]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Cleanup and code restructuring.
authorwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 5 May 1998 14:15:59 +0000 (14:15 +0000)
committerwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 5 May 1998 14:15:59 +0000 (14:15 +0000)
git-svn-id: https://svn.dealii.org/trunk@254 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/include/numerics/error_estimator.h
deal.II/deal.II/source/numerics/error_estimator.cc

index a4a04e6d7a6b8bc6c35ce286b951d780e9506ef3..f1af6816fba6d4802bdab5e5b53a9fa646ed9285 100644 (file)
@@ -156,6 +156,52 @@ class KellyErrorEstimator {
                                      * Exception
                                      */
     DeclException0 (ExcInvalidBoundaryIndicator);
+
+  private:
+                                    /**
+                                     * Declare a data type to represent the
+                                     * mapping between faces and integrated
+                                     * jumps of gradients. See the general
+                                     * doc of this class for more information.
+                                     */
+    typedef map<DoFHandler<dim>::face_iterator,double> FaceIntegrals;
+
+                                    /**
+                                     * Redeclare an active cell iterator.
+                                     * This is simply for convenience.
+                                     */
+    typedef DoFHandler<dim>::active_cell_iterator active_cell_iterator;
+    
+                                    /**
+                                     * Actually do the computation on a face
+                                     * which has no hanging nodes (it is
+                                     * regular),  i.e.
+                                     * either on the other side there is
+                                     * nirvana (face is at boundary), or
+                                     * the other side's refinement level
+                                     * is the same as that of this side,
+                                     * then handle the integration of
+                                     * these both cases together.
+                                     *
+                                     * The meaning of the parameters becomes
+                                     * clear when looking at the source
+                                     * code. This function is only
+                                     * externalized from #estimate_error#
+                                     * to avoid ending up with a function
+                                     * of 500 lines of code.
+                                     */
+    static void integrate_over_regular_face (const active_cell_iterator &cell,
+                                            const unsigned int   face_no,
+                                            const FiniteElement<dim> &fe,
+                                            const Boundary<dim>      &boundary,
+                                            const FunctionMap   &neumann_bc,
+                                            const unsigned int   n_q_points,
+                                            FEFaceValues<dim>   &fe_face_values_cell,
+                                            FEFaceValues<dim>   &fe_face_values_neighbor,
+                                            FaceIntegrals       &face_integrals,
+                                            const dVector       &solution);
+
+    static void integrate_over_irregular_face ();
 };
 
 
index d041c84ded2be3c6e7d720ad7bb460e9fb13071a..f50b209fa61e8d20370e4899f6398fd867ccd555 100644 (file)
@@ -57,7 +57,7 @@ void KellyErrorEstimator<dim>::estimate_error (const DoFHandler<dim>    &dof,
                                   // loop over the cells and collect the
                                   // conrtibutions of the different faces
                                   // of the cell.
-  map<DoFHandler<dim>::face_iterator, double> face_integrals;
+  FaceIntegrals face_integrals;
   
                                   // number of integration points per face
   const unsigned int n_q_points = quadrature.n_quadrature_points;
@@ -65,22 +65,25 @@ void KellyErrorEstimator<dim>::estimate_error (const DoFHandler<dim>    &dof,
                                   // make up a fe face values object for the
                                   // restriction of the finite element function
                                   // to a face, for the present cell and its
-                                  // neighbor.
+                                  // neighbor. In principle we would only need
+                                  // one at a time, but this way we can
+                                  // have more fine grained access to what
+                                  // values really need to be computed (we
+                                  // need not compute all values on the
+                                  // neighbor cells, so using two objects
+                                  // gives us a performance gain).
   FEFaceValues<dim> fe_face_values_cell (fe, quadrature,
                                         UpdateFlags(update_gradients  |
                                                     update_JxW_values |
                                                     update_jacobians  |
-                                                    update_q_points   |
                                                     update_normal_vectors)); 
   FEFaceValues<dim> fe_face_values_neighbor (fe, quadrature,
                                             UpdateFlags(update_gradients |
                                                         update_jacobians));
 
