]> https://gitweb.dealii.org/ - dealii.git/commitdiff
I thought I had gotten the combination of hanging nodes and inhomogeneous constraints...
authorMartin Kronbichler <kronbichler@lnm.mw.tum.de>
Mon, 23 Feb 2009 12:23:03 +0000 (12:23 +0000)
committerMartin Kronbichler <kronbichler@lnm.mw.tum.de>
Mon, 23 Feb 2009 12:23:03 +0000 (12:23 +0000)
git-svn-id: https://svn.dealii.org/trunk@18414 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/include/dofs/dof_constraints.h
deal.II/deal.II/include/dofs/dof_constraints.templates.h
deal.II/deal.II/source/dofs/dof_constraints.cc

index bb0c96144fc22b6e3c9b887308275546472d0422..5a6554064cecca20c019af89cd19be4a08fd3e71 100644 (file)
@@ -351,180 +351,159 @@ class ConstraintMatrix : public Subscriptor
 
                                     /**
                                      * Add a whole series of entries,
-                                     * denoted by pairs of column
-                                     * indices and values, to a line
-                                     * of constraints. This function
-                                     * is equivalent to calling the
-                                     * preceeding function
-                                     * several times, but is faster.
+                                     * denoted by pairs of column indices
+                                     * and values, to a line of
+                                     * constraints. This function is
+                                     * equivalent to calling the preceeding
+                                     * function several times, but is
+                                     * faster.
                                      */
     void add_entries (const unsigned int                                  line,
                      const std::vector<std::pair<unsigned int,double> > &col_val_pairs);
 
                                     /**
                                      * Set an imhomogeneity to the
-                                     * constraint line <i>i</i>,
-                                     * according to the discussion in
-                                     * the general class description.
+                                     * constraint line <i>i</i>, according
+                                     * to the discussion in the general
+                                     * class description.
                                      */
     void set_inhomogeneity (const unsigned int line,
                            const double       value);
 
                                     /**
-                                     * Close the filling of
-                                     * entries. Since the lines of a
-                                     * matrix of this type are
-                                     * usually filled in an arbitrary
-                                     * order and since we do not want
-                                     * to use associative constainers
-                                     * to store the lines, we need to
-                                     * sort the lines and within the
-                                     * lines the columns before usage
-                                     * of the matrix.  This is done
-                                     * through this function.
+                                     * Close the filling of entries. Since
+                                     * the lines of a matrix of this type
+                                     * are usually filled in an arbitrary
+                                     * order and since we do not want to
+                                     * use associative constainers to store
+                                     * the lines, we need to sort the lines
+                                     * and within the lines the columns
+                                     * before usage of the matrix.  This is
+                                     * done through this function.
                                      *
-                                     * Also, zero entries are
-                                     * discarded, since they are not
-                                     * needed.
+                                     * Also, zero entries are discarded,
+                                     * since they are not needed.
                                      *
-                                     * After closing, no more entries
-                                     * are accepted. If the object
-                                     * was already closed, then this
-                                     * function returns immediately.
+                                     * After closing, no more entries are
+                                     * accepted. If the object was already
+                                     * closed, then this function returns
+                                     * immediately.
                                      *
-                                     * This function also resolves
-                                     * chains of constraints. For
-                                     * example, degree of freedom 13
-                                     * may be constrained to
-                                     * $u_{13}=u_3/2+u_7/2$ while
-                                     * degree of freedom 7 is itself
-                                     * constrained as
+                                     * This function also resolves chains
+                                     * of constraints. For example, degree
+                                     * of freedom 13 may be constrained to
+                                     * $u_{13}=u_3/2+u_7/2$ while degree of
+                                     * freedom 7 is itself constrained as
                                      * $u_7=u_2/2+u_4/2$. Then, the
                                      * resolution will be that
                                      * $u_{13}=u_3/2+u_2/4+u_4/4$. Note,
-                                     * however, that cycles in this
-                                     * graph of constraints are not
-                                     * allowed, i.e. for example
-                                     * $u_4$ may not be constrained,
-                                     * directly or indirectly, to
-                                     * $u_{13}$ again.
+                                     * however, that cycles in this graph
+                                     * of constraints are not allowed,
+                                     * i.e. for example $u_4$ may not be
+                                     * constrained, directly or indirectly,
+                                     * to $u_{13}$ again.
                                      */
     void close ();
 
                                     /**
-                                     * Merge the constraints
-                                     * represented by the object
-                                     * given as argument into the
-                                     * constraints represented by
-                                     * this object. Both objects may
-                                     * or may not be closed (by
-                                     * having their function
-                                     * @p close called before). If
-                                     * this object was closed before,
-                                     * then it will be closed
-                                     * afterwards as well. Note,
-                                     * however, that if the other
-                                     * argument is closed, then
-                                     * merging may be significantly
-                                     * faster.
-                                     *
-                                     * Note that the constraints in
-                                     * each of the two objects (the
-                                     * old one represented by this
-                                     * object and the argument) may
-                                     * not refer to the same degree
-                                     * of freedom, i.e. a degree of
-                                     * freedom that is constrained in
-                                     * one object may not be
-                                     * constrained in the second. If
-                                     * this is nevertheless the case,
-                                     * an exception is thrown.
+                                     * Merge the constraints represented by
+                                     * the object given as argument into
+                                     * the constraints represented by this
+                                     * object. Both objects may or may not
+                                     * be closed (by having their function
+                                     * @p close called before). If this
+                                     * object was closed before, then it
+                                     * will be closed afterwards as
+                                     * well. Note, however, that if the
+                                     * other argument is closed, then
+                                     * merging may be significantly faster.
                                      *
-                                     * However, the following is
-                                     * possible: if DoF @p x is
-                                     * constrained to dofs @p x_i
-                                     * for some set of indices @p i,
-                                     * then the DoFs @p x_i may be
-                                     * further constrained by the
-                                     * constraints object given as
-                                     * argument, although not to
-                                     * other DoFs that are
-                                     * constrained in either of the
-                                     * two objects. Note that it is
-                                     * not possible that the DoFs
-                                     * @p x_i are constrained within
-                                     * the present object.
+                                     * Note that the constraints in each of
+                                     * the two objects (the old one
+                                     * represented by this object and the
+                                     * argument) may not refer to the same
+                                     * degree of freedom, i.e. a degree of
+                                     * freedom that is constrained in one
+                                     * object may not be constrained in the
+                                     * second. If this is nevertheless the
+                                     * case, an exception is thrown.
                                      *
-                                     * Because of simplicity of
-                                     * implementation, and also to
-                                     * avoid cycles, this operation
-                                     * is not symmetric: degrees of
-                                     * freedom that are constrained
-                                     * in the given argument object
-                                     * may not be constrained to DoFs
-                                     * that are themselves
+                                     * However, the following is possible:
+                                     * if DoF @p x is constrained to dofs
+                                     * @p x_i for some set of indices @p i,
+                                     * then the DoFs @p x_i may be further
+                                     * constrained by the constraints
+                                     * object given as argument, although
+                                     * not to other DoFs that are
+                                     * constrained in either of the two
+                                     * objects. Note that it is not
+                                     * possible that the DoFs @p x_i are
                                      * constrained within the present
                                      * object.
                                      *
-                                     * The aim of these merging
-                                     * operations is that if, for
-                                     * example, you have hanging
-                                     * nodes that are constrained to
-                                     * the degrees of freedom
-                                     * adjacent to them, you cannot
-                                     * originally, i.e. within one
-                                     * object, constrain these
-                                     * adjacent nodes
+                                     * Because of simplicity of
+                                     * implementation, and also to avoid
+                                     * cycles, this operation is not
+                                     * symmetric: degrees of freedom that
+                                     * are constrained in the given
+                                     * argument object may not be
+                                     * constrained to DoFs that are
+                                     * themselves constrained within the
+                                     * present object.
+                                     *
+                                     * The aim of these merging operations
+                                     * is that if, for example, you have
+                                     * hanging nodes that are constrained
+                                     * to the degrees of freedom adjacent
+                                     * to them, you cannot originally,
+                                     * i.e. within one object, constrain
+                                     * these adjacent nodes
                                      * further. However, that may be
-                                     * desirable in some cases, for
-                                     * example if they belong to a
-                                     * symmetry boundary for which
-                                     * the nodes on one side of the
-                                     * domain should have the same
-                                     * values as those on the other
-                                     * side. In that case, you would
-                                     * first construct a costraints
-                                     * object holding the hanging
-                                     * nodes constraints, and a
-                                     * second one that contains the
-                                     * constraints due to the
-                                     * symmetry boundary. You would
-                                     * then finally merge this second
-                                     * one into the first, possibly
-                                     * eliminating constraints of
-                                     * hanging nodes to adjacent
-                                     * boundary nodes by constraints
-                                     * to nodes at the opposite
+                                     * desirable in some cases, for example
+                                     * if they belong to a symmetry
+                                     * boundary for which the nodes on one
+                                     * side of the domain should have the
+                                     * same values as those on the other
+                                     * side. In that case, you would first
+                                     * construct a costraints object
+                                     * holding the hanging nodes
+                                     * constraints, and a second one that
+                                     * contains the constraints due to the
+                                     * symmetry boundary. You would then
+                                     * finally merge this second one into
+                                     * the first, possibly eliminating
+                                     * constraints of hanging nodes to
+                                     * adjacent boundary nodes by
+                                     * constraints to nodes at the opposite
                                      * boundary.
                                      */
     void merge (const ConstraintMatrix &other_constraints);
 
