* @enddot
*
* <b>Legend:</b><br />
- * <blockquote>
- * <i>Green:</i> programs that show basic techniques; <br />
- * <i>Orange:</i> advanced techniques; <br />
- * <i>Yellow:</i> applications in fluid dynamics; <br />
- * <i>Light blue:</i> applications in solid mechanics; <br />
- * <i>Dark blue:</i> time dependent problems.
- * </blockquote>
+ * <ul>
+ *
+ * <li><i>Green:</i> programs that show basic techniques;
+ *
+ * <li><i>Orange:</i> advanced techniques;
+ *
+ * <li><i>Yellow:</i> applications in fluid dynamics;
+ *
+ * <li><i>Light blue:</i> applications in solid mechanics;
+ *
+ * <li><i>Dark blue:</i> time dependent problems.
+ *
+ * </ul>
*
* <a name="list"></a>
* <h3>Tutorial programs listed by number</h3>
<li> Removed: The CMake configuration does not use the variable
<code>DEAL_II_CMAKE_MACROS_RELDIR</code> any more. Instead, the fixed
- location <code>${DEAL_II_SHARE_RELDIR}/macros</code> is used
+ location <code>\${DEAL_II_SHARE_RELDIR}/macros</code> is used
unconditionally
<br>
(Matthias Maier, 2015/03/26)
*
* @note Source and destination must not be the same vector.
*
- * @note The template with @tref number2 only exists for compile-time
- * compatibility with FullMatrix. Only the case @tref number2 = @tref
+ * @note The template with @p number2 only exists for compile-time
+ * compatibility with FullMatrix. Only the case @p number2 = @p
* number is implemented due to limitations in the underlying LAPACK
* interface. All other variants throw an error upon invocation.
*/
* will increase communication and storage cost. According to the IFPACK
* documentation, an overlap of 1 is often effective and values of more
* than 3 are rarely needed.
+ *
+ * </ul>
*/
struct AdditionalData
{
* Once all edge constraints, $x$, have been computed, we may compute the face constraints
* in a similar fashion, taking into account the residuals from the edges.
*
- * For each face on the cell, $f$, we solve the linear system By=c where $y$ is the vector of
+ * For each face on the cell, $f$, we solve the linear system $By=c$ where $y$ is the vector of
* constraints on degrees of freedom on the face and
*
- * B_{ij} = \int_{f} (\vec{n} \cross \vec{s}_{i}) \cdot (\vec{n} \cross \vec{s}_{j}) dS
+ * $B_{ij} = \int_{f} (\vec{n} \times \vec{s}_{i}) \cdot (\vec{n} \times \vec{s}_{j}) dS$
*
- * $c_{i} = \int_{f} (\vec{n} \cross \vec{r}) \cdot (\vec{n} \cross \vec{s}_i} dS
+ * $c_{i} = \int_{f} (\vec{n} \times \vec{r}) \cdot (\vec{n} \times \vec{s}_i) dS$
*
* and $\vec{r} = \vec{F} - \sum_{e \in f} \sum{i \in e} \x_{i}\vec{s}_i}$, the edge residual.
*