*
* <dl>
*
- * <dt class="glossary">@anchor GlossActive Active cells</dt>
+ * <dt class="glossary">@anchor GlossActive <b>Active cells</b></dt>
* <dd>Mesh cells not refined any further in the hierarchy.</dd>
*
- * <dt class="glossary">@anchor GlossBlock block</dt>
+ * <dt class="glossary">@anchor GlossBlock <b>Block</b></dt>
* <dd>Blocks were introduced in BlockVector,
* BlockSparseMatrix and related classes. These are used to reflect the
* structure of a PDE system in linear algebra, in particular allowing
* step_22 "step-22" or @ref step_31 "step-31" tutorial programs, as opposed
* to @ref step_20 "step-20"). </dd>
*
- * <dt class="glossary">@anchor GlossComponent component</dt>
+ * <dt class="glossary">@anchor GlossComponent <b>Component</b></dt>
*
* <dd>For vector functions, component denotes the index in the
* vector. For instance, in the mixed Laplacian system, the first
* FiniteElement</dd>
*
*
- * <dt class="glossary">@anchor GlossCompress Compressing distributed
- * vectors and matrices</dt>
+ * <dt class="glossary">@anchor GlossCompress <b>Compressing distributed
+ * vectors and matrices</b></dt>
*
* <dd>
* For %parallel computations, deal.II uses the vector and matrix
* </dd>
*
*
- * <dt class="glossary">@anchor GlossDistorted Distorted cells</dt>
+ * <dt class="glossary">@anchor GlossDistorted <b>Distorted cells</b></dt>
*
* <dd>A <i>distorted cell</i> is a cell for which the mapping from
* the reference cell to real cell has a Jacobian whose determinant is
* the center of the cell.
*
*
- * <dt class="glossary">@anchor GlossFaceOrientation Face orientation</dt>
+ * <dt class="glossary">@anchor GlossFaceOrientation <b>Face orientation</b></dt>
* <dd>In a triangulation, the normal vector to a face
* can be deduced from the face orientation by
* applying the right hand side rule (x,y -> normal). We note, that
* the QProjector class and its users.
*
*
- * <dt class="glossary">@anchor GlossGeneralizedSupport Generalized support points</dt>
+ * <dt class="glossary">@anchor GlossGeneralizedSupport <b>Generalized support points</b></dt>
* <dd>While @ref GlossSupport "support points" allow very simple interpolation
* into the finite element space, their concept is restricted to
* @ref GlossLagrange "Lagrange elements". For other elements, more general
* </dd>
*
*
- * <dt class="glossary">@anchor hp_paper %hp paper</dt>
+ * <dt class="glossary">@anchor hp_paper <b>%hp paper</b></dt>
* <dd>The "hp paper" is a paper by W. Bangerth and O. Kayser-Herold, titled
* "Data Structures and Requirements for hp Finite Element Software", that
* describes many of the algorithms and data structures used in the implementation
* </dd>
*
*
- * <dt class="glossary">@anchor GlossInterpolation Interpolation with finite elements</dt>
+ * <dt class="glossary">@anchor GlossInterpolation <b>Interpolation with finite elements</b></dt>
* <dd>The purpose of interpolation with finite elements is computing
* a vector of coefficients representing a finite element function,
* such that the @ref GlossNodes "node values" of the original
* vector.
*
*
- * <dt class="glossary">@anchor GlossLagrange Lagrange elements</dt>
+ * <dt class="glossary">@anchor GlossLagrange <b>Lagrange elements</b></dt>
* <dd>Finite elements based on Lagrangian interpolation at
* @ref GlossSupport "support points".</dd>
*
*
- * <dt class="glossary">@anchor mg_paper %Multigrid paper</dt>
+ * <dt class="glossary">@anchor mg_paper <b>%Multigrid paper</b></dt>
* <dd>The "multigrid paper" is a paper by B. Janssen and G. Kanschat, titled
* "Adaptive multilevel methods with local smoothing", that
* describes many of the algorithms and data structures used in the implementation
* </dd>
*
*
- * <dt class="glossary">@anchor GlossNodes Node values or node functionals</dt>
+ * <dt class="glossary">@anchor GlossNodes <b>Node values or node functionals</b></dt>
*
* <dd>It is customary to define a FiniteElement as a pair consisting
* of a local function space and a set of node values $N_i$ on the
* <td>Gauss points on edges(faces) and anisotropic Gauss points in the interior</td></tr>
* </table>
*
- * <dt class="glossary">@anchor GlossPrimitive Primitive finite
- * elements</dt> <dd>Finite element shape function sets with a unique
+ * <dt class="glossary">@anchor GlossPrimitive <b>Primitive finite
+ * elements</b></dt> <dd>Finite element shape function sets with a unique
* relation from shape function number to vector @ref GlossComponent
* "component". What this means is that each shape function of a
* vector-valued element has exactly one-nonzero component if an
* there, each vector-value shape function may have several non-zero
* components.</dd>
*
- * <dt class="glossary">@anchor GlossReferenceCell Reference cell</dt>
+ * <dt class="glossary">@anchor GlossReferenceCell <b>Reference cell</b></dt>
* <dd>The hypercube [0,1]<sup>dim</sup>, on which all parametric finite
* element shape functions are defined.</dd>
*
*
- * <dt class="glossary">@anchor GlossShape Shape functions</dt> <dd>The restriction of
+ * <dt class="glossary">@anchor GlossShape <b>Shape functions</b></dt> <dd>The restriction of
* the finite element basis functions to a single grid cell.</dd>
*
*
- * <dt class="glossary">@anchor SubdomainId Subdomain id</dt>
+ * <dt class="glossary">@anchor SubdomainId <b>Subdomain id</b></dt>
* <dd>Each cell of a triangulation has associated with it a property called
* the "subdomain id" that can be queried using a call like
* <code>cell-@>subdomain_id()</code> and that can be set for example by using
* </dd>
*
*
- * <dt class="glossary">@anchor GlossSupport Support points</dt> <dd>Support points are
+ * <dt class="glossary">@anchor GlossSupport <b>Support points</b></dt> <dd>Support points are
* by definition those points $p_i$, such that for the shape functions
* $v_j$ holds $v_j(p_i) = \delta_{ij}$. Therefore, a finite element
* interpolation can be defined uniquely by the values in the support
* </dd>
*
*
- * <dt class="glossary">@anchor GlossTargetComponent Target component</dt> <dd>When
+ * <dt class="glossary">@anchor GlossTargetComponent <b>Target component</b></dt> <dd>When
* vectors and matrices are grouped into blocks by component, it is
* often desirable to collect several of the original components into
* a single one. This could be for instance, grouping the velocities
* of a Stokes system into a single block.</dd>
*
*
- * <dt class="glossary">@anchor GlossUnitCell Unit cell</dt>
+ * <dt class="glossary">@anchor GlossUnitCell <b>Unit cell</b></dt>
* <dd>See @ref GlossReferenceCell "Reference cell".</dd>
*
*
- * <dt class="glossary">@anchor GlossUnitSupport Unit support points</dt>
+ * <dt class="glossary">@anchor GlossUnitSupport <b>Unit support points</b></dt>
* <dd>These are the @ref GlossSupport "support points" on the reference cell, defined in
* FiniteElementBase. For example, the usual Q1 element in 1d has support
* points at <tt>x=0</tt> and <tt>x=1</tt> (and similarly, in higher