]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Document the rest.
authorbangerth <bangerth@0785d39b-7218-0410-832d-ea1e28bc413d>
Mon, 6 Jul 2009 22:53:05 +0000 (22:53 +0000)
committerbangerth <bangerth@0785d39b-7218-0410-832d-ea1e28bc413d>
Mon, 6 Jul 2009 22:53:05 +0000 (22:53 +0000)
git-svn-id: https://svn.dealii.org/trunk@19040 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-36/step-36.cc

index 472adcd01a74808a0c0679d6fd69c41be65cfddc..94f9a9d680051af1d026782f6b8b7b046d8b5ec6 100644 (file)
@@ -332,45 +332,110 @@ void EigenvalueProblem<dim>::assemble_system ()
 
 
                                 // @sect4{EigenvalueProblem::solve}
-                                // Now that the system is set up, here
-                                // is a good time to actually solve
-                                // the problem: As with other examples
-                                // this is done using a "solve"
-                                // routine
+
+                                // This is the key new functionality of the
+                                // program. Now that the system is set up,
+                                // here is a good time to actually solve the
+                                // problem: As with other examples this is
+                                // done using a "solve" routine. Essentially,
+                                // it works as in other programs: you set up
+                                // a SolverControl object that describes the
+                                // accuracy to which we want to solve the
+                                // linear systems, and then we select the
+                                // kind of solver we want. Here we choose the
+                                // Krylov-Schur solver of SLEPc, a pretty
+                                // fast and robust choice for this kind of
+                                // problem:
+
 template <int dim>
 void EigenvalueProblem<dim>::solve () 
 {
-                                  // We start by assigning the accuracy
-                                  // to which we would like to solve the
-                                  // system,
-  SolverControl solver_control (1000, 1e-6);
-
-                                  // and assign our solver of
-                                  // choice. Here we want to use the
-                                  // Krylov-Schur solver, which is
-                                  // pretty darn fast and robust:
+  SolverControl solver_control (dof_handler.n_dofs(), 1e-9);
+
   SLEPcWrappers::SolverKrylovSchur eigensolver (solver_control);
 
-                                  // Lets assign the solver which part
-                                  // of the spectrum we want to solve
-  eigensolver.set_which_eigenpairs (EPS_SMALLEST_MAGNITUDE);
+                                  // Before we actually solve for the
+                                  // eigenfunctions and -values, we have to
+                                  // also select which set of eigenvalues to
+                                  // solve for. Lets select those eigenvalues
+                                  // and corresponding eigenfunctions with
+                                  // the smallest real part (in fact, the
+                                  // problem we solve here is symmetric and
+                                  // so the eigenvalues are purely
+                                  // real). After that, we can actually let
+                                  // SLEPc do its work:
+  eigensolver.set_which_eigenpairs (EPS_SMALLEST_REAL);
 
-                                  // Finally, we actually solve the
-                                  // generalized eigenproblem:
   eigensolver.solve (stiffness_matrix, mass_matrix, 
                     eigenvalues, eigenfunctions, 
                     eigenfunctions.size());
 
-                                  // Now rescale eigenfunctions so that they
-                                  // have $\|\phi_i(\mathbf
+                                  // The output of the call above is a set of
+                                  // vectors and values. In eigenvalue
+                                  // problems, the eigenfunctions are only
+                                  // determined up to a constant that can be
+                                  // fixed pretty arbitrarily. Knowing
+                                  // nothing about the origin of the
+                                  // eigenvalue problem, SLEPc has no other
+                                  // choice than to normalize the
+                                  // eigenvectors to one in the $l_2$
+                                  // (vector) norm. Unfortunately this norm
+                                  // has little to do with any norm we may be
+                                  // interested from a eigenfunction
+                                  // perspective: the $L_2(\Omega)$ norm, or
+                                  // maybe the $L_\infty(\Omega)$ norm.
+                                  //
+                                  // Let us choose the latter and rescale
+                                  // eigenfunctions so that they have
+                                  // $\|\phi_i(\mathbf
                                   // x)\|_{L^\infty(\Omega)}=1$ instead of
-                                  // $\|\Phi\|_{l_2}=1$:
+                                  // $\|\Phi\|_{l_2}=1$ (where $\phi_i$ is
+                                  // the $i$th eigen<i>function</i> and
+                                  // $\Phi_i$ the corresponding vector of
+                                  // nodal values). For the $Q_1$ elements
+                                  // chosen here, we know that the maximum of
+                                  // the function $\phi_i(\mathbf x)$ is
+                                  // attained at one of the nodes, so
+                                  // $\max_{\mathbf x}\phi_i(\mathbf
+                                  // x)=\max_j (\Phi_i)_j$, making the
+                                  // normalization in the $L_\infty$ norm
+                                  // trivial. Note that this doesn't work as
+                                  // easily if we had chosen $Q_k$ elements
+                                  // with $k>1$: there, the maximum of a
+                                  // function does not necessarily have to be
+                                  // attained at a node, and so
+                                  // $\max_{\mathbf x}\phi_i(\mathbf
+                                  // x)\ge\max_j (\Phi_i)_j$ (although the
+                                  // equality is usually nearly true).
   for (unsigned int i=0; i<eigenfunctions.size(); ++i)
     eigenfunctions[i] /= eigenfunctions[i].linfty_norm ();
 }
 