-                                  // loop variables
-  DoFHandler<dim>::active_cell_iterator cell = dof.begin_active(),
-                                       endc = dof.end();
                                   // loop over all cells
-  for (; cell!=endc; ++cell)
+  const active_cell_iterator endc = dof.end();
+  for (active_cell_iterator cell = dof.begin_active(); cell!=endc; ++cell)
                                     // loop over all faces of this cell
     for (unsigned int face_no=0; face_no<2*dim; ++face_no)
       {
@@ -115,129 +118,28 @@ void KellyErrorEstimator<dim>::estimate_error (const DoFHandler<dim>    &dof,
            continue;
          };
 
-
-                                        // initialize data of the restriction
-                                        // of this cell to the present face
-       fe_face_values_cell.reinit (cell, face_no, fe, boundary);
-
-                                        // set up a vector of the gradients
-                                        // of the finite element function
-                                        // on this cell at the quadrature
-                                        // points
-                                        //
-                                        // let psi be a short name for
-                                        // [grad u_h]
-       vector<Point<dim> > psi(n_q_points);
-       fe_face_values_cell.get_function_grads (solution, psi);
-       
-       
-                                        // now compute over the other side of
-                                        // the face
-       if (boundary_indicator == 255)
-                                          // internal face; integrate jump
-                                          // of gradient across this face
-         {
-           Assert (cell->neighbor(face_no).state() == valid,
-                   ExcInternalError());
-           unsigned int neighbor_neighbor;
-           DoFHandler<dim>::active_cell_iterator neighbor
-             = cell->neighbor(face_no);
-
-                                            // find which number the current
-                                            // face has relative to the neighboring
-                                            // cell
-           for (neighbor_neighbor=0; neighbor_neighbor<2*dim; ++neighbor_neighbor)
-             if (neighbor->neighbor(neighbor_neighbor) == cell)
-               break;
-
-           Assert (neighbor_neighbor<dim*2, ExcInternalError());
-
-                                            // get restriction of finite element
-                                            // function of #neighbor# to the
-                                            // common face.
-           fe_face_values_neighbor.reinit (neighbor, neighbor_neighbor,
-                                           fe, boundary);
-
-                                            // get a list of the gradients of
-                                            // the finite element solution
-                                            // restricted to the neighbor cell
-           vector<Point<dim> > neighbor_psi (n_q_points);
-           fe_face_values_neighbor.get_function_grads (solution, neighbor_psi);
-
-                                            // compute the jump in the gradients
-           transform (psi.begin(), psi.end(),
-                      neighbor_psi.begin(),
-                      psi.begin(),
-                      minus<Point<dim> >());
-         };
-
-
-
-       
-                                        // now psi contains the following:
-                                        // - for an internal face, psi=[grad u]
-                                        // - for a neumann boundary face,
-                                        //   psi=grad u
-                                        // each component being the
-                                        // mentioned value at one of the
-                                        // quadrature points
-
-                                        // next we have to multiply this with
-                                        // the normal vector. Since we have
-                                        // taken the difference of gradients
-                                        // for internal faces, we may chose
-                                        // the normal vector of one cell,
-                                        // taking that of the neighbor
-                                        // would only change the sign. We take
-                                        // the outward normal.
-                                        //
-                                        // let phi be the name of the integrand
-       vector<double> phi(n_q_points,0);
-       const vector<Point<dim> > &normal_vectors(fe_face_values_cell.
-                                                 get_normal_vectors());
-       
-       for (unsigned int point=0; point<n_q_points; ++point)
-         phi[point] = psi[point]*normal_vectors[point];
-       
-       
-       if (boundary_indicator != 255)
-                                          // neumann boundary face. compute
-                                          // difference between normal
-                                          // derivative and boundary function
-         {
-                                            // get the values of the boundary
-                                            // function at the quadrature
-                                            // points
-           vector<double> g(n_q_points);
-           neumann_bc.find(boundary_indicator)->second
-             ->value_list (fe_face_values_cell.get_quadrature_points(),
-                           g);
-
-           for (unsigned int point=0; point<n_q_points; ++point)
-             phi[point] -= g[point];
-         };
-
        
