]> https://gitweb.dealii.org/ - dealii.git/commitdiff
documentation structure
authorGuido Kanschat <dr.guido.kanschat@gmail.com>
Thu, 16 Sep 2004 09:44:36 +0000 (09:44 +0000)
committerGuido Kanschat <dr.guido.kanschat@gmail.com>
Thu, 16 Sep 2004 09:44:36 +0000 (09:44 +0000)
git-svn-id: https://svn.dealii.org/trunk@9622 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/lac/include/lac/full_matrix.h

index 6bb359b3aa1962f243e641530fbc6faa8ca0c24e..8638e83b7657206378f9ea9cbd260fe78408730d 100644 (file)
@@ -32,7 +32,7 @@ template<typename number> class Vector;
 
 
 /**
- * Rectangular/quadratic full matrix.
+ * @brief Rectangular/quadratic full matrix.
  *
  * Implementation of a classical rectangular scheme of numbers. The
  * data type of the entries is provided in the template argument
@@ -181,7 +181,12 @@ class FullMatrix : public Table<2,number>
                                           */
         Accessor accessor;
     };
-
+/**
+ * @name Constructors Constructors and initalization.
+ * See also the base class Table.
+ */
+//@{
+    
                                     /**
                                      * Constructor. Initialize the
                                      * matrix as a square matrix with
@@ -271,17 +276,6 @@ class FullMatrix : public Table<2,number>
     template <class MATRIX>
     void copy_from (const MATRIX&);
     
-                                    /**
-                                     * Comparison operator. Be
-                                     * careful with this thing, it
-                                     * may eat up huge amounts of
-                                     * computing time! It is most
-                                     * commonly used for internal
-                                     * consistency checks of
-                                     * programs.
-                                     */
-    bool operator == (const FullMatrix<number> &) const;
-
                                     /**
                                      * Fill rectangular block.
                                      *
@@ -337,7 +331,22 @@ class FullMatrix : public Table<2,number>
     void fill_permutation (const FullMatrix<number2>       &src,
                           const std::vector<unsigned int> &p_rows,
                           const std::vector<unsigned int> &p_cols);
+
+//@}
+///@name Non-modifying operators
+//@{
     
+                                    /**
+                                     * Comparison operator. Be
+                                     * careful with this thing, it
+                                     * may eat up huge amounts of
+                                     * computing time! It is most
+                                     * commonly used for internal
+                                     * consistency checks of
+                                     * programs.
+                                     */
+    bool operator == (const FullMatrix<number> &) const;
+
                                     /**
                                      * Number of rows of this matrix.
                                      * To remember: this matrix is an
@@ -364,6 +373,170 @@ class FullMatrix : public Table<2,number>
                                      */
     bool all_zero () const;
 
