subsection Exact solution 2d
# Any constant used inside the function which is not a variable name.
- set Function constants =
+ set Function constants =
# Separate vector valued expressions by ';' as ',' is used internally by the
# function parser.
subsection Exact solution 3d
# Any constant used inside the function which is not a variable name.
- set Function constants =
+ set Function constants =
# Separate vector valued expressions by ';' as ',' is used internally by the
# function parser.
subsection Wind function 2d
# Any constant used inside the function which is not a variable name.
- set Function constants =
+ set Function constants =
# Separate vector valued expressions by ';' as ',' is used internally by the
# function parser.
subsection Wind function 3d
# Any constant used inside the function which is not a variable name.
- set Function constants =
+ set Function constants =
# Separate vector valued expressions by ';' as ',' is used internally by the
# function parser.
@verbatim
DEAL::
DEAL::Parsing parameter file parameters.prm
-DEAL::for a 2 dimensional simulation.
+DEAL::for a 2 dimensional simulation.
DEAL:GMRES::Starting value 2.21576
DEAL:GMRES::Convergence step 1 value 2.37635e-13
DEAL::Cycle 0:
DEAL:: Number of active cells: 160
DEAL:: Number of degrees of freedom: 160
DEAL::
-cycle cells dofs L2(phi) Linfty(alpha)
- 0 20 20 4.465e-02 - 5.000e-02 -
- 1 40 40 1.081e-02 2.05 2.500e-02 1.00
- 2 80 80 2.644e-03 2.03 1.250e-02 1.00
- 3 160 160 6.529e-04 2.02 6.250e-03 1.00
+cycle cells dofs L2(phi) Linfty(alpha)
+ 0 20 20 4.465e-02 - 5.000e-02 -
+ 1 40 40 1.081e-02 2.05 2.500e-02 1.00
+ 2 80 80 2.644e-03 2.03 1.250e-02 1.00
+ 3 160 160 6.529e-04 2.02 6.250e-03 1.00
DEAL::
DEAL::Parsing parameter file parameters.prm
-DEAL::for a 3 dimensional simulation.
+DEAL::for a 3 dimensional simulation.
DEAL:GMRES::Starting value 2.84666
DEAL:GMRES::Convergence step 3 value 8.68638e-18
DEAL::Cycle 0:
DEAL:: Number of active cells: 1536
DEAL:: Number of degrees of freedom: 1538
DEAL::
-cycle cells dofs L2(phi) Linfty(alpha)
- 0 24 26 6.873e-01 - 2.327e-01 -
- 1 96 98 1.960e-01 1.81 1.239e-01 0.91
- 2 384 386 4.837e-02 2.02 6.319e-02 0.97
- 3 1536 1538 1.176e-02 2.04 3.176e-02 0.99
+cycle cells dofs L2(phi) Linfty(alpha)
+ 0 24 26 3.437e-01 - 2.327e-01 -
+ 1 96 98 9.794e-02 1.81 1.239e-01 0.91
+ 2 384 386 2.417e-02 2.02 6.319e-02 0.97
+ 3 1536 1538 5.876e-03 2.04 3.176e-02 0.99
@endverbatim
As we can see from the convergence table in 2d, if we choose
exactly $\pi-\frac {2\pi}{N}$, therefore the error we commit should be
exactly $\frac 12 - (\frac 12 -\frac 1N) = \frac 1N$. In fact this is
a very good indicator that we are performing the singular integrals in
-an appropriate manner.
+an appropriate manner.
The error in the approximation of the potential $\phi$ is largely due
to approximation of the domain. A much better approximation could be
-obtained by using higher order mappings.
+obtained by using higher order mappings.
If we modify the main() function, setting fe_degree and mapping_degree
to two, and raise the order of the quadrature formulas in
two dimensional simulation
@verbatim
-cycle cells dofs L2(phi) Linfty(alpha)
- 0 20 40 5.404e-05 - 2.306e-04 -
- 1 40 80 3.578e-06 3.92 1.738e-05 3.73
- 2 80 160 2.479e-07 3.85 1.253e-05 0.47
- 3 160 320 1.856e-08 3.74 7.670e-06 0.71
+cycle cells dofs L2(phi) Linfty(alpha)
+ 0 20 40 5.414e-05 - 2.306e-04 -
+ 1 40 80 3.623e-06 3.90 1.737e-05 3.73
+ 2 80 160 2.690e-07 3.75 1.253e-05 0.47
+ 3 160 320 2.916e-08 3.21 7.670e-06 0.71
@endverbatim
and
@verbatim
-cycle cells dofs L2(phi) Linfty(alpha)
- 0 24 98 9.187e-03 - 8.956e-03 -
- 1 96 386 3.991e-04 4.52 1.182e-03 2.92
- 2 384 1538 2.113e-05 4.24 1.499e-04 2.98
- 3 1536 6146 1.247e-06 4.08 1.896e-05 2.98
+cycle cells dofs L2(phi) Linfty(alpha)
+ 0 24 98 3.770e-03 - 8.956e-03 -
+ 1 96 386 1.804e-04 4.39 1.182e-03 2.92
+ 2 384 1538 9.557e-06 4.24 1.499e-04 2.98
+ 3 1536 6146 6.617e-07 3.85 1.892e-05 2.99
@endverbatim
for the three dimensional case. As we can see, convergence results are
three orders of magnitude lower.
The result of running these computations is a bunch of output files that we
-can pass to our visualization program of choice.
+can pass to our visualization program of choice.
The output files are of two kind: the potential on the boundary
element surface, and the potential extended to the outer and inner
domain. The combination of the two for the two dimensional case looks