]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
more documentation update for doxygen
authorguido <guido@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 22 Mar 2005 21:57:18 +0000 (21:57 +0000)
committerguido <guido@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 22 Mar 2005 21:57:18 +0000 (21:57 +0000)
git-svn-id: https://svn.dealii.org/trunk@10204 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/lac/include/lac/full_matrix.h

index e018c0f3aef7a3ad804df216a5402df0f2175af1..196c1f498205d917a73a14739ad234ab82bc693c 100644 (file)
@@ -30,8 +30,6 @@ template<typename number> class Vector;
 
 
 /**
- * @brief Rectangular/quadratic full matrix.
- *
  * Implementation of a classical rectangular scheme of numbers. The
  * data type of the entries is provided in the template argument
  * <tt>number</tt>.  The interface is quite fat and in fact has grown every
@@ -109,7 +107,7 @@ class FullMatrix : public Table<2,number>
                                          */
        unsigned short a_col;
 
-                                        /**
+                                        /*
                                          * Make enclosing class a
                                          * friend.
                                          */
@@ -353,14 +351,14 @@ class FullMatrix : public Table<2,number>
                                     /**
                                      * Number of rows of this matrix.
                                      * To remember: this matrix is an
-                                     * $m \times n$-matrix.
+                                     * <i>m x n</i>-matrix.
                                      */
     unsigned int m () const;
     
                                     /**
                                      * Number of columns of this matrix.
                                      * To remember: this matrix is an
-                                     * $m \times n$-matrix.
+                                     * <i>m x n</i>-matrix.
                                      */
     unsigned int n () const;
 
@@ -399,52 +397,55 @@ class FullMatrix : public Table<2,number>
     number2 matrix_norm_square (const Vector<number2> &v) const;
 
                                     /**
-                                     * Build the matrix scalar product
-                                     * <tt>u^T M v</tt>. This function is mostly
-                                     * useful when building the cellwise
-                                     * scalar product of two functions in
-                                     * the finite element context.
+                                     * Build the matrix scalar
+                                     * product <tt>u<sup>T</sup> M
+                                     * v</tt>. This function is
+                                     * mostly useful when building
+                                     * the cellwise scalar product of
+                                     * two functions in the finite
+                                     * element context.
                                      */
     template<typename number2>
     number2 matrix_scalar_product (const Vector<number2> &u,
                                   const Vector<number2> &v) const;
 
                                     /**
-                                     * Return the $l_1$-norm of the matrix, i.e.
-                                     * $|M|_1=max_{all columns j}\sum_{all 
-                                     * rows i} |M_ij|$,
-                                     * (max. sum of columns). This is the
-                                     * natural matrix norm that is compatible
-                                     * to the $l_1$-norm for vectors, i.e.
-                                     * $|Mv|_1\leq |M|_1 |v|_1$.
-                                     * (cf. Rannacher Numerik0)
+                                     * Return the
+                                     * <i>l<sub>1</sub></i>-norm of
+                                     * the matrix, where
+                                     * $||M||_1 = \max_j \sum_i
+                                     * |M_{ij}|$ (maximum of
+                                     * the sums over columns).
                                      */
     number l1_norm () const;
 
                                     /**
-                                     * Return the $l_\infty$-norm of the
-                                     * matrix, i.e.
-                                     * $|M|_\infty=\max_{all rows i}\sum_{all 
-                                     * columns j} |M_{ij}|$,
-                                     * (max. sum of rows).
-                                     * This is the
-                                     * natural matrix norm that is compatible
-                                     * to the $l_\infty$-norm of vectors, i.e.
-                                     * $|Mv|_\infty \leq |M|_\infty |v|_\infty$.
-                                     * (cf. Rannacher Numerik0)
+                                     * Return the
+                                     * <i>l<sub>&infin;</sub></i>-norm
+                                     * of the matrix, where
+                                     * $||M||_\infty = \max_i \sum_j
+                                     * |M_{ij}|$ (maximum of the sums
+                                     * over rows).
                                      */
     number linfty_norm () const;
     