+                                    /**
+                                     * Return the square of the norm
+                                     * of the vector <tt>v</tt> with
+                                     * respect to the norm induced by
+                                     * this matrix,
+                                     * i.e. <i>(v,Mv)</i>. This is
+                                     * useful, e.g. in the finite
+                                     * element context, where the
+                                     * <i>L<sup>2</sup></i> norm of a
+                                     * function equals the matrix
+                                     * norm with respect to the mass
+                                     * matrix of the vector
+                                     * representing the nodal values
+                                     * of the finite element
+                                     * function.
+                                     *
+                                     * Obviously, the matrix needs to
+                                     * be quadratic for this operation.
+                                     */
+    template<typename number2>
+    number2 matrix_norm_square (const Vector<number2> &v) const;
+
+                                    /**
+                                     * Build the matrix scalar product
+                                     * <tt>u^T M v</tt>. This function is mostly
+                                     * useful when building the cellwise
+                                     * scalar product of two functions in
+                                     * the finite element context.
+                                     */
+    template<typename number2>
+    number2 matrix_scalar_product (const Vector<number2> &u,
+                                  const Vector<number2> &v) const;
+
+                                    /**
+                                     * Return the $l_1$-norm of the matrix, i.e.
+                                     * $|M|_1=max_{all columns j}\sum_{all 
+                                     * rows i} |M_ij|$,
+                                     * (max. sum of columns). This is the
+                                     * natural matrix norm that is compatible
+                                     * to the $l_1$-norm for vectors, i.e.
+                                     * $|Mv|_1\leq |M|_1 |v|_1$.
+                                     * (cf. Rannacher Numerik0)
+                                     */
+    number l1_norm () const;
+
+                                    /**
+                                     * Return the $l_\infty$-norm of the
+                                     * matrix, i.e.
+                                     * $|M|_\infty=\max_{all rows i}\sum_{all 
+                                     * columns j} |M_{ij}|$,
+                                     * (max. sum of rows).
+                                     * This is the
+                                     * natural matrix norm that is compatible
+                                     * to the $l_\infty$-norm of vectors, i.e.
+                                     * $|Mv|_\infty \leq |M|_\infty |v|_\infty$.
+                                     * (cf. Rannacher Numerik0)
+                                     */
+    number linfty_norm () const;
+    
+                                    /**
+                                     * Compute the quadratic matrix norm.
+                                     * Return value is the root of the square
+                                     * sum of all matrix entries. Also called
+                                     * Frobenius norm.
+                                     * 
+                                     * This norm is compatible with the $l_2$
+                                     * vector norm. But it is not a natural
+                                     * matrix norm (cf Rannacher Numeric0),
+                                     * therefore it is not called $l_2$-norm.
+                                     */
+    number norm2 () const;
+
+                                    /**
+                                     * Compute the relative norm of
+                                     * the skew-symmetric part. The
+                                     * return value is the Frobenius
+                                     * norm of the skew-symmetric
+                                     * part of the matrix divided by
+                                     * that of the matrix.
+                                     *
+                                     * Main purpose of this function
+                                     * is to check, if a matrix is
+                                     * symmetric within a certain
+                                     * accuracy, or not.
+                                     */
+    number relative_symmetry_norm2 () const;
+    
+                                    /**
+                                      * Computes the determinant of a
+                                      * matrix.  This is only
+                                      * implemented for one, two, and
+                                      * three dimensions, since for
+                                      * higher dimensions the
+                                      * numerical work explodes.
+                                      * Obviously, the matrix needs to
+                                      * be quadratic for this function.
+                                      */
+    double determinant () const;
+
+                                    /**
+                                     * Output of the matrix in
+                                     * user-defined format.
+                                     */
+    void print (std::ostream       &s,
+               const unsigned int  width=5,
+               const unsigned int  precision=2) const;
+
+                                    /**
+                                     * Print the matrix in the usual
+                                     * format, i.e. as a matrix and
+                                     * not as a list of nonzero
+                                     * elements. For better
+                                     * readability, elements not in
+                                     * the matrix are displayed as
+                                     * empty space, while matrix
+                                     * elements which are explicitly
+                                     * set to zero are displayed as
+                                     * such.
+                                     *
+                                     * The parameters allow for a
+                                     * flexible setting of the output
+                                     * format: <tt>precision</tt> and
+                                     * <tt>scientific</tt> are used to
+                                     * determine the number format,
+                                     * where <tt>scientific</tt> = <tt>false</tt>
+                                     * means fixed point notation.  A
+                                     * zero entry for <tt>width</tt> makes
+                                     * the function compute a width,
+                                     * but it may be changed to a
+                                     * positive value, if output is
+                                     * crude.
+                                     *
+                                     * Additionally, a character for
+                                     * an empty value may be
+                                     * specified.
+                                     *
+                                     * Finally, the whole matrix can
+                                     * be multiplied with a common
+                                     * denominator to produce more
+                                     * readable output, even
+                                     * integers.
+                                     *
+                                     * @attention This function
+                                     * may produce <b>large</b> amounts of
+                                     * output if applied to a large matrix!
+                                     */
+    void print_formatted (std::ostream       &out,
+                         const unsigned int  presicion=3,
+                         const bool          scientific  = true,
+                         const unsigned int  width       = 0,
+                         const char         *zero_string = " ",
+                         const double        denominator = 1.) const;
+    
+                                    /**
+                                     * Determine an estimate for the
+                                     * memory consumption (in bytes)
+                                     * of this object.
+                                     */
+    unsigned int memory_consumption () const;
+
+//@}
+///@name Iterator functions
+//@{
+    
                                     /**
                                      * STL-like iterator with the
                                      * first entry.
@@ -385,6 +558,10 @@ class FullMatrix : public Table<2,number>
                                      * Final iterator of row <tt>r</tt>.
                                      */
     const_iterator end (const unsigned int r) const;
+
+//@}
+///@name Modifying operators
+//@{
     
