// $Id$
// Version: $Name$
//
-// Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 by the deal.II authors
+// Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2008 by the deal.II authors
//
// This file is subject to QPL and may not be distributed
// without copyright and license information. Please refer
*
* If RateMode is reduction_rate, then the computed
* output is
- * \f[ \frac{e_{n-1}/k_{n-1}}{e_n/k_n} \f].
+ * $ \frac{e_{n-1}/k_{n-1}}{e_n/k_n} $.
*
- * Where \f$k\f$ is the reference column.
+ * Where $k$ is the reference column.
*
* If RateMode is reduction_rate_log2, then the
- * computed output is:
- * \f[
+ * computed output is
+ * $
* 2\frac{\log |e_{n-1}/e_{n}|}{\log |k_n/k_{n-1}|}
- * \f].
+ * $.
*
* This is useful, for example, if we use as
* reference key the number of degrees of freedom.
* Assuming that the error is proportional to
- * \f$ C (1/\sqrt{k})^r \f$, then this method will
- * produce the rate \f$ r \f$ as a result.
+ * $ C (1/\sqrt{k})^r $, then this method will
+ * produce the rate $r$ as a result.
*/
void
evaluate_convergence_rates (const std::string &data_column_key,