                                     /**
-                                     * Shift all entries of this
-                                     * matrix down @p offset rows
-                                     * and over @p offset columns.
+                                     * Shift all entries of this matrix
+                                     * down @p offset rows and over @p
+                                     * offset columns.
                                      *
-                                     * This function is useful if you
-                                     * are building block matrices,
-                                     * where all blocks are built by
-                                     * the same @p DoFHandler
-                                     * object, i.e. the matrix size
-                                     * is larger than the number of
-                                     * degrees of freedom. Since
-                                     * several matrix rows and
-                                     * columns correspond to the same
-                                     * degrees of freedom, you'd
-                                     * generate several constraint
+                                     * This function is useful if you are
+                                     * building block matrices, where all
+                                     * blocks are built by the same @p
+                                     * DoFHandler object, i.e. the matrix
+                                     * size is larger than the number of
+                                     * degrees of freedom. Since several
+                                     * matrix rows and columns correspond
+                                     * to the same degrees of freedom,
+                                     * you'd generate several constraint
                                      * objects, then shift them, and
-                                     * finally @p merge them
-                                     * together again.
+                                     * finally @p merge them together
+                                     * again.
                                      */
     void shift (const unsigned int offset);
     
                                     /**
-                                     * Clear all entries of this matrix. Reset
-                                     * the flag determining whether new entries
-                                     * are accepted or not.
+                                     * Clear all entries of this
+                                     * matrix. Reset the flag determining
+                                     * whether new entries are accepted or
+                                     * not.
                                      *
                                      * This function may be called also on
                                      * objects which are empty or already
@@ -549,112 +528,102 @@ class ConstraintMatrix : public Subscriptor
     unsigned int n_constraints () const;
 
                                     /**
-                                     * Return whether the degree of
-                                     * freedom with number @p index is
-                                     * constrained one.
+                                     * Return whether the degree of freedom
+                                     * with number @p index is a
+                                     * constrained one.
                                      *
-                                     * Note that if @p close was
-                                     * called before, then this
-                                     * function is significantly
-                                     * faster, since then the
-                                     * constrained degrees of freedom
-                                     * are sorted and we can do a
-                                     * binary search, while before
-                                     * @p close was called, we have to
-                                     * perform a linear search
-                                     * through all entries.
+                                     * Note that if @p close was called
+                                     * before, then this function is
+                                     * significantly faster, since then the
+                                     * constrained degrees of freedom are
+                                     * sorted and we can do a binary
+                                     * search, while before @p close was
+                                     * called, we have to perform a linear
+                                     * search through all entries.
                                      */
     bool is_constrained (const unsigned int index) const;
 
                                     /**
                                      * Return whether the dof is
                                      * constrained, and whether it is
-                                     * constrained to only one other
-                                     * degree of freedom with weight
-                                     * one. The function therefore
-                                     * returns whether the degree of
-                                     * freedom would simply be
-                                     * eliminated in favor of exactly
+                                     * constrained to only one other degree
+                                     * of freedom with weight one. The
+                                     * function therefore returns whether
+                                     * the degree of freedom would simply
+                                     * be eliminated in favor of exactly
                                      * one other degree of freedom.
                                      *
-                                     * The function returns @p false
-                                     * if either the degree of
-                                     * freedom is not constrained at
-                                     * all, or if it is constrained
-                                     * to more than one other degree
-                                     * of freedom, or if it is
-                                     * constrained to only one degree
-                                     * of freedom but with a weight
-                                     * different from one.
+                                     * The function returns @p false if
+                                     * either the degree of freedom is not
+                                     * constrained at all, or if it is
+                                     * constrained to more than one other
+                                     * degree of freedom, or if it is
+                                     * constrained to only one degree of
+                                     * freedom but with a weight different
+                                     * from one.
                                      */
     bool is_identity_constrained (const unsigned int index) const;
     
                                     /**
-                                     * Return the maximum number of
-                                     * other dofs that one dof is
-                                     * constrained to. For example,
-                                     * in 2d a hanging node is
-                                     * constrained only to its two
-                                     * neighbors, so the returned
-                                     * value would be @p 2. However,
-                                     * for higher order elements
-                                     * and/or higher dimensions, or
-                                     * other types of constraints,
-                                     * this number is no more
+                                     * Return the maximum number of other
+                                     * dofs that one dof is constrained
+                                     * to. For example, in 2d a hanging
+                                     * node is constrained only to its two
+                                     * neighbors, so the returned value
+                                     * would be @p 2. However, for higher
+                                     * order elements and/or higher
+                                     * dimensions, or other types of
+                                     * constraints, this number is no more
                                      * obvious.
                                      *
-                                     * The name indicates that within
-                                     * the system matrix, references
-                                     * to a constrained node are
-                                     * indirected to the nodes it is
-                                     * constrained to.
+                                     * The name indicates that within the
+                                     * system matrix, references to a
+                                     * constrained node are indirected to
+                                     * the nodes it is constrained to.
                                      */
     unsigned int max_constraint_indirections () const;
 
     
     
                                     /**
-                                     * Print the constraint lines. Mainly for
-                                     * debugging purposes.
+                                     * Print the constraint lines. Mainly
+                                     * for debugging purposes.
                                      *
                                      * This function writes out all entries
                                      * in the constraint matrix lines with
-                                     * their value in the form
-                                     * <tt>row col : value</tt>. Unconstrained lines
-                                     * containing only one identity entry are
-                                     * not stored in this object and are not
-                                     * printed.
+                                     * their value in the form <tt>row col
+                                     * : value</tt>. Unconstrained lines
+                                     * containing only one identity entry
+                                     * are not stored in this object and
+                                     * are not printed.
                                      */
     void print (std::ostream &) const;
 
                                     /**
-                                     * Write the graph of constraints
-                                     * in 'dot' format. 'dot' is a
-                                     * program that can take a list
-                                     * of nodes and produce a
-                                     * graphical representation of
-                                     * the graph of constrained
-                                     * degrees of freedom and the
-                                     * degrees of freedom they are
-                                     * constrained to.
+                                     * Write the graph of constraints in
+                                     * 'dot' format. 'dot' is a program
+                                     * that can take a list of nodes and
+                                     * produce a graphical representation
+                                     * of the graph of constrained degrees
+                                     * of freedom and the degrees of
+                                     * freedom they are constrained to.
                                      *
-                                     * The output of this function
-                                     * can be used as input to the
-                                     * 'dot' program that can convert
-                                     * the graph into a graphical
-                                     * representation in postscript,
-                                     * png, xfig, and a number of
-                                     * other formats.
+                                     * The output of this function can be
+                                     * used as input to the 'dot' program
+                                     * that can convert the graph into a
+                                     * graphical representation in
+                                     * postscript, png, xfig, and a number
+                                     * of other formats.
                                      *
-                                     * This function exists mostly
-                                     * for debugging purposes.
+                                     * This function exists mostly for
+                                     * debugging purposes.
                                      */
     void write_dot (std::ostream &) const;
 