                                     /**
                                      * Scale the entire matrix by a
@@ -492,121 +669,69 @@ class FullMatrix : public Table<2,number>
               const unsigned int dst_offset_j = 0,
               const unsigned int src_offset_i = 0,
               const unsigned int src_offset_j = 0);
-    
+
                                     /**
-                                     * Matrix-matrix-multiplication.
-                                     *
-                                     * The optional parameter
-                                     * <tt>adding</tt> determines, whether the
-                                     * result is stored in <tt>C</tt> or added
-                                     * to <tt>C</tt>.
-                                     *
-                                     * if (adding)
-                                     *  $C += A*B$
-                                     *
-                                     * if (!adding)
-                                     *  $C = A*B$
-                                     *
-                                     * Assumes that <tt>A</tt> and <tt>B</tt> have
-                                     * compatible sizes and that <tt>C</tt>
-                                     * already has the right size.
+                                     * $A(i,1...n)+=s*A(j,1...n)$.
+                                     * Simple addition of rows of this
                                      */
-    template<typename number2>
-    void mmult (FullMatrix<number2>       &C,
-               const FullMatrix<number2> &B,
-               const bool                 adding=false) const;
-    
+    void add_row (const unsigned int i,
+                 const number       s,
+                 const unsigned int j);
+
                                     /**
-                                     * Matrix-matrix-multiplication using
-                                     * transpose of <tt>this</tt>.
-                                     *
-                                     * The optional parameter
-                                     * <tt>adding</tt> determines, whether the
-                                     * result is stored in <tt>C</tt> or added
-                                     * to <tt>C</tt>.
-                                     *
-                                     * if (adding)
-                                     *  $C += A^T*B$
-                                     *
-                                     * if (!adding)
-                                     *  $C = A^T*B$
-                                     *
-                                     * Assumes that <tt>A</tt> and <tt>B</tt> have
-                                     * compatible sizes and that <tt>C</tt>
-                                     * already has the right size.
+                                     * $A(i,1...n)+=s*A(j,1...n)+t*A(k,1...n)$.
+                                     * Multiple addition of rows of this.
                                      */
-    template<typename number2>
-    void Tmmult (FullMatrix<number2>       &C,
-                const FullMatrix<number2> &B,
-                const bool                 adding=false) const;
-    
+    void add_row (const unsigned int i,
+                 const number s, const unsigned int j,
+                 const number t, const unsigned int k);
+
                                     /**
-                                     * Matrix-vector-multiplication.
-                                     *
-                                     * The optional parameter
-                                     * <tt>adding</tt> determines, whether the
-                                     * result is stored in <tt>w</tt> or added
-                                     * to <tt>w</tt>.
-                                     *
-                                     * if (adding)
-                                     *  $w += A*v$
-                                     *
-                                     * if (!adding)
-                                     *  $w = A*v$
-                                      *
-                                      * Source and destination must
-                                      * not be the same vector.
+                                     * $A(1...n,i)+=s*A(1...n,j)$.
+                                     *  Simple addition of columns of this.
                                      */
-    template<typename number2>
-    void vmult (Vector<number2>       &w,
-               const Vector<number2> &v,
-               const bool             adding=false) const;
-    
+    void add_col (const unsigned int i,
+                 const number       s,
+                 const unsigned int j);
+
                                     /**
-                                     * Transpose
-                                     * matrix-vector-multiplication.
-                                     * See vmult() above.
-                                      *
-                                      * Source and destination must
-                                      * not be the same vector.
+                                     * $A(1...n,i)+=s*A(1...n,j)+t*A(1...n,k)$.
+                                     *  Multiple addition of columns of this.
                                      */
-    template<typename number2>
-    void Tvmult (Vector<number2>       &w,
-                const Vector<number2> &v,
-                const bool             adding=false) const;
+    void add_col (const unsigned int i,
+                 const number s, const unsigned int j,
+                 const number t, const unsigned int k);
 
