]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Add a little bit documentation.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 28 Feb 2002 12:46:07 +0000 (12:46 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 28 Feb 2002 12:46:07 +0000 (12:46 +0000)
git-svn-id: https://svn.dealii.org/trunk@5542 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/base/include/base/tensor_product_polynomials.h
deal.II/deal.II/include/fe/fe.h

index 24a5786992554d4292ff82839a1151dbb1d3ba44..e56e1a2c1cbd516610ac147e69cb3a11e3646cf8 100644 (file)
  *
  * Given a vector of @{n} one-dimensional polynomials @{P1} to @{Pn},
  * this class generates @p{n} to the power of @p{dim} polynomials of
- * the form @p{ Qijk(x,y,z) = Pi(x)Pj(y)Pk(z)}.
+ * the form @p{ Qijk(x,y,z) = Pi(x)Pj(y)Pk(z)}. If the base
+ * polynomials are mutually orthogonal on the interval $[-1,1]$ or
+ * $[0,d], then the tensor product polynomials are orthogonal on
+ * $[-1,1]^d$ or $[0,1]^d$, respectively.
  *
  * @author Ralf Hartmann, 2000, documentation Guido Kanschat
  */
index 97b7ed8294adc848c8ed023e7f373ba113d97076..5957eae5810311bb3bce6da07eb962600d7403fd 100644 (file)
@@ -43,7 +43,12 @@ template <int dim> class FESystem;
  * support points. This is then fed into an object of class
  * @ref{FEValues}. Even for evaluation on the unit cell, you will need
  * a triangulation containing that single cell.
- * 
+ *
+ * Basically, this class just declares the shape function and their
+ * derivatives on the unit cell $[0,1]^d$, and the means to transform
+ * them onto a given cell in physical space if provided by the
+ * @ref{FEValues} class with a @ref{Mapping} object.
+ *
  * @author Wolfgang Bangerth, Guido Kanschat, Ralf Hartmann, 1998, 2000, 2001
  */
 template <int dim>

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.