These were caught by MSVC warning 4661.
* The current time in the timestepping scheme.
*/
double current_time() const;
- /**
- * The current step size.
- */
- double step_size() const;
+
/**
* The weight between implicit and explicit part.
*/
Quadrature<1>
QProjector<1>::project_to_all_subfaces (const Quadrature<0> &quadrature);
-
-template <>
-bool
-QIterated<1>::uses_both_endpoints (const Quadrature<1> &base_quadrature);
-
template <>
QIterated<1>::QIterated (const Quadrature<1> &base_quadrature,
const unsigned int n_copies);
static std::vector<unsigned int>
get_dpo_vector (const unsigned int degree);
- /**
- * Initialize the @p generalized_support_points field of the FiniteElement
- * class and fill the tables with @p interior_weights. Called from the
- * constructor.
- *
- * See the
- * @ref GlossGeneralizedSupport "glossary entry on generalized support points"
- * for more information.
- */
- void initialize_support_points (const unsigned int degree);
-
- /**
- * Initialize the interpolation from functions on refined mesh cells onto
- * the father cell. According to the philosophy of the Raviart-Thomas
- * element, this restriction operator preserves the divergence of a function
- * weakly.
- */
- void initialize_restriction ();
-
/**
* Fields of cell-independent data.
*
*/
static std::vector<unsigned int> get_dpo_vector (const unsigned int degree);
- /**
- * Initialize the embedding matrices. Called from the constructor.
- */
- void initialize_embedding ();
-
/**
* Initialize the restriction matrices. Called from the constructor.
*/
*/
FE_Q (const Quadrature<1> &points);
- /**
- * Construct a FE_Q_isoQ1 element. That element shares large parts of code
- * with FE_Q so most of the construction work is done in this routine,
- * whereas the public constructor is in the class FE_Q_isoQ1.
- */
- FE_Q(const unsigned int subdivisions_per_dimension,
- const unsigned int base_degree);
-
/**
* Return a string that uniquely identifies a finite element. This class
* returns <tt>FE_Q<dim>(degree)</tt>, with @p dim and @p degree replaced by
*/
unsigned int n_raw_quads (const unsigned int level) const;
- /**
- * Total number of hexs, used or unused.
- *
- * @note This function really exports internal information about the
- * triangulation. It shouldn't be used in applications. The function is only
- * part of the public interface of this class because it is used in some of
- * the other classes that build very closely on it (in particular, the
- * DoFHandler class).
- */
- unsigned int n_raw_hexs () const;
-
/**
* Number of hexs, used or unused, on the given level.
*
*/
void swap (BlockVector<Number> &v);
- /**
- * Output of vector in user-defined format.
- *
- * This function is deprecated.
- */
- void print (const char *format = nullptr) const DEAL_II_DEPRECATED;
-
/**
* Print to a stream.
*/
*/
number diag_element (const size_type i) const;
- /**
- * Same as above, but return a writeable reference. You're sure you know
- * what you do?
- */
- number &diag_element (const size_type i);
-
/**
* Extracts a copy of the values and indices in the given matrix row.
*
*/
const_iterator &operator++ ();
- /**
- * Postfix increment.
- */
- const_iterator &operator++ (int);
-
/**
* Dereferencing operator.
*/
using PreconditionBlock<MatrixType, inverse_type>::clear;
using PreconditionBlock<MatrixType, inverse_type>::empty;
using PreconditionBlock<MatrixType, inverse_type>::el;
- using PreconditionBlock<MatrixType, inverse_type>::set_same_diagonal;
using PreconditionBlock<MatrixType, inverse_type>::invert_diagblocks;
using PreconditionBlock<MatrixType, inverse_type>::block_size;
using PreconditionBlockBase<inverse_type>::size;
using typename PreconditionBlock<MatrixType,inverse_type>::AdditionalData;
using PreconditionBlock<MatrixType, inverse_type>::initialize;
using PreconditionBlock<MatrixType, inverse_type>::clear;
- using PreconditionBlock<MatrixType, inverse_type>::empty;
using PreconditionBlockBase<inverse_type>::size;
using PreconditionBlockBase<inverse_type>::inverse;
using PreconditionBlockBase<inverse_type>::inverse_householder;
using PreconditionBlockBase<inverse_type>::inverse_svd;
- using PreconditionBlock<MatrixType, inverse_type>::el;
- using PreconditionBlock<MatrixType, inverse_type>::set_same_diagonal;
using PreconditionBlock<MatrixType, inverse_type>::invert_diagblocks;
using PreconditionBlock<MatrixType, inverse_type>::set_permutation;
using PreconditionBlockBase<inverse_type>::log_statistics;
using PreconditionBlockSOR<MatrixType,inverse_type>::set_permutation;
using PreconditionBlockSOR<MatrixType, inverse_type>::empty;
using PreconditionBlockSOR<MatrixType, inverse_type>::el;
- using PreconditionBlockSOR<MatrixType,inverse_type>::set_same_diagonal;
using PreconditionBlockSOR<MatrixType,inverse_type>::invert_diagblocks;
/**
*/
void inverses_computed(bool are_they);
- /**
- * Use only the inverse of the first diagonal block to save memory and
- * computation time.