-                                        // now phi contains the following:
-                                        // - for an internal face, phi=[du/dn]
-                                        // - for a neumann boundary face,
-                                        //   phi=du/dn-g
-                                        // each component being the
-                                        // mentioned value at one of the
-                                        // quadrature points
-
-                                        // take the square of the phi[i]
-                                        // for integration
-       transform (phi.begin(), phi.end(),
-                  phi.begin(), ptr_fun(sqr));
-
-                                        // perform integration by multiplication
-                                        // with weights and summation.
-       face_integrals[cell->face(face_no)]
-         = (inner_product (phi.begin(), phi.end(),
-                           fe_face_values_cell.get_JxW_values().begin(),
-                           0.0) *
-            cell->diameter() / 24);
+       if (cell->face(face_no)->has_children() == false)
+                                          // if the face is a regular one, i.e.
+                                          // either on the other side there is
+                                          // nirvana (face is at boundary), or
+                                          // the other side's refinement level
+                                          // is the same as that of this side,
+                                          // then handle the integration of
+                                          // these both cases together
+         integrate_over_regular_face (cell, face_no, fe,
+                                      boundary, neumann_bc,
+                                      n_q_points,
+                                      fe_face_values_cell,
+                                      fe_face_values_neighbor,
+                                      face_integrals,
+                                      solution);
+       else
+                                          // otherwise we need to do some
+                                          // special computations which do
+                                          // not fit into the framework of
+                                          // the above function
+         integrate_over_irregular_face ();
       };
 
 
@@ -249,7 +151,7 @@ void KellyErrorEstimator<dim>::estimate_error (const DoFHandler<dim>    &dof,
   error.reinit (dof.get_tria().n_active_cells());
 
   unsigned int present_cell=0;
-  for (cell=dof.begin_active(); cell!=endc; ++cell, ++present_cell)
+  for (active_cell_iterator cell=dof.begin_active(); cell!=endc; ++cell, ++present_cell)
     {
                                       // loop over all faces of this cell
       for (unsigned int face_no=0; face_no<2*dim; ++face_no) 
@@ -268,6 +170,174 @@ void KellyErrorEstimator<dim>::estimate_error (const DoFHandler<dim>    &dof,
 
 
 
