}
@ARTICLE{Geim2004,
- AUTHOR={K.S. Novoselov and A.K. Geim, S.V. Morozov and D. Jiang and Y. Zhang and S.V. Dubonos and I.V. Grigorieva and A.A. Firsov},
+ AUTHOR={K.S. Novoselov and A.K. Geim and S.V. Morozov and D. Jiang and Y. Zhang and S.V. Dubonos and I.V. Grigorieva and A.A. Firsov},
TITLE={Electric Field Effect in Atomically Thin Carbon Films},
JOURNAL={Science},
VOLUME={306},
@f{align*}
\frac{\partial}{\partial t} \mathbf{H} + \nabla \times \mathbf{E} &= -\mathbf{M}_a,
\\
- \nabla \cdot \mathbf{H} &= \rho,
+ \nabla \cdot \mathbf{H} &= \rho_m,
\\
\frac{\partial}{\partial t} (\varepsilon\mathbf{E}) - \nabla\times(\mu^{-1}\mathbf{H}) &= - \mathbf{J}_a,
\\
- \nabla\cdot(\varepsilon\mathbf{E}) &= \rho_m.
+ \nabla\cdot(\varepsilon\mathbf{E}) &= \rho.
@f}
Here, $\nabla\times$ is the curl operator, $\nabla\cdot$ is the divergence
operator, $\varepsilon$ is the
prescribed dipole source at location $a$ in the $e_i$ direction in Cartesian
coordinates (here, $\delta$ is the Dirac delta operator).
@f[
-\mathbf{J}_a = J_0 e_i\delta(x-a)
+\mathbf{J}_a = J_0 \mathbf{e}_i\delta(x-a)
@f]
</li>
</ol>
-i\mu_r \hat{\mathbf{H}} + \hat{\nabla} \times \hat{\mathbf{E}}
&= -\hat{\mathbf{M}}_a,
\\
- \hat{\nabla} \cdot (\mu_r\hat{\mathbf{H}}) &= \frac{1}{i}\hat{\nabla}
+ \hat{\nabla} \cdot (\mu_r\hat{\mathbf{H}}) &= \frac{1}{i\omega}\hat{\nabla}
\cdot \hat{\mathbf{M}}_a,
\\
i\varepsilon_r\hat{\mathbf{E}} + \nabla\times(\mu^{-1}\mathbf{H})
@f]
<h3>Perfectly Matched Layer</h3>
-The SPP amplitude is negatively effected by the absorbing boundary condition and
+The SPP amplitude is negatively affected by the absorbing boundary condition and
this causes the solution image to be distorted. In order to reduce the resonance
and distortion in our solutions, we are implementing a Perfectly Matched Layer
(PML) in the scattering configuration.
@endcode
This $\phi_i$ variable doesn't need to be scaled in this way, we may choose
-any arbitrary scaling consents $a$ and $b$. If we choose this scaling, the
+any arbitrary scaling constants $a$ and $b$. If we choose this scaling, the
$\phi_j$ must also be modified with the same scaling, as follows:
@code
// The Parameters class inherits ParameterAcceptor, and instantiates all the
// coefficients in our variational equations.
// These coefficients are passed through ParameterAcceptor and are editable
- // through a .prm file
+ // through a .prm file.
// More explanation on the use and inheritance from the ParameterAcceptor
// can be found in step-60.
// J_a is the strength and orientation of the dipole. As mentioned in the
// rescaling,
// @f[
- // \mathbf{J}_a = J_0 e_i\delta(x-a)
+ // \mathbf{J}_a = J_0 \mathbf{e}_i\delta(x-a)
// @f]
// It is a rank 1 tensor
// that depends on the private dipole_position, dipole_radius,
// Additionally, a material interface is introduced by setting the
// material id of the upper half ($y>0$) to 1 and of the lower half
// ($y<0$) of the computational domain to 2.
+ // We are using a block decomposition into real and imaginary matrices
+ // for the solution matrices. More details on this are available
+ // under the Results section.
template <int dim>
void Maxwell<dim>::make_grid()
auto B = perfectly_matched_layer.b_matrix(position);
auto C = perfectly_matched_layer.c_matrix(position);
sigma = invert(C) * sigma * invert(B);
- ;
};
const auto normal = fe_face_values.normal_vector(q_point);