                                     /**
-                                     * Determine an estimate for the
-                                     * memory consumption (in bytes)
-                                     * of this object.
+                                     * Determine an estimate for the memory
+                                     * consumption (in bytes) of this
+                                     * object.
                                      */
     unsigned int memory_consumption () const;
 
@@ -669,53 +638,46 @@ class ConstraintMatrix : public Subscriptor
 
                                     /**
                                      * Condense a given sparsity
-                                     * pattern. This function assumes
-                                     * the uncondensed matrix struct
-                                     * to be compressed and the one
-                                     * to be filled to be empty. The
-                                     * condensed structure is
-                                     * compressed afterwards.
+                                     * pattern. This function assumes the
+                                     * uncondensed matrix struct to be
+                                     * compressed and the one to be filled
+                                     * to be empty. The condensed structure
+                                     * is compressed afterwards.
                                      *
-                                     * The constraint matrix object
-                                     * must be closed to call this
-                                     * function.
+                                     * The constraint matrix object must be
+                                     * closed to call this function.
                                      *
                                      * @note The hanging nodes are
                                      * completely eliminated from the
                                      * linear system refering to
-                                     * <tt>condensed</tt>. Therefore,
+                                     * <tt>condensed</tt>. Therefore, the
+                                     * dimension of <tt>condensed</tt> is
                                      * the dimension of
-                                     * <tt>condensed</tt> is the
-                                     * dimension of
                                      * <tt>uncondensed</tt> minus the
-                                     * number of constrained degrees
-                                     * of freedom.
+                                     * number of constrained degrees of
+                                     * freedom.
                                      */
     void condense (const SparsityPattern &uncondensed,
                   SparsityPattern       &condensed) const;
 
 
                                     /**
-                                     * This function does much the
-                                     * same as the above one, except
-                                     * that it condenses the matrix
-                                     * struct 'in-place'. It does not
-                                     * remove nonzero entries from
-                                     * the matrix but adds those
-                                     * needed for the process of
-                                     * distribution of the
-                                     * constrained degrees of
-                                     * freedom.
+                                     * This function does much the same as
+                                     * the above one, except that it
+                                     * condenses the matrix struct
+                                     * 'in-place'. It does not remove
+                                     * nonzero entries from the matrix but
+                                     * adds those needed for the process of
+                                     * distribution of the constrained
+                                     * degrees of freedom.
                                      *
-                                     * Since this function adds new
-                                     * nonzero entries to the
-                                     * sparsity pattern, the argument
-                                     * must not be
-                                     * compressed. However the
-                                     * constraint matrix must be
-                                     * closed.  The matrix struct is
-                                     * compressed at the end of the
-                                     * function.
+                                     * Since this function adds new nonzero
+                                     * entries to the sparsity pattern, the
+                                     * argument must not be
+                                     * compressed. However the constraint
+                                     * matrix must be closed. The matrix
+                                     * struct is compressed at the end of
+                                     * the function.
                                      */
     void condense (SparsityPattern &sparsity) const;
 
@@ -728,8 +690,8 @@ class ConstraintMatrix : public Subscriptor
 
                                     /**
                                      * Same function as above, but
-                                     * condenses square compressed
-                                     * sparsity patterns.
+                                     * condenses square compressed sparsity
+                                     * patterns.
                                      *
                                      * Given the data structure used by
                                      * CompressedSparsityPattern, this
@@ -755,58 +717,56 @@ class ConstraintMatrix : public Subscriptor
 
                                     /**
                                      * Same function as above, but
-                                     * condenses compressed
-                                     * sparsity patterns, which are
-                                     * based on the std::set container.
+                                     * condenses compressed sparsity
+                                     * patterns, which are based on the
+                                     * std::set container.
                                      */
     void condense (CompressedSetSparsityPattern &sparsity) const;
 
                                     /**
                                      * Same function as above, but
-                                     * condenses compressed
-                                     * sparsity patterns, which are
-                                     * based on the ''simple'' aproach.
+                                     * condenses compressed sparsity
+                                     * patterns, which are based on the
+                                     * ''simple'' aproach.
                                      */
     void condense (CompressedSimpleSparsityPattern &sparsity) const;
 
                                     /**
                                      * Same function as above, but
-                                     * condenses square compressed
-                                     * sparsity patterns.
+                                     * condenses square compressed sparsity
+                                     * patterns.
                                      *
-                                     * Given the data structure used
-                                     * by BlockCompressedSparsityPattern,
-                                     * this function becomes
-                                     * quadratic in the number of
-                                     * degrees of freedom for large
-                                     * problems and can dominate
+                                     * Given the data structure used by
+                                     * BlockCompressedSparsityPattern, this
+                                     * function becomes quadratic in the
+                                     * number of degrees of freedom for
+                                     * large problems and can dominate
                                      * setting up linear systems when
-                                     * several hundred thousand or
-                                     * millions of unknowns are
-                                     * involved and for problems with
-                                     * many nonzero elements per row
-                                     * (for example for vector-valued
-                                     * problems or hp finite
+                                     * several hundred thousand or millions
+                                     * of unknowns are involved and for
+                                     * problems with many nonzero elements
+                                     * per row (for example for
+                                     * vector-valued problems or hp finite
                                      * elements). In this case, it is
                                      * advisable to use the
                                      * BlockCompressedSetSparsityPattern
-                                     * class instead, see for example
-                                     * @ref step_27 "step-27" and
-                                     * @ref step_31 "step-31".
+                                     * class instead, see for example @ref
+                                     * step_27 "step-27" and @ref step_31
+                                     * "step-31".
                                      */
     void condense (BlockCompressedSparsityPattern &sparsity) const;
 
                                     /**
                                      * Same function as above, but
-                                     * condenses square compressed
-                                     * sparsity patterns.
+                                     * condenses square compressed sparsity
+                                     * patterns.
                                      */
     void condense (BlockCompressedSetSparsityPattern &sparsity) const;
 
                                     /**
                                      * Same function as above, but
-                                     * condenses square compressed
-                                     * sparsity patterns.
+                                     * condenses square compressed sparsity
+                                     * patterns.
                                      */
     void condense (BlockCompressedSimpleSparsityPattern &sparsity) const;
     
@@ -828,10 +788,10 @@ class ConstraintMatrix : public Subscriptor
 
                                     /**
                                      * This function does much the same as
-                                     * the above one, except that it condenses
-                                     * the matrix 'in-place'. See the general
-                                     * documentation of this class for more
-                                     * detailed information.
+                                     * the above one, except that it
+                                     * condenses the matrix 'in-place'. See
+                                     * the general documentation of this
+                                     * class for more detailed information.
                                      */
     template<typename number>
     void condense (SparseMatrix<number> &matrix) const;
@@ -851,16 +811,17 @@ class ConstraintMatrix : public Subscriptor
                                      * guarantee that all entries of @p
                                      * condensed be zero. Note that this
                                      * function does not take any
-                                     * inhomogeneity into account, use the
-                                     * function using both a matrix and
+                                     * inhomogeneity into account and
+                                     * throws an exception in case there
+                                     * are any inhomogeneities. Use
+                                     * the function using both a matrix and
                                      * vector for that case.
                                      *
                                      * The @p VectorType may be a
                                      * Vector<float>, Vector<double>,
-                                     * BlockVector<tt><...></tt>, a
-                                     * PETSc or Trilinos vector
-                                     * wrapper class, or any other
-                                     * type having the same
+                                     * BlockVector<tt><...></tt>, a PETSc
+                                     * or Trilinos vector wrapper class, or
+                                     * any other type having the same
                                      * interface.
                                      */
     template <class VectorType>
@@ -869,18 +830,18 @@ class ConstraintMatrix : public Subscriptor
 