                                     /**
-                                     * Return the square of the norm
-                                     * of the vector <tt>v</tt> with
-                                     * respect to the norm induced by
-                                     * this matrix,
-                                     * i.e. <i>(v,Mv)</i>. This is
-                                     * useful, e.g. in the finite
-                                     * element context, where the
-                                     * <i>L<sup>2</sup></i> norm of a
-                                     * function equals the matrix
-                                     * norm with respect to the mass
-                                     * matrix of the vector
-                                     * representing the nodal values
-                                     * of the finite element
-                                     * function.
-                                     *
-                                     * Obviously, the matrix needs to
-                                     * be quadratic for this operation.
+                                     * Swap  A(i,1...n) <-> A(j,1...n).
+                                     * Swap rows i and j of this
                                      */
-    template<typename number2>
-    number2 matrix_norm_square (const Vector<number2> &v) const;
+    void swap_row (const unsigned int i,
+                  const unsigned int j);
 
                                     /**
-                                     * Build the matrix scalar product
-                                     * <tt>u^T M v</tt>. This function is mostly
-                                     * useful when building the cellwise
-                                     * scalar product of two functions in
-                                     * the finite element context.
+                                     *  Swap  A(1...n,i) <-> A(1...n,j).
+                                     *  Swap columns i and j of this
+                                     */
+    void swap_col (const unsigned int i,
+                  const unsigned int j);
+
+                                    /**
+                                     *  A(i,i)+=B(i,1...n). Addition of complete
+                                     *  rows of B to diagonal-elements of this ; <p>
+                                     *  ( i = 1 ... m )
                                      */
     template<typename number2>
-    number2 matrix_scalar_product (const Vector<number2> &u,
-                                  const Vector<number2> &v) const;
+    void add_diag (const number               s,
+                  const FullMatrix<number2> &B);
+
+                                    /**
+                                     * Add constant to diagonal
+                                     * elements of this, i.e. add a
+                                     * multiple of the identity
+                                     * matrix.
+                                     */
+    void diagadd (const number s);
 
                                     /**
                                      * Symmetrize the matrix by
@@ -618,62 +743,8 @@ class FullMatrix : public Table<2,number>
                                      * quadratic for this operation.
                                      */
     void symmetrize ();
-    
-                                    /**
-                                     * Return the $l_1$-norm of the matrix, i.e.
-                                     * $|M|_1=max_{all columns j}\sum_{all 
-                                     * rows i} |M_ij|$,
-                                     * (max. sum of columns). This is the
-                                     * natural matrix norm that is compatible
-                                     * to the $l_1$-norm for vectors, i.e.
-                                     * $|Mv|_1\leq |M|_1 |v|_1$.
-                                     * (cf. Rannacher Numerik0)
-                                     */
-    number l1_norm () const;
 
