* after its @p{decompose} method is invoked. The @p{decomposed}
* state is indicated by true value returned by @p{is_decomposed}
* method. It is legal to apply this decomposition (@p{vmult} method) in
- * decompoed state.
+ * decomposed state.
*
*
* @sect2{Particular implementations}
* @author Stephen "Cheffo" Kolaroff, 2002, based on SparseILU implementation by Wolfgang Bangerth
*/
template <typename number>
-class SparseLUDecomposition : protected SparseMatrix<number>{
+class SparseLUDecomposition : protected SparseMatrix<number>
+{
public:
/**
* factorization of the given
* matrix. After this method
* invokation, and before
- * consequtive reinit invokation
+ * consecutive reinit invokation
* this object is in decomposed
* state.
*
* where X is a diagonal matrix, defined by the condition rowsum(A) =
* rowsum(B).
*
- * @author Stephen "Cheffo" Kolaroff
+ * @author Stephen "Cheffo" Kolaroff, 2002.
*/
template <typename number>
class SparseMIC : public SparseLUDecomposition<number>
*
* If @p{strengthen_diagonal}
* parameter is greater than
- * zero, this method invokes
- * @p{get_strengthen_diagonal_impl
- * ()}.
+ * zero, this method invokes the
+ * @p{strengthen_diagonal_impl}
+ * function of the base class.
*
* Refer to
* @ref{SparseLUDecomposition}
// x[i] = a[i][i] - sum(k=1, i-1,
// a[i][k]/x[k]*sum(j=k+1, N, a[k][j]))
- // TODO: for sake of siplicity,
+ // TODO: for sake of simplicity,
// those are placed here A better
// implementation would store this
// values in the underlying sparse