                                     /**
                                      * Condense the given vector
-                                     * in-place. The @p VectorType
-                                     * may be a Vector<float>,
-                                     * Vector<double>,
-                                     * BlockVector<tt><...></tt>, a
-                                     * PETSc or Trilinos vector
-                                     * wrapper class, or any other
-                                     * type having the same
-                                     * interface. Note that this
-                                     * function does not take any
-                                     * inhomogeneity into account, use the
-                                     * function using both a matrix and
-                                     * vector for that case.
+                                     * in-place. The @p VectorType may be a
+                                     * Vector<float>, Vector<double>,
+                                     * BlockVector<tt><...></tt>, a PETSc
+                                     * or Trilinos vector wrapper class, or
+                                     * any other type having the same
+                                     * interface. Note that this function
+                                     * does not take any inhomogeneity into
+                                     * account and throws an exception in
+                                     * case there are any
+                                     * inhomogeneities. Use the function
+                                     * using both a matrix and vector for
+                                     * that case.
                                      */
     template <class VectorType>
     void condense (VectorType &vec) const;
@@ -893,8 +854,8 @@ class ConstraintMatrix : public Subscriptor
                                      * responsibility to guarantee that all
                                      * entries in the @p condensed matrix
                                      * and vector be zero! This function is
-                                     * capable of applying inhomogeneous
-                                     * constraints.
+                                     * the appropriate choice for applying
+                                     * inhomogeneous constraints.
                                      *
                                      * The constraint matrix object must be
                                      * closed to call this function.
index 60c4b5716d8d32e6899b28b97ba210985a5b929c..5dccbde9d9f83ecd96e20fe7b3ba39eea0d0d4eb 100644 (file)
@@ -31,123 +31,10 @@ void
 ConstraintMatrix::condense (const SparseMatrix<number> &uncondensed,
                            SparseMatrix<number>       &condensed) const
 {
-  const SparsityPattern &uncondensed_struct = uncondensed.get_sparsity_pattern ();
-  
-  Assert (sorted == true, ExcMatrixNotClosed());
-  Assert (uncondensed_struct.is_compressed() == true, ExcMatrixNotClosed());
-  Assert (condensed.get_sparsity_pattern().is_compressed() == true, ExcMatrixNotClosed());
-  Assert (uncondensed_struct.n_rows() == uncondensed_struct.n_cols(),
-         ExcNotQuadratic());
-  Assert (condensed.n() == condensed.m(),
-         ExcNotQuadratic());
-  Assert (condensed.n()+n_constraints() == uncondensed.n(),
-         ExcDimensionMismatch(condensed.n()+n_constraints(), uncondensed.n()));
-
-                                  // store for each line of the matrix
-                                  // its new line number
-                                  // after compression. If the shift is
-                                  // -1, this line will be condensed away
-  std::vector<int> new_line;
-
-  new_line.reserve (uncondensed_struct.n_rows());
-
-  std::vector<ConstraintLine>::const_iterator next_constraint = lines.begin();
-  unsigned int                                shift           = 0;
-  const unsigned int n_rows = uncondensed_struct.n_rows();
-
-  if (next_constraint == lines.end()) 
-                                    // if no constraint is to be handled
-    for (unsigned int row=0; row!=n_rows; ++row)
-      new_line.push_back (row);
-  else
-    for (unsigned int row=0; row!=n_rows; ++row)
-      if (row == next_constraint->line)
-       {
-                                          // this line is constrained
-         new_line.push_back (-1);
-                                          // note that @p lines is ordered
-         ++shift;
-         ++next_constraint;
-         if (next_constraint == lines.end())
-                                            // nothing more to do; finish rest
-                                            // of loop
-           {
-             for (unsigned int i=row+1; i<n_rows; ++i)
-               new_line.push_back (i-shift);
-             break;
-           };
-       }
-      else
-       new_line.push_back (row-shift);
-
-
-  next_constraint = lines.begin();
-                                  // note: in this loop we need not check
-                                  // whether @p next_constraint is a valid
-                                  // iterator, since @p next_constraint is
-                                  // only evaluated so often as there are
-                                  // entries in new_line[*] which tells us
-                                  // which constraints exist
-  for (unsigned int row=0; row<uncondensed_struct.n_rows(); ++row)
-    if (new_line[row] != -1)
-                                      // line not constrained
-                                      // copy entries if column will not
-                                      // be condensed away, distribute
-                                      // otherwise
-      for (unsigned int j=uncondensed_struct.get_rowstart_indices()[row];
-          j<uncondensed_struct.get_rowstart_indices()[row+1]; ++j)
-       if (new_line[uncondensed_struct.get_column_numbers()[j]] != -1)
-         condensed.add (new_line[row], new_line[uncondensed_struct.get_column_numbers()[j]],
-                        uncondensed.global_entry(j));
-       else 
-         {
-                                            // let c point to the
-                                            // constraint of this column
-           std::vector<ConstraintLine>::const_iterator c = lines.begin();
-           while (c->line != uncondensed_struct.get_column_numbers()[j])
-             ++c;
-
-           for (unsigned int q=0; q!=c->entries.size(); ++q)
-                                              // distribute to rows with
-                                              // appropriate weight
-             condensed.add (new_line[row], new_line[c->entries[q].first],
-                            uncondensed.global_entry(j) * c->entries[q].second);
-         }
-    else
-                                      // line must be distributed
-      {
-       for (unsigned int j=uncondensed_struct.get_rowstart_indices()[row];
-            j<uncondensed_struct.get_rowstart_indices()[row+1]; ++j)
-                                          // for each column: distribute
-         if (new_line[uncondensed_struct.get_column_numbers()[j]] != -1)
-                                            // column is not constrained
-           for (unsigned int q=0; q!=next_constraint->entries.size(); ++q) 
-             condensed.add (new_line[next_constraint->entries[q].first],
-                            new_line[uncondensed_struct.get_column_numbers()[j]],
-                            uncondensed.global_entry(j) *
-                            next_constraint->entries[q].second);
-       
-         else
-                                            // not only this line but
-                                            // also this col is constrained
-           {
-                                              // let c point to the constraint
-                                              // of this column
-             std::vector<ConstraintLine>::const_iterator c = lines.begin();
-             while (c->line != uncondensed_struct.get_column_numbers()[j])
-               ++c;
-             
-             for (unsigned int p=0; p!=c->entries.size(); ++p)
-               for (unsigned int q=0; q!=next_constraint->entries.size(); ++q)
-                 condensed.add (new_line[next_constraint->entries[q].first],
-                                new_line[c->entries[p].first],
-                                uncondensed.global_entry(j) *
-                                next_constraint->entries[q].second *
-                                c->entries[p].second);
-           };
-
-       ++next_constraint;
-      };
+                                  // create two dummy vectors and enter the
+                                  // other function
+  Vector<number> in (0), out(0);
+  condense (uncondensed, in, condensed, out);
 }
 
