-
-//TODO:[RH] (later) doc: laplace_on_quad_vector, compute_laplace_on_quad, etc all
-// see upcoming paper.
-
-
/**
* Mapping class that uses Qp-mappings on boundary cells. The mapping
* shape functions make use of tensor product polynomials with
* equidistant (on the unit cell) support points.
*
- * For more details about Qp-mappings, see the small `mapping' report
- * in the `Reports' section of `Documentation'.
+ * For more details about Qp-mappings, see the `mapping' report at
+ * @p{deal.II/doc/reports/mapping_q/index.html} in the `Reports'
+ * section of `Documentation'.
*
* @author Ralf Hartmann, Guido Kanschat 2000, 2001
*/
* included.
*
* Needed by the
- * @p{compute_support_points_simple(laplace)}
- * functions. For @p{dim=1} this
+ * @p{compute_support_points_laplace}
+ * function . For @p{dim=1} this
* function is empty.
*
* This function is made virtual
* the hardcoded data. For
* @p{degree>=4} and MappingQ<2>
* this vector is computed.
+ *
+ * For the definition of the
+ * @p{laplace_on_quad_vector}
+ * please refer to equation (8)
+ * of the `mapping' report.
*/
void
set_laplace_on_quad_vector(Table<2,double> &loqvs) const;
* the hardcoded data. For
* @p{degree>2} this vector is
* computed.
+ *
+ * For the definition of the
+ * @p{laplace_on_hex_vector}
+ * please refer to equation (8)
+ * of the `mapping' report.
*/
void set_laplace_on_hex_vector(Table<2,double> &lohvs) const;
/**
- * Computes the @p{laplace_on_quad(hex)_vector}.
+ * Computes the
+ * @p{laplace_on_quad(hex)_vector}.
*
* Called by the
- * @p{set_laplace_on_(quad)hex_vector}
+ * @p{set_laplace_on_quad(hex)_vector}
* functions if the data is not
* yet hardcoded.
+ *
+ * For the definition of the
+ * @p{laplace_on_quad(hex)_vector}
+ * please refer to equation (8)
+ * of the `mapping' report.
*/
void compute_laplace_vector(Table<2,double> &lvs) const;
* points.
*
* The vector @p{a} initially
- * containts the locations of the
+ * contains the locations of the
* @p{n_outer} points, the
* @p{n_inner} computed inner
* points are appended.
+ *
+ * See equation (7) of the
+ * `mapping' report.
*/
void apply_laplace_vector(const Table<2,double> &lvs,
std::vector<Point<dim> > &a) const;
const typename Triangulation<dim>::cell_iterator &cell,
std::vector<Point<dim> > &a) const;
- /**
- * Simple version of the
- * @p{compute_support_points_laplace}
- * function. Does not use the
- * solution to Laplace
- * equation. Computes the inner
- * support points by simple
- * interpolations.
- *
- * This function isn't used in
- * the code as it was replaced in
- * @p{compute_mapping_support_points}
- * by the
- * @p{compute_support_points_laplace}
- * function.
- *
- * Nethertheless this function is
- * kept as someone might want to
- * do some comparative tests.
- */
- void compute_support_points_simple(
- const typename Triangulation<dim>::cell_iterator &cell,
- std::vector<Point<dim> > &a) const;
-
- /**
- * For @p{dim=2} and 3. Simple
- * version of the
- * @p{add_face_support_points}
- * function.
- *
- * Needed by the
- * @p{compute_support_points_simple}
- */
-//TODO:[RH] (later) remove this function altogether?
- void fill_quad_support_points_simple (const typename Triangulation<dim>::cell_iterator &cell,
- std::vector<Point<dim> > &a) const;
-
/**
* Needed by the
* @p{laplace_on_quad} function
* unit_support_points, i.e.
* unit_support_points on the
* boundary of the quad
+ *
+ * For the definition of this
+ * vector see equation (8) of the
+ * `mapping' report.
*/
Table<2,double> laplace_on_quad_vector;
* @p{laplace_on_hex} function
* (for @p{dim==3}). Filled by the
* constructor.
+ *
+ * For the definition of this
+ * vector see equation (8) of the
+ * `mapping' report.
*/
Table<2,double> laplace_on_hex_vector;
template<> void MappingQ<3>::add_quad_support_points(
const Triangulation<3>::cell_iterator &cell,
std::vector<Point<3> > &a) const;
-template <> void MappingQ<3>::fill_quad_support_points_simple (
- const Triangulation<3>::cell_iterator &cell,
- std::vector<Point<3> > &a) const;