* @p{operator +=} instead since this does not
* need to copy a point at least once.
*/
- Point<dim> operator + (const Point<dim> &) const;
+ Point<dim> operator + (const Tensor<1,dim> &) const;
/**
* Subtract two point vectors. If possible, use
* @p{operator +=} instead since this does not
* need to copy a point at least once.
*/
- Point<dim> operator - (const Point<dim> &) const;
+ Point<dim> operator - (const Tensor<1,dim> &) const;
/**
* The opposite vector.
/**
* Returns the scalar product of two vectors.
*/
- double operator * (const Point<dim> &) const;
+ double operator * (const Tensor<1,dim> &) const;
/**
* Divide by a factor. If possible, use
template <int dim>
inline
-Point<dim> Point<dim>::operator + (const Point<dim> &p) const
+Point<dim> Point<dim>::operator + (const Tensor<1,dim> &p) const
{
return (Point<dim>(*this) += p);
};
template <int dim>
inline
-Point<dim> Point<dim>::operator - (const Point<dim> &p) const
+Point<dim> Point<dim>::operator - (const Tensor<1,dim> &p) const
{
return (Point<dim>(*this) -= p);
};
template <int dim>
inline
-double Point<dim>::operator * (const Point<dim> &p) const
+double Point<dim>::operator * (const Tensor<1,dim> &p) const
{
// simply pass down
return Tensor<1,dim>::operator * (p);