]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Add a mmult function to the SparseMatrix class.
authorkronbichler <kronbichler@0785d39b-7218-0410-832d-ea1e28bc413d>
Mon, 4 May 2009 11:19:44 +0000 (11:19 +0000)
committerkronbichler <kronbichler@0785d39b-7218-0410-832d-ea1e28bc413d>
Mon, 4 May 2009 11:19:44 +0000 (11:19 +0000)
git-svn-id: https://svn.dealii.org/trunk@18808 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/lac/include/lac/constraint_matrix.templates.h
deal.II/lac/include/lac/sparse_matrix.h
deal.II/lac/include/lac/sparse_matrix.templates.h
deal.II/lac/source/sparse_matrix.inst.in

index 10e10a3b34d6d4824b834d4846bc0aaf5125a05b..1fca3f87761a5c3f72a8e320f8ece374d3e76793 100644 (file)
@@ -1439,7 +1439,7 @@ distribute_local_to_global (const FullMatrix<double>        &local_matrix,
                    col_val = 0;
 
                                   // account for indirect contributions by
-                                  // constraints
+                                  // constraints in column
                  if (my_indices[j].constraints != 0)
                    {
                      constraint_format &constraint_j = *my_indices[j].constraints;
index 1abfa7aecd9bdffbaea1e80876ee3bcb4a02fe46..247a44ebc43d8bf28895ed6bd004b2026a6c42f0 100644 (file)
@@ -1439,6 +1439,45 @@ class SparseMatrix : public virtual Subscriptor
     somenumber residual (Vector<somenumber>       &dst,
                         const Vector<somenumber> &x,
                         const Vector<somenumber> &b) const;
+
+                                    /**
+                                     * Perform the matrix-matrix
+                                     * multiplication <tt>C = A * B</tt>,
+                                     * or, if an optional vector argument
+                                     * is given, <tt>C = A * diag(V) *
+                                     * B</tt>, where <tt>diag(V)</tt>
+                                     * defines a diagonal matrix with the
+                                     * vector entries.
+                                     *
+                                     * This function assumes that the
+                                     * calling matrix <tt>A</tt> and
+                                     * <tt>B</tt> have compatible
+                                     * sizes. The size of <tt>C</tt> will
+                                     * be set within this function.
+                                     *
+                                     * The content as well as the sparsity
+                                     * pattern of the matrix C will be
+                                     * changed by this function, so make
+                                     * sure that the sparsity pattern is
+                                     * not used somewhere else in your
+                                     * program. This is an expensive
+                                     * operation, so think twice before you
+                                     * use this function.
+                                     *
+                                     * There is an optional flag
+                                     * <tt>rebuild_sparsity_pattern</tt>
+                                     * that can be used to bypass the
+                                     * creation of a new sparsity pattern
+                                     * and instead uses the sparsity
+                                     * pattern stored in <tt>C</tt>. In
+                                     * that case, make sure that it really
+                                     * fits.
+                                     */
+    template <typename numberB, typename numberC, typename numberV>
+    void mmult (SparseMatrix<numberC>       &C,
+               const SparseMatrix<numberB> &B,
+               const Vector<numberV>       &V = Vector<numberV>(),
+               const bool                   rebuild_sparsity_pattern = true) const;
     
 //@}
 /**
index e5874f41e04d7e715e50c7dc9088cfafcd0b8eca..b79a557a4355d4e8a91dcd1b12a930a797d12c80 100644 (file)
@@ -20,6 +20,7 @@
 #include <lac/sparse_matrix.h>
 #include <lac/vector.h>
 #include <lac/full_matrix.h>
+#include <lac/compressed_simple_sparsity_pattern.h>
 
 
 // we only need output streams, but older compilers did not provide
@@ -348,27 +349,30 @@ SparseMatrix<number>::add (const unsigned int  row,
                                   // just go through the column indices and
                                   // look whether we found one, rather than
                                   // doing many binary searches
-  if (col_indices_are_sorted == true)
-   if (n_cols * 8 > cols->row_length(row))
+  if (elide_zero_values == false && col_indices_are_sorted == true && 
+      n_cols > 3)
     {
                                   // check whether the given indices are
                                   // really sorted
 #ifdef DEBUG
       for (unsigned int i=1; i<n_cols; ++i)
        Assert (col_indices[i] > col_indices[i-1], 
-               ExcMessage("Indices are not sorted."));
+               ExcMessage("List of indices not sorted or with duplicates."));
 #endif
+
+      const unsigned int * this_cols = 
+       &cols->get_column_numbers()[cols->get_rowstart_indices()[row]];
+      number * val_ptr = &val[cols->get_rowstart_indices()[row]];
+
       if (cols->optimize_diagonal() == true)
        {
-         const unsigned int * this_cols = 
-           &cols->get_column_numbers()[cols->get_rowstart_indices()[row]];
-         number * val_ptr = &val[cols->get_rowstart_indices()[row]];
-         Assert (this_cols[0] == row, ExcInternalError());
 