 
                                 // @sect4{EigenvalueProblem::output_results}
+
+                                // This is the last significant function of
+                                // this program. It uses the DataOut class to
+                                // generate graphical output from the
+                                // eigenfunctions for later visualization. It
+                                // works as in many of the other tutorial
+                                // programs.
+                                //
+                                // The only thing worth discussing may be
+                                // that because the potential is specified as
+                                // a function expression in the input file,
+                                // it would be nice to also have it as a
+                                // graphical representation along with the
+                                // eigenfunctions. The process to achieve
+                                // this is relatively straightforward: we
+                                // build an object that represents $V(\mathbf
+                                // x)$ and then we interpolate this
+                                // continuous function onto the finite
+                                // element space. The result we also attach
+                                // to the DataOut object for visualization.
+                                //
+                                // The whole collection of functions is then
+                                // output as a single VTK file.
 template <int dim>
 void EigenvalueProblem<dim>::output_results () const
 {
@@ -385,11 +450,13 @@ void EigenvalueProblem<dim>::output_results () const
 
                                   // How does this work?
   Vector<double> projected_potential (dof_handler.n_dofs());
-  FunctionParser<dim> potential;
-  potential.initialize (FunctionParser<dim>::default_variable_names (),
-                       parameters.get ("Potential"),
-                       typename FunctionParser<dim>::ConstMap());
-  VectorTools::interpolate (dof_handler, potential, projected_potential);
+  {
+    FunctionParser<dim> potential;
+    potential.initialize (FunctionParser<dim>::default_variable_names (),
+                         parameters.get ("Potential"),
+                         typename FunctionParser<dim>::ConstMap());
+    VectorTools::interpolate (dof_handler, potential, projected_potential);
+  }
   data_out.add_data_vector (projected_potential, "interpolated_potential");
   
   data_out.build_patches ();
@@ -402,33 +469,29 @@ void EigenvalueProblem<dim>::output_results () const
                                  // @sect4{EigenvalueProblem::run}
 
                                  // This is the function which has the
-                                // top-level control over
-                                // everything. It is very similar as
-                                // for the previous examples.
+                                // top-level control over everything. It is
+                                // almost exactly the same as in step-4:
 template <int dim>
 void EigenvalueProblem<dim>::run () 
 {
-  std::cout << "Solving problem in " << dim << " space dimensions." << std::endl;
-  
   make_grid_and_dofs ();
 
-                                  // While we are here, lets count the
-                                  // number of active cells and degrees
-                                  // of freedom like we always do.
   std::cout << "   Number of active cells:       "
            << triangulation.n_active_cells()
            << std::endl
            << "   Number of degrees of freedom: "
-           << dof_handler.n_dofs();
+           << dof_handler.n_dofs()
+           << std::endl
+           << std::endl;
   
   assemble_system ();
   solve ();
   output_results ();
 
   for (unsigned int i=0; i<eigenvalues.size(); ++i)
-    std::cout << std::endl 
-             << "      eigenvalue " << i 
-             << " : " << eigenvalues[i];
+    std::cout << "   Eigenvalue " << i 
+             << " : " << eigenvalues[i]
+             << std::endl;
 }
 
 

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.