addition should not be overly difficult using, for example, the
FEInterfaceValues class combined with MeshWorker::mesh_loop() in the
same spirit as we used for the assembly of the linear system.
+
+
+ <h3> Derivation for the simply supported plates </h3>
+
+ Similar to the “clamped” boundary condition addressed in the implementation,
+ we will derive the $C^0$ IP finite element scheme for the simply supported plates:
+ @f{align*}{
+ \Delta^2 u(\mathbf x) &= f(\mathbf x)
+ \qquad \qquad &&\forall \mathbf x \in \Omega,
+ u(\mathbf x) &= g(\mathbf x) \qquad \qquad
+ &&\forall \mathbf x \in \partial\Omega, \\
+ \Delta u(\mathbf x) &= h(\mathbf x) \qquad \qquad
+ &&\forall \mathbf x \in \partial\Omega.
+ @f}
+ We multiply the biharmonic equation by the test function $v_h$ and integrate over $\Omega$ and get:
+ @f{align*}{
+ \int_K v_h (\Delta^2 u_h)
+ &= \int_K (D^2 v_h) : (D^2 u_h)
+ + \int_{\partial K} v_h \frac{\partial (\Delta u_h)}{\partial \mathbf{n}}
+ -\int_{\partial K} (\nabla v_h) \cdot (\frac{\partial \nabla u_h}{\partial \mathbf{n}}).
+ @f}
+
+ Summing up over all cells $K \in \mathbb{T}$,
+ @f{align*}{
+ \sum_{K \in \mathbb{T}} \int_{\partial K} v_h \frac{\partial (\Delta u_h)}{\partial \mathbf{n}} = 0,
+ @f}
+ and by the definition of jump over cells,
+ @f{align*}{
+ -\sum_{K \in \mathbb{T}} \int_{\partial K} (\nabla v_h) \cdot (\frac{\partial \nabla u_h}{\partial \mathbf{n}}) = -\sum_{e \in \mathbb{F}} \int_{e} \jump{\frac{\partial v_h}{\partial \mathbf{n}} (\frac{\partial^2 u_h}{\partial \mathbf{n^2}}).
+ @f}
+ We separate interior faces and boundary faces of the domain,
+ @f{align*}{
+ -\sum_{K \in \mathbb{T}} \int_{\partial K} (\nabla v_h) \cdot (\frac{\partial \nabla u_h}{\partial \mathbf{n}}) = -\sum_{e \in \mathbb{F}^i} \int_{e} \jump{\frac{\partial v_h}{\partial \mathbf{n}} (\frac{\partial^2 u_h}{\partial \mathbf{n^2}})
+ - \sum_{e \in \partial \Omega} \int_{e} \jump{\frac{\partial v_h}{\partial \mathbf{n}} h,
+ @f}
+ Where $\mathbb{F}^i$ is the set of interior faces.
+ This leads us to
+ @f{align*}{
+ \sum_{K \in \mathbb{T}} \int_K (D^2 v_h) : (D^2 u_h) \ dx - \sum_{e \in \mathbb{F}^i} \int_{e} \jump{\frac{\partial v_h}{\partial \mathbf{n}} (\frac{\partial^2 u_h}{\partial \mathbf{n^2}}) \ ds
+ = \sum_{K \in \mathbb{T}}\int_{K} v_h f \ dx + \sum_{e\subset\partial\Omega} \int_{e} \jump{\frac{\partial v_h}{\partial \mathbf{n}} h \ ds.
+ @f}
+
+ In order to symmetrize and stabilize the discrete problem,
+ we add symmetrization and stabilization term.
+ We finally get the $C^0$ IP finite element scheme for the biharmonic equation:
+ find $u_h$ such that $u_h =g$ on $\partial \Omega$ and
+ @f{align*}{
+ \mathcal{A}(v_h,u_h)&=\mathcal{F}(v_h) \quad \text{holds for all test functions } v_h,
+ @f}
+ where
+ @f{align*}{
+ \mathcal{A}(v_h,u_h)&=\mathcal{F}(v_h) \quad \text{holds for all test functions } v_h,
+ @f}
+ where
+ @f{align*}{
+ \mathcal{A}(v_h,u_h):=&\sum_{K \in \mathbb{T}}\int_K D^2v_h:D^2u_h \ dx
+ \\
+ &
+ -\sum_{e \in \mathbb{F}^i} \int_{e}
+ \jump{\frac{\partial v_h}{\partial \mathbf n}}
+ \average{\frac{\partial^2 u_h}{\partial \mathbf n^2}} \ ds
+ -\sum_{e \in \mathbb{F}^i} \int_{e}
+ \average{\frac{\partial^2 v_h}{\partial \mathbf n^2}}
+ \jump{\frac{\partial u_h}{\partial \mathbf n}} \ ds
+ \\
+ &+ \sum_{e \in \mathbb{F}^i}
+ \frac{\gamma}{h_e}
+ \int_e
+ \jump{\frac{\partial v_h}{\partial \mathbf n}}
+ \jump{\frac{\partial u_h}{\partial \mathbf n}} \ ds,
+ @f}
+ and
+ @f{align*}{
+ \mathcal{F}(v_h)&:=\sum_{K \in \mathbb{T}}\int_{K} v_h f \ dx
+ -
+ \sum_{e\subset\partial\Omega}
+ \int_e \jump{\frac{\partial v_h}{\partial \mathbf n^2}} h \ ds.
+ @f}