                                     /**
-                                     * Compute the quadratic matrix norm.
-                                     * Return value is the root of the square
-                                     * sum of all matrix entries. Also called
-                                     * Frobenius norm.
-                                     * 
-                                     * This norm is compatible with the $l_2$
-                                     * vector norm. But it is not a natural
-                                     * matrix norm (cf Rannacher Numeric0),
-                                     * therefore it is not called $l_2$-norm.
+                                     * Compute the Frobenius norm of
+                                     * the matrix.  Return value is
+                                     * the root of the square sum of
+                                     * all matrix entries.
+                                     *
+                                     * @note For the timid among us:
+                                     * this norm is not the norm
+                                     * compatible with the
+                                     * <i>l<sub>2</sub></i>-norm of
+                                     * the vector space.
+                                     */
+    number frobenius_norm () const;
+
+                                    /**
+                                     * @deprecated Old name for
+                                     * frobenius_norm().
                                      */
     number norm2 () const;
 
@@ -635,9 +636,10 @@ class FullMatrix : public Table<2,number>
     
                                     /**
                                      * Weighted addition of the
-                                     * transpose of <tt>B</tt> to <tt>this</tt>.
+                                     * transpose of <tt>B</tt> to
+                                     * <tt>this</tt>.
                                      *
-                                     * $A += s B^T$
+                                     * <i>A += s B<sup>T</sup></i>
                                      */
     template<typename number2>
     void Tadd (const number               s,
@@ -674,23 +676,25 @@ class FullMatrix : public Table<2,number>
               const unsigned int src_offset_j = 0);
 
                                     /**
-                                     * $A(i,1...n)+=s*A(j,1...n)$.
-                                     * Simple addition of rows of this
+                                     * <i>A(i,1...n) +=
+                                     * s*A(j,1...n)</i>.  Simple
+                                     * addition of rows of this
                                      */
     void add_row (const unsigned int i,
                  const number       s,
                  const unsigned int j);
 
                                     /**
-                                     * $A(i,1...n)+=s*A(j,1...n)+t*A(k,1...n)$.
-                                     * Multiple addition of rows of this.
+                                     * <i>A(i,1...n) += s*A(j,1...n)
+                                     * + t*A(k,1...n)</i>.  Multiple
+                                     * addition of rows of this.
                                      */
     void add_row (const unsigned int i,
                  const number s, const unsigned int j,
                  const number t, const unsigned int k);
 
                                     /**
-                                     * $A(1...n,i)+=s*A(1...n,j)$.
+                                     * <i>A(1...n,i) += s*A(1...n,j)</i>.
                                      *  Simple addition of columns of this.
                                      */
     void add_col (const unsigned int i,
@@ -698,31 +702,36 @@ class FullMatrix : public Table<2,number>
                  const unsigned int j);
 
                                     /**
-                                     * $A(1...n,i)+=s*A(1...n,j)+t*A(1...n,k)$.
-                                     *  Multiple addition of columns of this.
+                                     * <i>A(1...n,i) += s*A(1...n,j)
+                                     * + t*A(1...n,k)</i>.  Multiple
+                                     * addition of columns of this.
                                      */
     void add_col (const unsigned int i,
                  const number s, const unsigned int j,
                  const number t, const unsigned int k);
 
                                     /**
-                                     * Swap  A(i,1...n) <-> A(j,1...n).
-                                     * Swap rows i and j of this
+                                     * Swap <i>A(i,1...n) <->
+                                     * A(j,1...n)</i>.  Swap rows i
+                                     * and j of this
                                      */
     void swap_row (const unsigned int i,
                   const unsigned int j);
 
                                     /**
-                                     *  Swap  A(1...n,i) <-> A(1...n,j).
-                                     *  Swap columns i and j of this
+                                     *  Swap <i>A(1...n,i) <->
+                                     *  A(1...n,j)</i>.  Swap columns
+                                     *  i and j of this
                                      */
     void swap_col (const unsigned int i,
                   const unsigned int j);
 