                                   // find diagonal and add it if found
-         const unsigned int * diag_pos = std::lower_bound (col_indices,
-                                                           col_indices+n_cols,
-                                                           row);
+         Assert (this_cols[0] == row, ExcInternalError());
+         const unsigned int * diag_pos = 
+           internals::SparsityPatternTools::optimized_lower_bound (col_indices,
+                                                                   col_indices+n_cols,
+                                                                   row);
          const unsigned int diag = diag_pos - col_indices;
          unsigned int post_diag = diag;
          if (diag != n_cols && *diag_pos == row)
@@ -410,9 +414,6 @@ SparseMatrix<number>::add (const unsigned int  row,
        }
       else
        {
-         const unsigned int * this_cols = 
-           &cols->get_column_numbers()[cols->get_rowstart_indices()[row]];
-         number * val_ptr = &val[cols->get_rowstart_indices()[row]];
          unsigned int counter = 0;
          for (unsigned int i=0; i<n_cols; ++i)
            {
@@ -605,6 +606,7 @@ SparseMatrix<number>::vmult (OutVector& dst,
 }
 
 
+
 template <typename number>
 template <class OutVector, class InVector>
 void
@@ -631,6 +633,7 @@ SparseMatrix<number>::threaded_vmult (OutVector       &dst,
 }
 
 
+
 template <typename number>
 template <class OutVector, class InVector>
 void
@@ -657,6 +660,7 @@ SparseMatrix<number>::Tvmult (OutVector& dst,
 }
 
 
+
 template <typename number>
 template <class OutVector, class InVector>
 void
@@ -676,15 +680,16 @@ SparseMatrix<number>::vmult_add (OutVector& dst,
   typename OutVector::iterator dst_ptr    = dst.begin();
   for (unsigned int row=0; row<n_rows; ++row)
     {
-      typename OutVector::value_type s = 0.;
+      typename OutVector::value_type s = *dst_ptr;
       const number *const val_end_of_row = &val[cols->rowstart[row+1]];
       while (val_ptr != val_end_of_row)
        s += *val_ptr++ * src(*colnum_ptr++);
-      *dst_ptr++ += s;
+      *dst_ptr++ = s;
     };
 }
 
 
+
 template <typename number>
 template <class OutVector, class InVector>
 void
@@ -707,6 +712,141 @@ SparseMatrix<number>::Tvmult_add (OutVector& dst,
 }
 
