-                                  // After setting up the names for
-                                  // the different components of the
-                                  // solution vector, we can add the
-                                  // solution vector to the list of
-                                  // data vectors scheduled for
-                                  // output. Note that the following
-                                  // function takes a vector of
-                                  // strings as second argument,
-                                  // whereas the one which we have
-                                  // used in all previous examples
-                                  // accepted a string there. In
-                                  // fact, the latter function is
-                                  // only a shortcut for the function
-                                  // which we call here: it puts the
-                                  // single string that is passed to
-                                  // it into a vector of strings with
-                                  // only one element and forwards
-                                  // that to the other function.
-  data_out.add_data_vector (solution, solution_names);
-  data_out.build_patches ();
-  data_out.write_gmv (output);
-};
-
-
-
-template <int dim>
-void ElasticProblem<dim>::run () 
-{
-  for (unsigned int cycle=0; cycle<8; ++cycle)
-    {
-      cout << "Cycle " << cycle << ':' << endl;
-
-      if (cycle == 0)
-       {
-                                          // As in previous examples,
-                                          // we use the unit square
-                                          // (or cube) as domain.
-         GridGenerator::hyper_cube (triangulation, -1, 1);
-                                          // This time, we have to
-                                          // refine the coarse grid
-                                          // twice before we first
-                                          // solve on it. The reason
-                                          // is the following: we use
-                                          // the ``Gauss2''
-                                          // quadrature formula for
-                                          // integration of the right
-                                          // hand side; that means
-                                          // that there are four
-                                          // quadrature points on
-                                          // each cell (in 2D). If we
-                                          // only refine the initial
-                                          // grid once globally, then
-                                          // there will be only four
-                                          // quadrature points in
-                                          // each direction on the
-                                          // domain. However, the
-                                          // right hand side function
-                                          // was chosen to be rather
-                                          // localized and in that
-                                          // case all quadrature
-                                          // points lie outside the
-                                          // support of the right
-                                          // hand side function. The
-                                          // right hand side vector
-                                          // will then contain only
-                                          // zeroes and the solution
-                                          // of the system of
-                                          // equations is the zero
-                                          // vector, i.e. a finite
-                                          // element function that it
-                                          // zero everywhere. We
-                                          // should not be surprised
-                                          // about such things
-                                          // happening, since we have
-                                          // chosen an initial grid
-                                          // that is totally
-                                          // unsuitable for the
-                                          // problem at hand.
-                                          //
-                                          // The unfortunate thing is
-                                          // that if the discrete
-                                          // solution is constant,
-                                          // then the error
-                                          // indicators computed by
-                                          // the
-                                          // ``KellyErrorEstimator''
-                                          // class are zero for each
-                                          // cell as well, and the
-                                          // call to
-                                          // ``refine_and_coarsen_fixed_number''
-                                          // of the ``triangulation''
-                                          // object will not flag any
-                                          // cells for refinement
-                                          // (why should it if the
-                                          // indicated error is zero
-                                          // for each cell?). The
-                                          // grid in the next
-                                          // iteration will therefore
-                                          // consist of four cells
-                                          // only as well, and the
-                                          // same problem occurs
-                                          // again.
-                                          //
-                                          // The conclusion needs to
-                                          // be: while of course we
-                                          // will not choose the
-                                          // initial grid to be
-                                          // well-suited for the
-                                          // accurate solution of the
-                                          // problem, we must at
-                                          // least choose it such
-                                          // that it has the chance
-                                          // to capture the most
-                                          // striking features of the
-                                          // solution. In this case,
-                                          // it needs to be able to
-                                          // see the right hand
-                                          // side. Thus, we refine
-                                          // twice globally.
-         triangulation.refine_global (2);
-       }
-      else
-       refine_grid ();
-
-      cout << "   Number of active cells:       "
-          << triangulation.n_active_cells()
-          << endl;
-
-      setup_system ();
-
-      cout << "   Number of degrees of freedom: "
-          << dof_handler.n_dofs()
-          << endl;
-      
-      assemble_system ();
-      solve ();
-      output_results (cycle);
-    };
-};
-
-
-                                // The main function is again exactly
-                                // like in step-6 (apart from the
-                                // changed class names, of course).
-int main () 
-{
-  try
-    {
-      deallog.depth_console (0);
-
-      ElasticProblem<2> elastic_problem_2d;
-      elastic_problem_2d.run ();
-    }
-  catch (exception &exc)
-    {
-      cerr << endl << endl
-          << "----------------------------------------------------"
-          << endl;
-      cerr << "Exception on processing: " << endl
-          << exc.what() << endl
-          << "Aborting!" << endl
-          << "----------------------------------------------------"
-          << endl;
-
-      return 1;
-    }
-  catch (...) 
-    {
-      cerr << endl << endl
-          << "----------------------------------------------------"
-          << endl;
-      cerr << "Unknown exception!" << endl
-          << "Aborting!" << endl
-          << "----------------------------------------------------"
-          << endl;
-      return 1;
-    };
-
-  return 0;
-};

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.