 
@@ -156,293 +43,18 @@ template<typename number>
 void
 ConstraintMatrix::condense (SparseMatrix<number> &uncondensed) const
 {
-  const SparsityPattern &sparsity = uncondensed.get_sparsity_pattern ();
-
-  Assert (sorted == true, ExcMatrixNotClosed());
-  Assert (sparsity.is_compressed() == true, ExcMatrixNotClosed());
-  Assert (sparsity.n_rows() == sparsity.n_cols(),
-         ExcNotQuadratic());
-
-  double average_diagonal = 0;
-  for (unsigned int i=0; i<uncondensed.m(); ++i)
-    average_diagonal += std::fabs (uncondensed.diag_element(i));
-  average_diagonal /= uncondensed.m();
-  
-                                  // store for each index whether it must be
-                                  // distributed or not. If entry is
-                                  // invalid_unsigned_int, no distribution is
-                                  // necessary.  otherwise, the number states
-                                  // which line in the constraint matrix
-                                  // handles this index
-  std::vector<unsigned int> distribute (sparsity.n_rows(),
-                                        numbers::invalid_unsigned_int);
-  
-  for (unsigned int c=0; c<lines.size(); ++c)
-    distribute[lines[c].line] = c;
-
-  const unsigned int n_rows = sparsity.n_rows();
-  for (unsigned int row=0; row<n_rows; ++row)
-    {
-      if (distribute[row] == numbers::invalid_unsigned_int)
-                                        // regular line. loop over cols
-        {
-          for (typename SparseMatrix<number>::iterator
-                 entry = uncondensed.begin(row);
-               entry != uncondensed.end(row); ++entry)
-            {
-              const unsigned int column = entry->column();
-              
-                                               // end of row reached?
-                                               // this should not
-                                               // happen, since we only
-                                               // operate on compressed
-                                               // matrices!
-              Assert (column != SparsityPattern::invalid_entry,
-                      ExcMatrixNotClosed());
-           
-              if (distribute[column] != numbers::invalid_unsigned_int)
-                                                 // distribute entry at
-                                                 // regular row @p row
-                                                 // and irregular column
-                                                 // sparsity.get_column_numbers()[j];
-                                                 // set old entry to
-                                                 // zero
-                {
-                  for (unsigned int q=0;
-                       q!=lines[distribute[column]].entries.size(); ++q)
-                    uncondensed.add (row,
-                                     lines[distribute[column]].entries[q].first,
-                                     entry->value() *
-                                     lines[distribute[column]].entries[q].second);
-
-                                                   // set old value to zero
-                  entry->value() = 0.;
-                }
-            }
-        }
-      else
-                                        // row must be distributed
-        {
-          for (typename SparseMatrix<number>::iterator
-                 entry = uncondensed.begin(row);
-               entry != uncondensed.end(row); ++entry)
-            {
-              const unsigned int column = entry->column();
-
-                                               // end of row reached?
-                                               // this should not
-                                               // happen, since we only
-                                               // operate on compressed
-                                               // matrices!
-              Assert (column != SparsityPattern::invalid_entry,
-                      ExcMatrixNotClosed());
-
-              if (distribute[column] == numbers::invalid_unsigned_int)
-                                                 // distribute entry at
-                                                 // irregular row
-                                                 // @p row and regular
-                                                 // column
-                                                 // column. set
-                                                 // old entry to zero
-                {
-                  for (unsigned int q=0;
-                       q!=lines[distribute[row]].entries.size(); ++q) 
-                    uncondensed.add (lines[distribute[row]].entries[q].first,
-                                     column,
-                                     entry->value() *
-                                     lines[distribute[row]].entries[q].second);
-
-                                                   // set old entry to zero
-                  entry->value() = 0.;
-                }
-              else
-                                                 // distribute entry at
-                                                 // irregular row @p row and
-                                                 // irregular column
-                                                 // @p column set old entry
-                                                 // to one on main
-                                                 // diagonal, zero otherwise
-                {
-                  for (unsigned int p=0; p!=lines[distribute[row]].entries.size(); ++p)
-                    for (unsigned int q=0;
-                         q!=lines[distribute[column]].entries.size(); ++q)
-                      uncondensed.add (lines[distribute[row]].entries[p].first,
-                                       lines[distribute[column]].entries[q].first,
-                                       entry->value() *
-                                       lines[distribute[row]].entries[p].second *
-                                       lines[distribute[column]].entries[q].second);
-               
-                                                   // set old entry to correct
-                                                   // value
-                  entry->value() = (row == column ? average_diagonal : 0. );
-                }
-            }
-        }
-    }
+  Vector<number> dummy (0);
+  condense (uncondensed, dummy);
 }
 
 
 
-template <typename number>
-void
-ConstraintMatrix::condense (BlockSparseMatrix<number> &uncondensed) const
-{
-  const unsigned int blocks = uncondensed.n_block_rows();
-  
-  const BlockSparsityPattern &
-    sparsity = uncondensed.get_sparsity_pattern ();
-
-  Assert (sorted == true, ExcMatrixNotClosed());
-  Assert (sparsity.is_compressed() == true, ExcMatrixNotClosed());
-  Assert (sparsity.n_rows() == sparsity.n_cols(),
-         ExcNotQuadratic());
-  Assert (sparsity.n_block_rows() == sparsity.n_block_cols(),
-         ExcNotQuadratic());
-  Assert (sparsity.n_block_rows() == sparsity.n_block_cols(),
-         ExcNotQuadratic());
-  Assert (sparsity.get_column_indices() == sparsity.get_row_indices(),
-         ExcNotQuadratic());
-
-  double average_diagonal = 0;
-  for (unsigned int b=0; b<uncondensed.n_block_rows(); ++b)
-    for (unsigned int i=0; i<uncondensed.block(b,b).m(); ++i)
-      average_diagonal += std::fabs (uncondensed.block(b,b).diag_element(i));
-  average_diagonal /= uncondensed.m();
-
-  const BlockIndices &
-    index_mapping = sparsity.get_column_indices();
-  
-                                  // store for each index whether it must be
-                                  // distributed or not. If entry is
-                                  // numbers::invalid_unsigned_int,
-                                  // no distribution is necessary.
-                                  // otherwise, the number states which line
-                                  // in the constraint matrix handles this
-                                  // index
-  std::vector<unsigned int> distribute (sparsity.n_rows(),
-                                        numbers::invalid_unsigned_int);
-  
-  for (unsigned int c=0; c<lines.size(); ++c)
-    distribute[lines[c].line] = c;
-
-  const unsigned int n_rows = sparsity.n_rows();
-  for (unsigned int row=0; row<n_rows; ++row)
-    {
-                                      // get index of this row
-                                      // within the blocks
-      const std::pair<unsigned int,unsigned int>
-       block_index = index_mapping.global_to_local(row);
-      const unsigned int block_row = block_index.first;
-      
-      if (distribute[row] == numbers::invalid_unsigned_int)
-                                        // regular line. loop over
-                                        // all columns and see
-                                        // whether this column must
-                                        // be distributed
-       {
-
-                                          // to loop over all entries
-                                          // in this row, we have to
-                                          // loop over all blocks in
-                                          // this blockrow and the
-                                          // corresponding row
-                                          // therein
-         for (unsigned int block_col=0; block_col<blocks; ++block_col)
-           {
-              for (typename SparseMatrix<number>::iterator
-                     entry = uncondensed.block(block_row, block_col).begin(block_index.second);
-                   entry != uncondensed.block(block_row, block_col).end(block_index.second);
-                   ++entry)
-                {
-                  const unsigned int global_col
-                    = index_mapping.local_to_global(block_col,entry->column());
-                   
-                  if (distribute[global_col] != numbers::invalid_unsigned_int)
-                                                     // distribute entry at
-                                                     // regular row @p row
-                                                     // and irregular column
-                                                     // global_col; set old
-                                                     // entry to zero
-                    {
-                      const double old_value = entry->value ();
-                       
-                      for (unsigned int q=0;
-                           q!=lines[distribute[global_col]].entries.size(); ++q)
-                        uncondensed.add (row,
-                                         lines[distribute[global_col]].entries[q].first,
-                                         old_value *
-                                         lines[distribute[global_col]].entries[q].second);
-
-                      entry->value() = 0.;
-                    }
-                }
-           }
-       }
-      else
-       {
-                                          // row must be
-                                          // distributed. split the
-                                          // whole row into the
-                                          // chunks defined by the
-                                          // blocks
-         for (unsigned int block_col=0; block_col<blocks; ++block_col)
-           {
-              for (typename SparseMatrix<number>::iterator
-                     entry = uncondensed.block(block_row, block_col).begin(block_index.second);
-                   entry != uncondensed.block(block_row, block_col).end(block_index.second);
-                   ++entry)
-                {
-                  const unsigned int global_col
-                    = index_mapping.local_to_global (block_col, entry->column());
-                   
-                  if (distribute[global_col] ==
-                      numbers::invalid_unsigned_int)
-                                                     // distribute
-                                                     // entry at
-                                                     // irregular
-                                                     // row @p row
-                                                     // and regular
-                                                     // column
-                                                     // global_col. set
-                                                     // old entry to
-                                                     // zero
-                    {
-                      const double old_value = entry->value();
-                         
-                      for (unsigned int q=0;
-                           q!=lines[distribute[row]].entries.size(); ++q) 
-                        uncondensed.add (lines[distribute[row]].entries[q].first,
-                                         global_col,
-                                         old_value *
-                                         lines[distribute[row]].entries[q].second);
-
-                      entry->value() = 0.;
-                    }
-                  else
-                                                     // distribute entry at
-                                                     // irregular row @p row
-                                                     // and irregular column
-                                                     // @p global_col set old
-                                                     // entry to one if on
-                                                     // main diagonal, zero
-                                                     // otherwise
-                    {
-                      const double old_value = entry->value ();
-                         
-                      for (unsigned int p=0; p!=lines[distribute[row]].entries.size(); ++p)
-                        for (unsigned int q=0; q!=lines[distribute[global_col]].entries.size(); ++q)
-                          uncondensed.add (lines[distribute[row]].entries[p].first,
-                                           lines[distribute[global_col]].entries[q].first,
-                                           old_value *
-                                           lines[distribute[row]].entries[p].second *
-                                           lines[distribute[global_col]].entries[q].second);
-
-                      entry->value() = (row == global_col ? average_diagonal : 0. );
-                    }
-                }
-           }
-       }
-    }
+template <typename number>
+void
+ConstraintMatrix::condense (BlockSparseMatrix<number> &uncondensed) const
+{
+  BlockVector<number> dummy (0);
+  condense (uncondensed, dummy);
 }
 