+void KellyErrorEstimator<1>::integrate_over_regular_face (const active_cell_iterator &,
+                                                         const unsigned int      ,
+                                                         const FiniteElement<1> &,
+                                                         const Boundary<1>      &,
+                                                         const FunctionMap      &,
+                                                         const unsigned int      ,
+                                                         FEFaceValues<1>        &,
+                                                         FEFaceValues<1>        &,
+                                                         FaceIntegrals          &,
+                                                         const dVector          &) {
+  Assert (false, ExcInternalError());
+};
+
+
+
+
+template <int dim>
+void KellyErrorEstimator<dim>::
+integrate_over_regular_face (const active_cell_iterator &cell,
+                            const unsigned int          face_no,
+                            const FiniteElement<dim>   &fe,
+                            const Boundary<dim>        &boundary,
+                            const FunctionMap          &neumann_bc,
+                            const unsigned int          n_q_points,
+                            FEFaceValues<dim>          &fe_face_values_cell,
+                            FEFaceValues<dim>          &fe_face_values_neighbor,
+                            FaceIntegrals              &face_integrals,
+                            const dVector              &solution) {
+  DoFHandler<dim>::face_iterator face = cell->face(face_no);
+  
+                                  // initialize data of the restriction
+                                  // of this cell to the present face
+  fe_face_values_cell.reinit (cell, face_no, fe, boundary);
+  
+                                  // set up a vector of the gradients
+                                  // of the finite element function
+                                  // on this cell at the quadrature
+                                  // points
+                                  //
+                                  // let psi be a short name for
+                                  // [grad u_h]
+  vector<Point<dim> > psi(n_q_points);
+  fe_face_values_cell.get_function_grads (solution, psi);
+  
+  
+                                  // now compute over the other side of
+                                  // the face
+  if (face->at_boundary() == false)
+                                    // internal face; integrate jump
+                                    // of gradient across this face
+    {
+      Assert (cell->neighbor(face_no).state() == valid,
+             ExcInternalError());
+      unsigned int neighbor_neighbor;
+      DoFHandler<dim>::active_cell_iterator neighbor
+       = cell->neighbor(face_no);
+      
+                                      // find which number the current
+                                      // face has relative to the neighboring
+                                      // cell
+      for (neighbor_neighbor=0; neighbor_neighbor<2*dim; ++neighbor_neighbor)
+       if (neighbor->neighbor(neighbor_neighbor) == cell)
+         break;
+      
+      Assert (neighbor_neighbor<dim*2, ExcInternalError());
+      
+                                      // get restriction of finite element
+                                      // function of #neighbor# to the
+                                      // common face.
+      fe_face_values_neighbor.reinit (neighbor, neighbor_neighbor,
+                                     fe, boundary);
+      
+                                      // get a list of the gradients of
+                                      // the finite element solution
+                                      // restricted to the neighbor cell
+      vector<Point<dim> > neighbor_psi (n_q_points);
+      fe_face_values_neighbor.get_function_grads (solution, neighbor_psi);
+      
+                                      // compute the jump in the gradients
+      transform (psi.begin(), psi.end(),
+                neighbor_psi.begin(),
+                psi.begin(),
+                minus<Point<dim> >());
+    };
+  
+  
+  
+  
+                                  // now psi contains the following:
+                                  // - for an internal face, psi=[grad u]
+                                  // - for a neumann boundary face,
+                                  //   psi=grad u
+                                  // each component being the
+                                  // mentioned value at one of the
+                                  // quadrature points
+  
+                                  // next we have to multiply this with
+                                  // the normal vector. Since we have
+                                  // taken the difference of gradients
+                                  // for internal faces, we may chose
+                                  // the normal vector of one cell,
+                                  // taking that of the neighbor
+                                  // would only change the sign. We take
+                                  // the outward normal.
+                                  //
+                                  // let phi be the name of the integrand
+  vector<double> phi(n_q_points,0);
+  const vector<Point<dim> > &normal_vectors(fe_face_values_cell.
+                                           get_normal_vectors());
+  
+  for (unsigned int point=0; point<n_q_points; ++point)
+    phi[point] = psi[point]*normal_vectors[point];
+  
+  
+  if (face->at_boundary() == true)
+                                    // neumann boundary face. compute
+                                    // difference between normal
+                                    // derivative and boundary function
+    {
+      const unsigned char boundary_indicator = face->boundary_indicator();
+
+      Assert (neumann_bc.find(boundary_indicator) != neumann_bc.end(),
+             ExcInternalError ());
+                                      // get the values of the boundary
+                                      // function at the quadrature
+                                      // points
+      vector<double> g(n_q_points);
+      neumann_bc.find(boundary_indicator)->second
+       ->value_list (fe_face_values_cell.get_quadrature_points(),
+                     g);
+      
+      for (unsigned int point=0; point<n_q_points; ++point)
+       phi[point] -= g[point];
+    };
+  
+  
+                                  // now phi contains the following:
+                                  // - for an internal face, phi=[du/dn]
+                                  // - for a neumann boundary face,
+                                  //   phi=du/dn-g
+                                  // each component being the
+                                  // mentioned value at one of the
+                                  // quadrature points
+  
+                                  // take the square of the phi[i]
+                                  // for integration
+  transform (phi.begin(), phi.end(),
+            phi.begin(), ptr_fun(sqr));
+  
+                                  // perform integration by multiplication
+                                  // with weights and summation.
+  face_integrals[face] = (inner_product (phi.begin(), phi.end(),
+                                        fe_face_values_cell.get_JxW_values().begin(),
+                                        0.0) *
+                         cell->diameter() / 24);
+};
+
+
+
+
+template <int dim>
+void KellyErrorEstimator<dim>::
+integrate_over_irregular_face () {
+  Assert (false, ExcInternalError());
+};
+
+
+
 // explicit instantiations
 
 template class KellyErrorEstimator<1>;

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.