 
+
+template <typename number>
+template <typename numberB, typename numberC, typename numberV>
+void
+SparseMatrix<number>::mmult (SparseMatrix<numberC>       &C,
+                            const SparseMatrix<numberB> &B,
+                            const Vector<numberV>       &V,
+                            const bool                   rebuild_sparsity_C) const
+{
+  const bool use_vector = V.size() == n() ? true : false;
+  Assert (n() == B.m(), ExcDimensionMismatch(n(), B.m()));
+  Assert (cols != 0, ExcNotInitialized());
+  Assert (B.cols != 0, ExcNotInitialized());
+  Assert (C.cols != 0, ExcNotInitialized());
+
+  const SparsityPattern & sp_A = *cols;
+  const SparsityPattern & sp_B = *B.cols;
+
+                                  // clear previous content of C
+  if  (rebuild_sparsity_C == true)
+    {
+                                  // need to change the sparsity pattern of
+                                  // C, so cast away const-ness.
+      SparsityPattern & sp_C = 
+       *(const_cast<SparsityPattern *>(&C.get_sparsity_pattern()));
+      C.clear();
+      sp_C.reinit (0,0,0);
+
+                                  // create a sparsity pattern for the
+                                  // matrix. we will go through all the
+                                  // rows in the matrix A, and for each
+                                  // column in a row we add the whole row
+                                  // of matrix B with that row number. This
+                                  // means that we will insert a lot of
+                                  // entries to each row, which is best
+                                  // handled by the
+                                  // CompressedSimpleSparsityPattern class.
+      {
+       CompressedSimpleSparsityPattern csp (m(), B.n());
+       for (unsigned int i = 0; i < csp.n_rows(); ++i)
+         {
+           const unsigned int * rows = 
+             &sp_A.get_column_numbers()[sp_A.get_rowstart_indices()[i]];
+           const unsigned int *const end_rows = 
+             &sp_A.get_column_numbers()[sp_A.get_rowstart_indices()[i+1]];
+           for (; rows != end_rows; ++rows)
+             {
+               const unsigned int col = *rows;
+               unsigned int * new_cols = const_cast<unsigned int*>
+                 (&sp_B.get_column_numbers()
+                  [sp_B.get_rowstart_indices()[col]]);
+               unsigned int * end_new_cols = const_cast<unsigned int*>
+                 (&sp_B.get_column_numbers()
+                  [sp_B.get_rowstart_indices()[col+1]]);
+
+                                  // if B has a diagonal, need to add that
+                                  // manually. this way, we maintain
+                                  // sortedness.
+               if (sp_B.optimize_diagonal() == true)
+                 {
+                   ++new_cols;
+                   csp.add(i, col);
+                 }
+
+               csp.add_entries (i, new_cols, end_new_cols, true);
+             }
+         }
+       sp_C.copy_from (csp);
+      }
+
+                                  // reinit matrix C from that information
+      C.reinit (sp_C);
+    }
+
+  Assert (C.m() == m(), ExcDimensionMismatch(C.m(), m()));
+  Assert (C.n() == B.n(), ExcDimensionMismatch(C.n(), B.n()));
+
+                                  // create an array that caches some
+                                  // elements that are going to be written
+                                  // into the new matrix.
+  unsigned int max_n_cols_B = 0;
+  for (unsigned int i=0; i<B.m(); ++i)
+    max_n_cols_B = std::max (max_n_cols_B, sp_B.row_length(i));
+  std::vector<numberC> new_entries(max_n_cols_B);
+
+                                  // now compute the actual entries: a
+                                  // matrix-matrix product involves three
+                                  // nested loops. One over the rows of A,
+                                  // for each row we then loop over all the
+                                  // columns, and then we need to multiply
+                                  // each element with all the elements in
+                                  // that row in B.
+  for (unsigned int i=0; i<C.m(); ++i)
+    {
+      const unsigned int * rows = 
+       &sp_A.get_column_numbers()[sp_A.get_rowstart_indices()[i]];
+      const unsigned int *const end_rows = 
+       &sp_A.get_column_numbers()[sp_A.get_rowstart_indices()[i+1]];
+      for (; rows != end_rows; ++rows)
+       {
+         const double A_val = global_entry 
+           (rows-&sp_A.get_column_numbers()[sp_A.get_rowstart_indices()[0]]);
+         const unsigned int col = *rows;
+         const unsigned int * new_cols = 
+           (&sp_B.get_column_numbers()[sp_B.get_rowstart_indices()[col]]);
+
+                                  // special treatment for diagonal
+         if (sp_B.optimize_diagonal())
+           {
+             C.add (i, *new_cols, A_val * 
+                    B.global_entry(new_cols-&sp_B.get_column_numbers()
+                                   [sp_B.get_rowstart_indices()[0]]) * 
+                    (use_vector ? V(col) : 1));
+             ++new_cols;
+           }
+
+                                  // now the innermost loop that goes over
+                                  // all the elements in row 'col' of
+                                  // matrix B. Cache the elements, and then
+                                  // write them into C at once
+         numberC * new_ptr = &new_entries[0];
+         const numberB * B_val_ptr = 
+           &B.val[new_cols-&sp_B.get_column_numbers()[sp_B.get_rowstart_indices()[0]]];
+         const numberB * const end_cols = 
+           &B.val[&sp_B.get_column_numbers()[sp_B.get_rowstart_indices()[col+1]]-
+                  &sp_B.get_column_numbers()[sp_B.get_rowstart_indices()[0]]];
+         for (; B_val_ptr != end_cols; ++B_val_ptr)
+           *new_ptr++ = A_val * *B_val_ptr * (use_vector ? V(col) : 1);
+
+         C.add (i, new_ptr-&new_entries[0], new_cols, &new_entries[0],
+                false, true);
+       }
+    }
+}
+
 template <typename number>
 template <typename somenumber>
 somenumber
index a8dafdb7cbcf45252f886847d2e47d161bf22a40..60c364f60696b7865e4dcb0933e1bd953c6faf8c 100644 (file)
@@ -117,7 +117,6 @@ for (S1, S2 : REAL_SCALARS)
                     const S1) const;
   }
 
-
 for (S1, S2, S3 : REAL_SCALARS;
      V1, V2     : DEAL_II_VEC_TEMPLATES)
   {
@@ -131,6 +130,13 @@ for (S1, S2, S3 : REAL_SCALARS;
       Tvmult_add (V1<S2> &, const V2<S3> &) const;
   }
 
+for (S1, S2, S3, S4: REAL_SCALARS)
+  {
+    template void SparseMatrix<S1>::
+      mmult (SparseMatrix<S2> &, const SparseMatrix<S3> &, const Vector<S4>&,
+             const bool) const;
+  }
+
 
 
 // complex instantiations

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.