 
@@ -556,6 +168,12 @@ ConstraintMatrix::condense (const SparseMatrix<number> &uncondensed,
                            SparseMatrix<number>       &condensed,
                            VectorType                 &condensed_vector) const
 {
+                                  // check whether we work on real vectors
+                                  // or we just used a dummy when calling
+                                  // the other function above.
+  const bool use_vectors = (uncondensed_vector.size() == 0 && 
+                           condensed_vector.size() == 0) ? false : true;
+
   const SparsityPattern &uncondensed_struct = uncondensed.get_sparsity_pattern ();
   
   Assert (sorted == true, ExcMatrixNotClosed());
@@ -567,11 +185,14 @@ ConstraintMatrix::condense (const SparseMatrix<number> &uncondensed,
          ExcNotQuadratic());
   Assert (condensed.n()+n_constraints() == uncondensed.n(),
          ExcDimensionMismatch(condensed.n()+n_constraints(), uncondensed.n()));
-  Assert (condensed_vector.size()+n_constraints() == uncondensed_vector.size(),
-         ExcDimensionMismatch(condensed_vector.size()+n_constraints(),
-                              uncondensed_vector.size()));
-  Assert (condensed_vector.size() == condensed.m(),
-         ExcDimensionMismatch(condensed_vector.size(), condensed.m()));
+  if (use_vectors == true)
+    {
+      Assert (condensed_vector.size()+n_constraints() == uncondensed_vector.size(),
+             ExcDimensionMismatch(condensed_vector.size()+n_constraints(),
+                                  uncondensed_vector.size()));
+      Assert (condensed_vector.size() == condensed.m(),
+             ExcDimensionMismatch(condensed_vector.size(), condensed.m()));
+    }
 
                                   // store for each line of the matrix
                                   // its new line number
@@ -651,11 +272,13 @@ ConstraintMatrix::condense (const SparseMatrix<number> &uncondensed,
                                   // explicit elimination in the respective
                                   // row of the inhomogeneous constraint in
                                   // the matrix with Gauss elimination
-             condensed_vector(new_line[row]) -= uncondensed.global_entry(j) / 
-               uncondensed.diag_element(row) * c->inhomogeneity;
+             if (use_vectors == true)
+               condensed_vector(new_line[row]) -= uncondensed.global_entry(j) * 
+                                                  c->inhomogeneity;
            }
 
-       condensed_vector(new_line[row]) += uncondensed_vector(row);       
+       if (use_vectors == true)
+         condensed_vector(new_line[row]) += uncondensed_vector(row);     
       }
     else
                                       // line must be distributed
@@ -690,11 +313,12 @@ ConstraintMatrix::condense (const SparseMatrix<number> &uncondensed,
                                 c->entries[p].second);
            };
 
-                                  // distribute vector
-       for (unsigned int q=0; q!=next_constraint->entries.size(); ++q) 
-         condensed_vector(new_line[next_constraint->entries[q].first])
-           +=
-           uncondensed_vector(row) * next_constraint->entries[q].second;
+                                  // condense the vector
+       if (use_vectors == true)
+         for (unsigned int q=0; q!=next_constraint->entries.size(); ++q) 
+           condensed_vector(new_line[next_constraint->entries[q].first])
+             +=
+             uncondensed_vector(row) * next_constraint->entries[q].second;
 
        ++next_constraint;
       };
@@ -707,14 +331,22 @@ void
 ConstraintMatrix::condense (SparseMatrix<number> &uncondensed,
                            VectorType           &vec) const
 {
+                                  // check whether we work on real vectors
+                                  // or we just used a dummy when calling
+                                  // the other function above.
+  const bool use_vectors = vec.size() == 0 ? false : true;
+
   const SparsityPattern &sparsity = uncondensed.get_sparsity_pattern ();
 
   Assert (sorted == true, ExcMatrixNotClosed());
   Assert (sparsity.is_compressed() == true, ExcMatrixNotClosed());
   Assert (sparsity.n_rows() == sparsity.n_cols(),
          ExcNotQuadratic());
-  Assert (vec.size() == sparsity.n_rows(), 
-         ExcDimensionMismatch(vec.size(), sparsity.n_rows()));
+  if (use_vectors == true)
+    {
+      Assert (vec.size() == sparsity.n_rows(), 
+             ExcDimensionMismatch(vec.size(), sparsity.n_rows()));
+    }
 
   double average_diagonal = 0;
   for (unsigned int i=0; i<uncondensed.m(); ++i)
@@ -773,8 +405,9 @@ ConstraintMatrix::condense (SparseMatrix<number> &uncondensed,
                                   // explicit elimination in the respective
                                   // row of the inhomogeneous constraint in
                                   // the matrix with Gauss elimination
-                 vec(column) -= entry->value() * 
-                                lines[distribute[column]].inhomogeneity;
+                 if (use_vectors == true)
+                   vec(column) -= entry->value() * 
+                                  lines[distribute[column]].inhomogeneity;
 
                                                    // set old value to zero
                   entry->value() = 0.;
@@ -840,11 +473,14 @@ ConstraintMatrix::condense (SparseMatrix<number> &uncondensed,
             }
 
                                   // take care of vector
-         for (unsigned int q=0; q!=lines[distribute[row]].entries.size(); ++q) 
-           vec(lines[distribute[row]].entries[q].first)
-             += (vec(row) * lines[distribute[row]].entries[q].second);
+         if (use_vectors == true)
+           {
+             for (unsigned int q=0; q!=lines[distribute[row]].entries.size(); ++q) 
+               vec(lines[distribute[row]].entries[q].first)
+                 += (vec(row) * lines[distribute[row]].entries[q].second);
 
