const double rho = (r-R0)/h;
- Assert (rho >= -.001, ExcInternalError());
- Assert (rho <= 1.001, ExcInternalError());
-
return T1+(T0-T1)*((1-rho)*(1-rho));
}
// side is cheap anyway so we won't even
// notice that this part is not parallized
// by threads.
- //
+ //
// Regarding the implementation of
// inhomogeneous Dirichlet boundary
// conditions: Since we use the temperature
time_step *
nu * ext_grad_T * scratch.grad_phi_T[i]
+
- time_step *
+ time_step *
scratch.gamma_values[q] * scratch.phi_T[i])
*
scratch.temperature_fe_values.JxW(q);
if (temperature_constraints.is_inhomogeneously_constrained(data.local_dof_indices[i]))
{
for (unsigned int j=0; j<dofs_per_cell; ++j)
- data.matrix_for_bc(j,i) += (scratch.phi_T[i] * scratch.phi_T[j] *
- (use_bdf2_scheme ?
+ data.matrix_for_bc(j,i) += (scratch.phi_T[i] * scratch.phi_T[j] *
+ (use_bdf2_scheme ?
((2*time_step + old_time_step) /
(time_step + old_time_step)) : 1.)
+
scratch.grad_phi_T[i] *
scratch.grad_phi_T[j] *
EquationData::kappa *
- time_step)
+ time_step)
*
scratch.temperature_fe_values.JxW(q);
}