                                     /**
-                                     * Return the $l_\infty$-norm of the
-                                     * matrix, i.e.
-                                     * $|M|_\infty=\max_{all rows i}\sum_{all 
-                                     * columns j} |M_{ij}|$,
-                                     * (max. sum of rows).
-                                     * This is the
-                                     * natural matrix norm that is compatible
-                                     * to the $l_\infty$-norm of vectors, i.e.
-                                     * $|Mv|_\infty \leq |M|_\infty |v|_\infty$.
-                                     * (cf. Rannacher Numerik0)
-                                     */
-    number linfty_norm () const;
-    
-                                    /**
-                                     * Compute the quadratic matrix norm.
-                                     * Return value is the root of the square
-                                     * sum of all matrix entries. Also called
-                                     * Frobenius norm.
-                                     * 
-                                     * This norm is compatible with the $l_2$
-                                     * vector norm. But it is not a natural
-                                     * matrix norm (cf Rannacher Numeric0),
-                                     * therefore it is not called $l_2$-norm.
-                                     */
-    number norm2 () const;
-
-                                    /**
-                                     * Compute the relative norm of
-                                     * the skew-symmetric part. The
-                                     * return value is the Frobenius
-                                     * norm of the skew-symmetric
-                                     * part of the matrix divided by
-                                     * that of the matrix.
-                                     *
-                                     * Main purpose of this function
-                                     * is to check, if a matrix is
-                                     * symmetric within a certain
-                                     * accuracy, or not.
-                                     */
-    number relative_symmetry_norm2 () const;
-    
-                                    /**
                                      * A=Inverse(A). Inversion of
                                      * this matrix by Gauss-Jordan
                                      * algorithm with partial
@@ -689,18 +760,6 @@ class FullMatrix : public Table<2,number>
                                      */
     void gauss_jordan ();
 
-                                    /**
-                                      * Computes the determinant of a
-                                      * matrix.  This is only
-                                      * implemented for one, two, and
-                                      * three dimensions, since for
-                                      * higher dimensions the
-                                      * numerical work explodes.
-                                      * Obviously, the matrix needs to
-                                      * be quadratic for this function.
-                                      */
-    double determinant () const;
-
                                     /**
                                      * Assign the inverse of the
                                      * given matrix to
@@ -716,84 +775,124 @@ class FullMatrix : public Table<2,number>
     template <typename number2>
     void invert (const FullMatrix<number2> &M);
 
-                                    /**
-                                     * Apply the Jacobi
-                                     * preconditioner, which
-                                     * multiplies every element of
-                                     * the <tt>src</tt> vector by the
-                                     * inverse of the respective
-                                     * diagonal element and
-                                     * multiplies the result with the
-                                     * damping factor <tt>omega</tt>.
-                                     */
-    template <typename somenumber>
-    void precondition_Jacobi (Vector<somenumber>       &dst,
-                             const Vector<somenumber> &src,
-                             const number              omega = 1.) const;
-
-                                    /**
-                                     * $A(i,1...n)+=s*A(j,1...n)$.
-                                     * Simple addition of rows of this
-                                     */
-    void add_row (const unsigned int i,
-                 const number       s,
-                 const unsigned int j);
-
-                                    /**
-                                     * $A(i,1...n)+=s*A(j,1...n)+t*A(k,1...n)$.
-                                     * Multiple addition of rows of this.
-                                     */
-    void add_row (const unsigned int i,
-                 const number s, const unsigned int j,
-                 const number t, const unsigned int k);
 
                                     /**
-                                     * $A(1...n,i)+=s*A(1...n,j)$.
-                                     *  Simple addition of columns of this.
+                                     * QR-factorization of a matrix.
+                                     * The orthogonal transformation
+                                     * Q is applied to the vector y
+                                     * and this matrix.
+                                     *
+                                     * After execution of
+                                     * householder, the upper
+                                     * triangle contains the
+                                     * resulting matrix R, the lower
+                                     * the incomplete factorization
+                                     * matrices.
                                      */
-    void add_col (const unsigned int i,
-                 const number       s,
-                 const unsigned int j);
+    template<typename number2>
+    void householder (Vector<number2> &y);
 