                                     /**
-                                     *  A(i,i)+=B(i,1...n). Addition of complete
-                                     *  rows of B to diagonal-elements of this ; <p>
-                                     *  ( i = 1 ... m )
+                                     *  <i>A(i,i) +=
+                                     *  B(i,1...n)</i>. Addition of
+                                     *  complete rows of B to
+                                     *  diagonal-elements of this ;
+                                     *  <p> ( i = 1 ... m )
                                      */
     template<typename number2>
     void add_diag (const number               s,
@@ -740,7 +749,8 @@ class FullMatrix : public Table<2,number>
                                      * Symmetrize the matrix by
                                      * forming the mean value between
                                      * the existing matrix and its
-                                     * transpose, $A = \frac 12(A+A^T)$.
+                                     * transpose, <i>A =
+                                     * 1/2(A+A<sup>T</sup>)</i>.
                                      *
                                      * Obviously the matrix must be
                                      * quadratic for this operation.
@@ -808,10 +818,10 @@ class FullMatrix : public Table<2,number>
                                      * to <tt>C</tt>.
                                      *
                                      * if (adding)
-                                     *  $C += A*B$
+                                     *  <i>C += A*B</i>
                                      *
                                      * if (!adding)
-                                     *  $C = A*B$
+                                     *  <i>C = A*B</i>
                                      *
                                      * Assumes that <tt>A</tt> and <tt>B</tt> have
                                      * compatible sizes and that <tt>C</tt>
@@ -832,13 +842,14 @@ class FullMatrix : public Table<2,number>
                                      * to <tt>C</tt>.
                                      *
                                      * if (adding)
-                                     *  $C += A^T*B$
+                                     *  <i>C += A<sup>T</sup>*B</i>
                                      *
                                      * if (!adding)
-                                     *  $C = A^T*B$
+                                     *  <i>C = A<sup>T</sup>*B</i>
                                      *
-                                     * Assumes that <tt>A</tt> and <tt>B</tt> have
-                                     * compatible sizes and that <tt>C</tt>
+                                     * Assumes that <tt>A</tt> and
+                                     * <tt>B</tt> have compatible
+                                     * sizes and that <tt>C</tt>
                                      * already has the right size.
                                      */
     template<typename number2>
@@ -855,10 +866,10 @@ class FullMatrix : public Table<2,number>
                                      * to <tt>w</tt>.
                                      *
                                      * if (adding)
-                                     *  $w += A*v$
+                                     *  <i>w += A*v</i>
                                      *
                                      * if (!adding)
-                                     *  $w = A*v$
+                                     *  <i>w = A*v</i>
                                       *
                                       * Source and destination must
                                       * not be the same vector.
@@ -870,7 +881,7 @@ class FullMatrix : public Table<2,number>
     
                                     /**
                                      * Adding Matrix-vector-multiplication.
-                                     *  $w += A*v$
+                                     *  <i>w += A*v</i>
                                       *
                                       * Source and destination must
                                       * not be the same vector.
@@ -882,7 +893,18 @@ class FullMatrix : public Table<2,number>
                                     /**
                                      * Transpose
                                      * matrix-vector-multiplication.
-                                     * See vmult() above.
+                                     *
+                                     * The optional parameter
+                                     * <tt>adding</tt> determines, whether the
+                                     * result is stored in <tt>w</tt> or added
+                                     * to <tt>w</tt>.
+                                     *
+                                     * if (adding)
+                                     *  <i>w += A<sup>T</sup>*v</i>
+                                     *
+                                     * if (!adding)
+                                     *  <i>w = A<sup>T</sup>*v</i>
+                                      *
                                       *
                                       * Source and destination must
                                       * not be the same vector.
@@ -895,7 +917,7 @@ class FullMatrix : public Table<2,number>
                                     /**
                                      * Adding transpose
                                      * matrix-vector-multiplication.
-                                     * See vmult() above.
+                                     *  <i>w += A<sup>T</sup>*v</i>
                                       *
                                       * Source and destination must
                                       * not be the same vector.

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.