- *
- * Possible applications: computing on a cartesian grid, all diagonal blocks
- * are the same or all diagonal blocks are at least similar and inversion of
- * one of them still yields a preconditioner.
- */
- void set_same_diagonal ();
-
/**
* Does the matrix use only one diagonal block?
*/
*/
bool inverses_ready () const;
- /**
- * Check whether the object is empty.
- */
- bool empty () const;
-
/**
* The number of blocks.
*/
unsigned int size() const;
- /**
- * Read-only access to entries. This function is only possible if the
- * inverse diagonal blocks are stored.
- */
- number el(size_type i, size_type j) const;
-
/**
* Multiply with the inverse block at position <tt>i</tt>.
*/
*/
void clear();
- /**
- * Check whether the object is empty.
- */
- bool empty () const;
-
- /**
- * Read-only access to entries. This function is only possible if the
- * inverse diagonal blocks are stored.
- */
- value_type el(size_type i,
- size_type j) const;
-
/**
* Stores the inverse of the diagonal blocks in @p inverse. This costs some
* additional memory - for DG methods about 1/3 (for double inverses) or 1/6
*/
using RelaxationBlock<MatrixType, InverseNumberType, VectorType>::clear;
- /**
- * Make function of base class public again.
- */
- using RelaxationBlock<MatrixType, InverseNumberType, VectorType>::empty;
/**
* Make function of base class public again.
*/
* the dst() vector to zero before calling the Tstep() method.
*/
void Tvmult (VectorType &dst, const VectorType &rhs) const;
-
- /**
- * Return the memory allocated in this object.
- */
- std::size_t memory_consumption() const;
};
*/
using RelaxationBlock<MatrixType, InverseNumberType, VectorType>::clear;
- /**
- * Make function of base class public again.
- */
- using RelaxationBlock<MatrixType, InverseNumberType, VectorType>::empty;
/**
* Make function of base class public again.
*/
*/
using RelaxationBlock<MatrixType, InverseNumberType, VectorType>::clear;
- /**
- * Make function of base class public again.
- */
- using RelaxationBlock<MatrixType, InverseNumberType, VectorType>::empty;
-
/**
* Make function of base class public again.
*/
*/
const_iterator &operator++ ();
- /**
- * Postfix increment. This always returns a valid entry or <tt>end()</tt>.
- */
- const_iterator &operator++ (int);
-
/**
* Dereferencing operator.
*/
number matrix_norm_square (const Vector<number> &v) const;
//@}
-///@name Matrixnorms
-//@{
-
- /**
- * Return the $l_1$-norm of the matrix, i.e. $|M|_1=max_{all columns
- * j}\sum_{all rows i} |M_ij|$, (max. sum of columns). This is the natural
- * matrix norm that is compatible to the $l_1$-norm for vectors, i.e.
- * $|Mv|_1\leq |M|_1 |v|_1$. (cf. Rannacher Numerik0)
- */
- number l1_norm () const;
-
- /**
- * Return the $l_\infty$-norm of the matrix, i.e. $|M|_\infty=\max_{all rows
- * i}\sum_{all columns j} |M_{ij}|$, (max. sum of rows). This is the natural
- * matrix norm that is compatible to the $l_\infty$-norm of vectors, i.e.
- * $|Mv|_\infty \leq |M|_\infty |v|_\infty$.
- */
- number linfty_norm () const;
-
- /**
- * The Frobenius norm of the matrix. Return value is the root of the square
- * sum of all matrix entries.
- */
- number frobenius_norm () const;
-
- /**
- * Compute the relative norm of the skew-symmetric part. The return value is
- * the Frobenius norm of the skew-symmetric part of the matrix divided by
- * that of the matrix.
- *
- * Main purpose of this function is to check, if a matrix is symmetric
- * within a certain accuracy, or not.
- */
- number relative_symmetry_norm2 () const;
-//@}
///@name LAPACK operations
//@{
/**
const unsigned int width=5,
const unsigned int precision=2) const;
- /**
- * Determine an estimate for the memory consumption (in bytes) of this
- * object.
- */
- std::size_t memory_consumption () const;
- //@}
-
private:
/**
* The diagonal entries.
template <class ASSEMBLER>
void assemble(ASSEMBLER &ass) const;
- /**
- * The memory used by this object.
- */
- std::size_t memory_consumption () const;
-
/**
* The data for the cell.
std::size_t memory_consumption () const;
private:
- /**
- * Initialize a single local matrix block. A helper function for
- * initialize()
- */
- void initialize_local(MatrixBlock<FullMatrix<number> > &M,
- const unsigned int row,
- const unsigned int col);
-
/**
* The local numbers, computed on a cell or on a face.
*/
const unsigned int start,
const unsigned int size) const;
- /**
- * The memory used by this object.
- */
- std::size_t memory_consumption () const;
protected:
AnyData data;
};
* reasonable data before calling this function.
*/
void initialize(const MGLevelObject<VectorType> *, const std::string &name);
-
-
- /**
- * The memory used by this object.
- */
- std::size_t memory_consumption () const;
};
*/
void finish_parameter_value ();
- /**
- * Clear all data presently stored in this object.
- */
- void clear ();
-
/**
* Determine an estimate for the memory consumption (in bytes) of this
* object.