-         vec(lines[distribute[row]].line) = 0.;
+             vec(lines[distribute[row]].line) = 0.;
+           }
         }
     }
 }
@@ -856,6 +492,11 @@ void
 ConstraintMatrix::condense (BlockSparseMatrix<number> &uncondensed,
                            BlockVectorType           &vec) const
 {
+                                  // check whether we work on real vectors
+                                  // or we just used a dummy when calling
+                                  // the other function above.
+  const bool use_vectors = vec.n_blocks() == 0 ? false : true;
+
   const unsigned int blocks = uncondensed.n_block_rows();
   
   const BlockSparsityPattern &
@@ -871,10 +512,14 @@ ConstraintMatrix::condense (BlockSparseMatrix<number> &uncondensed,
          ExcNotQuadratic());
   Assert (sparsity.get_column_indices() == sparsity.get_row_indices(),
          ExcNotQuadratic());
-  Assert (vec.size() == sparsity.n_rows(), 
-         ExcDimensionMismatch(vec.size(), sparsity.n_rows()));
-  Assert (vec.n_blocks() == sparsity.n_block_rows(),
-         ExcDimensionMismatch(vec.n_blocks(), sparsity.n_block_rows()));
+
+  if (use_vectors == true)
+    {
+      Assert (vec.size() == sparsity.n_rows(), 
+             ExcDimensionMismatch(vec.size(), sparsity.n_rows()));
+      Assert (vec.n_blocks() == sparsity.n_block_rows(),
+             ExcDimensionMismatch(vec.n_blocks(), sparsity.n_block_rows()));
+    }
 
   double average_diagonal = 0;
   for (unsigned int b=0; b<uncondensed.n_block_rows(); ++b)
@@ -951,8 +596,9 @@ ConstraintMatrix::condense (BlockSparseMatrix<number> &uncondensed,
                                   // explicit elimination in the respective
                                   // row of the inhomogeneous constraint in
                                   // the matrix with Gauss elimination
-                     vec(global_col) -= entry->value() * 
-                                        lines[distribute[global_col]].inhomogeneity;
+                     if (use_vectors == true)
+                       vec(global_col) -= entry->value() * 
+                                          lines[distribute[global_col]].inhomogeneity;
 
                       entry->value() = 0.;
                     }
@@ -1024,11 +670,14 @@ ConstraintMatrix::condense (BlockSparseMatrix<number> &uncondensed,
            }
 
                                           // take care of vector
-         for (unsigned int q=0; q!=lines[distribute[row]].entries.size(); ++q) 
-           vec(lines[distribute[row]].entries[q].first)
-             += (vec(row) * lines[distribute[row]].entries[q].second);
+         if (use_vectors == true)
+           {
+             for (unsigned int q=0; q!=lines[distribute[row]].entries.size(); ++q) 
+               vec(lines[distribute[row]].entries[q].first)
+                 += (vec(row) * lines[distribute[row]].entries[q].second);
 
-         vec(lines[distribute[row]].line) = 0.;
+             vec(lines[distribute[row]].line) = 0.;
+           }
        }
     }
 }
@@ -1135,233 +784,9 @@ distribute_local_to_global (const FullMatrix<double>        &local_matrix,
                             const std::vector<unsigned int> &local_dof_indices,
                             MatrixType                      &global_matrix) const
 {
-  Assert (local_matrix.n() == local_dof_indices.size(),
-          ExcDimensionMismatch(local_matrix.n(), local_dof_indices.size()));
-  Assert (local_matrix.m() == local_dof_indices.size(),
-          ExcDimensionMismatch(local_matrix.m(), local_dof_indices.size()));
-  Assert (global_matrix.m() == global_matrix.n(), ExcNotQuadratic());
-  Assert (sorted == true, ExcMatrixNotClosed());
-
-  const unsigned int n_local_dofs = local_dof_indices.size();
-
-                                   // A lock that allows only one thread at
-                                  // time to go on in this function.
-  Threads::ThreadMutex::ScopedLock lock(mutex);
-
-                                   // have a special case where there are no
-                                   // constraints at all, since then we can be
-                                   // a lot faster
-  if (lines.size() == 0)
-    global_matrix.add(local_dof_indices, local_matrix);
-  else
-    {
-                                       // here we have to do something a
-                                       // little nastier than in the
-                                       // respective function for
-                                       // vectors. the reason is that we
-                                       // have two nested loops and we don't
-                                       // want to repeatedly check whether a
-                                       // certain dof is constrained or not
-                                       // by searching over all the
-                                       // constrained dofs. so we have to
-                                       // cache this knowledge, by storing
-                                       // for each dof index whether and
-                                       // where the line of the constraint
-                                       // matrix is located. Moreover, we
-                                       // store how many entries there are
-                                       // at most in one constrained row in
-                                       // order to set the scratch array for
-                                       // column data to a sufficient size.
-      std::vector<const ConstraintLine *>
-        constraint_lines (n_local_dofs,
-                          static_cast<const ConstraintLine *>(0));
-      unsigned int n_max_entries_per_row = 0;
-      for (unsigned int i=0; i<n_local_dofs; ++i)
-        {
-          ConstraintLine index_comparison;
-          index_comparison.line = local_dof_indices[i];
-
-          const std::vector<ConstraintLine>::const_iterator
-            position = std::lower_bound (lines.begin(),
-                                         lines.end(),
-                                         index_comparison);
-          
-                                           // if this dof is constrained,
-                                           // then set the respective entry
-                                           // in the array. otherwise leave
-                                           // it at the invalid position
-          if ((position != lines.end()) &&
-              (position->line == local_dof_indices[i]))
-           {
-             constraint_lines[i] = &*position;
-             n_max_entries_per_row += position->entries.size();
-           }
-        }
-
-                                      // We need to add the number of
-                                      // entries in the local matrix in
-                                      // order to obtain a sufficient size
-                                      // for the scratch array.
-      n_max_entries_per_row += n_local_dofs;
-      if (column_indices.size() < n_max_entries_per_row)
-        {
-         column_indices.resize(n_max_entries_per_row);
-         column_values.resize(n_max_entries_per_row);
-       }
-
-                                       // now distribute entries row by row
-      for (unsigned int i=0; i<n_local_dofs; ++i)
-        {
-          const ConstraintLine *position_i = constraint_lines[i];
-          const bool is_constrained_i = (position_i != 0);
-
-         unsigned int col_counter = 0;
-          
-          for (unsigned int j=0; j<n_local_dofs; ++j)
-            {
-                                      // we don't need to proceed when the
-                                      // matrix element is zero
-             if (local_matrix(i,j) == 0)
-               continue;
-
-              const ConstraintLine *position_j = constraint_lines[j];
-              const bool is_constrained_j = (position_j != 0);
-
-              if ((is_constrained_i == false) &&
-                  (is_constrained_j == false))
-                {
-                                                   // neither row nor column
-                                                   // is constrained, so
-                                                   // write the value into
-                                                   // the scratch array
-                 column_indices[col_counter] = local_dof_indices[j];
-                 column_values[col_counter] = local_matrix(i,j);
-                 col_counter++;
-                }
-              else if ((is_constrained_i == true) &&
-                       (is_constrained_j == false))
-                {
-                                                   // ok, row is
-                                                   // constrained, but
-                                                   // column is not. This
-                                                   // creates entries in
-                                                   // several rows to the
-                                                   // same column, which is
-                                                   // not covered by the
-                                                   // scratch array. Write
-                                                   // the values directly
-                                                   // into the matrix
-                  for (unsigned int q=0; q<position_i->entries.size(); ++q)
-                    global_matrix.add (position_i->entries[q].first,
-                                       local_dof_indices[j],
-                                       local_matrix(i,j) *
-                                       position_i->entries[q].second);
-                }
-              else if ((is_constrained_i == false) &&
-                       (is_constrained_j == true))
-                {
-                                                   // simply the other way
-                                                   // round: row ok, column
-                                                   // is constrained. This
-                                                   // time, we can put
-                                                   // everything into the
-                                                   // scratch array, since
-                                                   // we are in the correct
-                                                   // row.
-                  for (unsigned int q=0; q<position_j->entries.size(); ++q)
-                   {
-                     column_indices[col_counter] = position_j->entries[q].first;
-                     column_values[col_counter] = local_matrix(i,j) *
-                                                  position_j->entries[q].second;
-                     col_counter++;
-                   }
-                }
-              else if ((is_constrained_i == true) &&
-                       (is_constrained_j == true))
-                {
-                                                   // last case: both row
-                                                   // and column are
-                                                   // constrained. Again,
-                                                   // this creates entries
-                                                   // in other rows than the
-                                                   // current one, so write
-                                                   // the values again in
-                                                   // the matrix directly
-                  for (unsigned int p=0; p<position_i->entries.size(); ++p)
-                    for (unsigned int q=0; q<position_j->entries.size(); ++q)
-                      global_matrix.add (position_i->entries[p].first,
-                                         position_j->entries[q].first,
-                                         local_matrix(i,j) *
-                                         position_i->entries[p].second *
-                                         position_j->entries[q].second);
-
-                                                   // to make sure that the
-                                                   // global matrix remains
-                                                   // invertible, we need to
-                                                   // do something with the
-                                                   // diagonal elements. add
-                                                   // the absolute value of
-                                                   // the local matrix, so
-                                                   // the resulting entry
-                                                   // will always be
-                                                   // positive and
-                                                   // furthermore be in the
-                                                   // same order of
-                                                   // magnitude as the other
-                                                   // elements of the matrix
-                                                  //
-                                                  // note that this also
-                                                  // captures the special
-                                                  // case that a dof is
-                                                  // both constrained and
-                                                  // fixed (this can happen
-                                                  // for hanging nodes in
-                                                  // 3d that also happen to
-                                                  // be on the
-                                                  // boundary). in that
-                                                  // case, following the
-                                                  // above program flow, it
-                                                  // is realized that when
-                                                  // distributing the row
-                                                  // and column no elements
-                                                  // of the matrix are
-                                                  // actually touched if
-                                                  // all the degrees of
-                                                  // freedom to which this
-                                                  // dof is constrained are
-                                                  // also constrained (the
-                                                  // usual case with
-                                                  // hanging nodes in
-                                                  // 3d). however, in the
-                                                  // line below, we do
-                                                  // actually do something
-                                                  // with this dof
-                  if (i == j)
-                   {
-                     column_indices[col_counter] = local_dof_indices[j];
-                     column_values[col_counter] = local_matrix(i,j);
-                     col_counter++;
-                   }
-                }
-              else
-                Assert (false, ExcInternalError());
-            }
-
-                                  // Check whether we did remain within the
-                                  // arrays when adding elements into the
-                                  // scratch arrays. Moreover, there should
-                                  // be at least one element in the scratch
-                                  // array (the element diagonal).
-         Assert (col_counter <= n_max_entries_per_row, ExcInternalError());
-
-                                  // Finally, write the scratch array into
-                                  // the sparse matrix.
-         if (col_counter > 0)
-           global_matrix.add(local_dof_indices[i], col_counter, 
-                             &column_indices[0], &column_values[0], 
-                             false);
-        }
-    }
+  Vector<double> local_dummy(0), global_dummy (0);
+  distribute_local_to_global (local_matrix, local_dummy, local_dof_indices,
+                             global_matrix, global_dummy);
 }
 