+//@}
+///@name Multiplications
+//@{
+    
                                     /**
-                                     * $A(1...n,i)+=s*A(1...n,j)+t*A(1...n,k)$.
-                                     *  Multiple addition of columns of this.
+                                     * Matrix-matrix-multiplication.
+                                     *
+                                     * The optional parameter
+                                     * <tt>adding</tt> determines, whether the
+                                     * result is stored in <tt>C</tt> or added
+                                     * to <tt>C</tt>.
+                                     *
+                                     * if (adding)
+                                     *  $C += A*B$
+                                     *
+                                     * if (!adding)
+                                     *  $C = A*B$
+                                     *
+                                     * Assumes that <tt>A</tt> and <tt>B</tt> have
+                                     * compatible sizes and that <tt>C</tt>
+                                     * already has the right size.
                                      */
-    void add_col (const unsigned int i,
-                 const number s, const unsigned int j,
-                 const number t, const unsigned int k);
-
+    template<typename number2>
+    void mmult (FullMatrix<number2>       &C,
+               const FullMatrix<number2> &B,
+               const bool                 adding=false) const;
+    
                                     /**
-                                     * Swap  A(i,1...n) <-> A(j,1...n).
-                                     * Swap rows i and j of this
+                                     * Matrix-matrix-multiplication using
+                                     * transpose of <tt>this</tt>.
+                                     *
+                                     * The optional parameter
+                                     * <tt>adding</tt> determines, whether the
+                                     * result is stored in <tt>C</tt> or added
+                                     * to <tt>C</tt>.
+                                     *
+                                     * if (adding)
+                                     *  $C += A^T*B$
+                                     *
+                                     * if (!adding)
+                                     *  $C = A^T*B$
+                                     *
+                                     * Assumes that <tt>A</tt> and <tt>B</tt> have
+                                     * compatible sizes and that <tt>C</tt>
+                                     * already has the right size.
                                      */
-    void swap_row (const unsigned int i,
-                  const unsigned int j);
-
+    template<typename number2>
+    void Tmmult (FullMatrix<number2>       &C,
+                const FullMatrix<number2> &B,
+                const bool                 adding=false) const;
+    
                                     /**
-                                     *  Swap  A(1...n,i) <-> A(1...n,j).
-                                     *  Swap columns i and j of this
+                                     * Matrix-vector-multiplication.
+                                     *
+                                     * The optional parameter
+                                     * <tt>adding</tt> determines, whether the
+                                     * result is stored in <tt>w</tt> or added
+                                     * to <tt>w</tt>.
+                                     *
+                                     * if (adding)
+                                     *  $w += A*v$
+                                     *
+                                     * if (!adding)
+                                     *  $w = A*v$
+                                      *
+                                      * Source and destination must
+                                      * not be the same vector.
                                      */
-    void swap_col (const unsigned int i,
-                  const unsigned int j);
-
+    template<typename number2>
+    void vmult (Vector<number2>       &w,
+               const Vector<number2> &v,
+               const bool             adding=false) const;
+    
                                     /**
-                                     *  A(i,i)+=B(i,1...n). Addition of complete
-                                     *  rows of B to diagonal-elements of this ; <p>
-                                     *  ( i = 1 ... m )
+                                     * Transpose
+                                     * matrix-vector-multiplication.
+                                     * See vmult() above.
+                                      *
+                                      * Source and destination must
+                                      * not be the same vector.
                                      */
     template<typename number2>
-    void add_diag (const number               s,
-                  const FullMatrix<number2> &B);
+    void Tvmult (Vector<number2>       &w,
+                const Vector<number2> &v,
+                const bool             adding=false) const;
 
