\label{eq:linearization}
\left(I_{\Pi}\varepsilon(\tilde {\mathbf u}^{i}),
\varepsilon(\varphi) - \varepsilon(\tilde {\mathbf u}^{i})\right) \geq
- \left(\left(I_{\Pi}\varepsilon(\tilde {\mathbf u}^{i-1}),
+ \left(\left(I_{\Pi}\varepsilon({\mathbf u}^{i-1}),
\varepsilon(\varphi) - \varepsilon(\tilde {\mathbf u}^{i})\right) -
- \left(P_{\Pi}(C\varepsilon(\tilde {\mathbf u}^{i-1})),
+ \left(P_{\Pi}(C\varepsilon({\mathbf u}^{i-1})),
\varepsilon(\varphi) - \varepsilon(\tilde {\mathbf u}^{i})\right)\right),
\quad \forall \varphi\in V^+,
@f}
(1-\alpha^i_l)U^{i-1}@f}
satisfies
@f{gather*}
- \vert F\left(U^{i}\right) \vert < \vert F\left(U^{i-1}\right) \vert.
+ \vert {\hat R}\left({\mathbf u}^{i}\right) \vert < \vert {\hat R}\left({\mathbf u}^{i-1}\right) \vert.
\f}
+ with ${\hat R}\left({\mathbf u}\right)=\left(P_{Pi}(C\varepsilon(u)),\varepsilon(\varphi^{i}_p\right)$ with
+ the exceptions of (i) elements $p\in\mathcal{A}_i$ where we set ${\hat R}\left({\mathbf u}\right)=0$,
+ and (ii) elements that correpond to hanging nodes, which we eliminate in the usual manner.
<li> Define the new active and inactive sets by
@f{gather*}\mathcal{A}_{i+1}:=\lbrace p\in\mathcal{S}:\Lambda^i_p +
where $g_{h,p}$ is the <i>gap</i> denoting the distance of the obstacle
from the undisplaced configuration of the body.
- <li> If $\mathcal{A}_{i+1} = \mathcal{A}_k$ and $\vert
- F\left(U^{i}\right) \vert < \delta$ then stop, else set $i=i+1$ and go to
+ <li> If $\mathcal{A}_{i+1} = \mathcal{A}_k$ and $\left\|
+ {\hat R}\left({\mathbf u}^{i}\right)\right) \right\|_{\ell_2} < \delta$ then stop, else set $i=i+1$ and go to
step (1). This step ensures that we only stop iterations if both the correct
active set has been found and the plasticity has been iterated to sufficient
accuracy.