 
@@ -1375,15 +800,24 @@ distribute_local_to_global (const FullMatrix<double>        &local_matrix,
                             MatrixType                      &global_matrix,
                            VectorType                      &global_vector) const
 {
+                                  // check whether we work on real vectors
+                                  // or we just used a dummy when calling
+                                  // the other function above.
+  const bool use_vectors = (local_vector.size() == 0 && 
+                           global_vector.size() == 0) ? false : true;
+
   Assert (local_matrix.n() == local_dof_indices.size(),
           ExcDimensionMismatch(local_matrix.n(), local_dof_indices.size()));
   Assert (local_matrix.m() == local_dof_indices.size(),
           ExcDimensionMismatch(local_matrix.m(), local_dof_indices.size()));
   Assert (global_matrix.m() == global_matrix.n(), ExcNotQuadratic());
-  Assert (local_matrix.m() == local_vector.size(),
-          ExcDimensionMismatch(local_matrix.m(), local_vector.size()));
-  Assert (global_matrix.m() == global_vector.size(),
-         ExcDimensionMismatch(global_matrix.m(), global_vector.size()));
+  if (use_vectors == true)
+    {
+      Assert (local_matrix.m() == local_vector.size(),
+             ExcDimensionMismatch(local_matrix.m(), local_vector.size()));
+      Assert (global_matrix.m() == global_vector.size(),
+             ExcDimensionMismatch(global_matrix.m(), global_vector.size()));
+    }
   Assert (sorted == true, ExcMatrixNotClosed());
 
   const unsigned int n_local_dofs = local_dof_indices.size();
@@ -1398,8 +832,9 @@ distribute_local_to_global (const FullMatrix<double>        &local_matrix,
   if (lines.size() == 0)
     {
       global_matrix.add(local_dof_indices, local_matrix);
-      for (unsigned int i=0; i<local_dof_indices.size(); ++i)
-       global_vector(local_dof_indices[i]) += local_vector(i);
+      if (use_vectors == true)
+       for (unsigned int i=0; i<local_dof_indices.size(); ++i)
+         global_vector(local_dof_indices[i]) += local_vector(i);
     }
   else
     {
@@ -1529,8 +964,9 @@ distribute_local_to_global (const FullMatrix<double>        &local_matrix,
                                   // explicit elimination in the respective
                                   // row of the inhomogeneous constraint in
                                   // the matrix with Gauss elimination
-                 global_vector(local_dof_indices[i]) -= local_matrix(j,i) * 
-                                                        position_j->inhomogeneity; 
+                 if (use_vectors == true)
+                   global_vector(local_dof_indices[i]) -= local_matrix(j,i) * 
+                                                          position_j->inhomogeneity;
                 }
               else if ((is_constrained_i == true) &&
                        (is_constrained_j == true))
@@ -1595,10 +1031,7 @@ distribute_local_to_global (const FullMatrix<double>        &local_matrix,
                   if (i == j)
                    {
                      column_indices[col_counter] = local_dof_indices[j];
-                     if (std::fabs (local_matrix(i,j)) < 1e-8)
-                       column_values[col_counter] = 1;
-                     else
-                       column_values[col_counter] = local_matrix(i,j);
+                     column_values[col_counter] = local_matrix(i,j);
                      col_counter++;
                    }
                 }
@@ -1621,13 +1054,16 @@ distribute_local_to_global (const FullMatrix<double>        &local_matrix,
                              false);
 
                                   // And we take care of the vector
-         if (is_constrained_i == true)
-           for (unsigned int q=0; q<position_i->entries.size(); ++q)
-             global_vector(position_i->entries[q].first)
-               += local_vector(i) * position_i->entries[q].second;
-         else
-           global_vector(local_dof_indices[i]) += local_vector(i);
-        }
+         if (use_vectors == true)
+           {
+             if (is_constrained_i == true)
+               for (unsigned int q=0; q<position_i->entries.size(); ++q)
+                 global_vector(position_i->entries[q].first)
+                   += local_vector(i) * position_i->entries[q].second;
+             else
+               global_vector(local_dof_indices[i]) += local_vector(i);
+           }
+       }
     }
 }
 
index 46e2b501373a6536c711a45301346c94b9c9acdc..0d661f9ebad5b6551dbee1d22f41a904338f6dfa 100644 (file)
@@ -307,8 +307,9 @@ void ConstraintMatrix::close ()
                  }
                    
 
-               line->inhomogeneity += constrained_line->inhomogeneity *
-                                      weight;
+               //line->inhomogeneity += constrained_line->inhomogeneity *
+               //                     weight;
+               //constrained_line->inhomogeneity = 0;
                
                                                 // now that we're
                                                 // here, do not
@@ -689,7 +690,7 @@ void ConstraintMatrix::merge (const ConstraintMatrix &other_constraints)
                   j!=tmp_other_lines[i]->entries.end(); ++j)
                tmp.push_back (std::make_pair(j->first, j->second*weight));
 
-             line->inhomogeneity += tmp_other_lines[i]->inhomogeneity * weight;
+             //line->inhomogeneity += tmp_other_lines[i]->inhomogeneity * weight;
            };
        };
                                       // finally exchange old and

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.