                                     /**
-                                     * Add constant to diagonal
-                                     * elements of this, i.e. add a
-                                     * multiple of the identity
-                                     * matrix.
+                                     * Apply the Jacobi
+                                     * preconditioner, which
+                                     * multiplies every element of
+                                     * the <tt>src</tt> vector by the
+                                     * inverse of the respective
+                                     * diagonal element and
+                                     * multiplies the result with the
+                                     * damping factor <tt>omega</tt>.
                                      */
-    void diagadd (const number s);
-
+    template <typename somenumber>
+    void precondition_Jacobi (Vector<somenumber>       &dst,
+                             const Vector<somenumber> &src,
+                             const number              omega = 1.) const;
+    
                                     /**
                                      * <i>dst=b-A*x</i>. Residual calculation,
                                      * returns the <i>l<sub>2</sub></i>-norm
@@ -858,22 +957,6 @@ class FullMatrix : public Table<2,number>
     void backward (Vector<number2>       &dst,
                   const Vector<number2> &src) const;
 
-                                    /**
-                                     * QR-factorization of a matrix.
-                                     * The orthogonal transformation
-                                     * Q is applied to the vector y
-                                     * and this matrix.
-                                     *
-                                     * After execution of
-                                     * householder, the upper
-                                     * triangle contains the
-                                     * resulting matrix R, the lower
-                                     * the incomplete factorization
-                                     * matrices.
-                                     */
-    template<typename number2>
-    void householder (Vector<number2> &y);
-
                                     /**
                                      * Least-Squares-Approximation by
                                      * QR-factorization. The return
@@ -883,68 +966,8 @@ class FullMatrix : public Table<2,number>
     template<typename number2>
     double least_squares (Vector<number2> &dst,
                          Vector<number2> &src);
+//@}
 
-                                    /**
-                                     * Output of the matrix in
-                                     * user-defined format.
-                                     */
-    void print (std::ostream       &s,
-               const unsigned int  width=5,
-               const unsigned int  precision=2) const;
-
-                                    /**
-                                     * Print the matrix in the usual
-                                     * format, i.e. as a matrix and
-                                     * not as a list of nonzero
-                                     * elements. For better
-                                     * readability, elements not in
-                                     * the matrix are displayed as
-                                     * empty space, while matrix
-                                     * elements which are explicitly
-                                     * set to zero are displayed as
-                                     * such.
-                                     *
-                                     * The parameters allow for a
-                                     * flexible setting of the output
-                                     * format: <tt>precision</tt> and
-                                     * <tt>scientific</tt> are used to
-                                     * determine the number format,
-                                     * where <tt>scientific</tt> = <tt>false</tt>
-                                     * means fixed point notation.  A
-                                     * zero entry for <tt>width</tt> makes
-                                     * the function compute a width,
-                                     * but it may be changed to a
-                                     * positive value, if output is
-                                     * crude.
-                                     *
-                                     * Additionally, a character for
-                                     * an empty value may be
-                                     * specified.
-                                     *
-                                     * Finally, the whole matrix can
-                                     * be multiplied with a common
-                                     * denominator to produce more
-                                     * readable output, even
-                                     * integers.
-                                     *
-                                     * @attention This function
-                                     * may produce <b>large</b> amounts of
-                                     * output if applied to a large matrix!
-                                     */
-    void print_formatted (std::ostream       &out,
-                         const unsigned int  presicion=3,
-                         const bool          scientific  = true,
-                         const unsigned int  width       = 0,
-                         const char         *zero_string = " ",
-                         const double        denominator = 1.) const;
-    
-                                    /**
-                                     * Determine an estimate for the
-                                     * memory consumption (in bytes)
-                                     * of this object.
-                                     */
-    unsigned int memory_consumption () const;
-    
                                     /**
                                      * Exception
                                      */
@@ -952,13 +975,6 @@ class FullMatrix : public Table<2,number>
                                     /**
                                      * Exception
                                      */
-    DeclException2 (ExcDimensionMismatch,
-                   int, int,
-                   << "The two dimensions " << arg1 << " and " << arg2
-                   << " do not match here.");
-                                    /**
-                                     * Exception
-                                     */
     DeclException0 (ExcNotQuadratic);
                                     /**
                                      * Exception

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.