- // @sect4{<code>Diffusion::assemble_system</code>} In this function, we
- // compute $-\int D \nabla b_i \cdot \nabla b_j d\boldsymbol{r} - \int
- // \Sigma_a b_i b_j d\boldsymbol{r}$ and the mass matrix $\int b_i b_j
- // d\boldsymbol{r}$. The mass matrix is then inverted using a direct solver;
- // the <code>inverse_mass_matrix</code> variable will then store the inverse
- // of the mass matrix so that $M^{-1}$ can be applied to a vector using the
- // <code>vmult()</code> function of that object. (Internally, UMFPACK does
- // not really store the inverse of the matrix, but its LU factors; applying
- // the inverse matrix is then equivalent to doing one forward and one
- // backward solves with these two factors, which has the same complexity as
- // applying an explicit inverse of the matrix).
+ // @sect4{<code>Diffusion::assemble_system</code>}
+ // In this function, we compute $-\int D \nabla b_i \cdot \nabla b_j
+ // d\boldsymbol{r} - \int \Sigma_a b_i b_j d\boldsymbol{r}$ and the mass
+ // matrix $\int b_i b_j d\boldsymbol{r}$. The mass matrix is then
+ // inverted using a direct solver; the <code>inverse_mass_matrix</code>
+ // variable will then store the inverse of the mass matrix so that
+ // $M^{-1}$ can be applied to a vector using the <code>vmult()</code>
+ // function of that object. (Internally, UMFPACK does not really store
+ // the inverse of the matrix, but its LU factors; applying the inverse
+ // matrix is then equivalent to doing one forward and one backward solves
+ // with these two factors, which has the same complexity as applying an
+ // explicit inverse of the matrix).
void Diffusion::assemble_system ()
{
system_matrix = 0.;