SERIES={International Series in Pure and Applied Physics},
}
+@ARTICLE{Gopalakrishnan2003,
+ AUTHOR={J. Gopalakrishnan and Pasciak, J. E.},
+ TITLE={Overlapping Schwarz preconditioners for indefinite time harmonic
+ {M}axwell equations},
+ JOURNAL={Math. Comput.},
+ VOLUME={72},
+ PAGES={1-15},
+ YEAR={2003}
+}
+
@BOOK{Monk2003,
AUTHOR={P. Monk},
TITLE={Finite Element Methods for {Maxwell's} Equations},
year = {2017}
}
+@ARTICLE{Ying2012,
+ TITLE={A sweeping preconditioner for time-harmonic {M}axwell's equations},
+ AUTHOR={P. Tsuji and B. Engquist and L. Ying},
+ YEAR={2012},
+ JOURNAL={J. Comput. Phys.},
+ VOLUME={231},
+ PAGES={3770-3783},
+}
+
+
% ------------------------------------
% Step 82
% ------------------------------------
Unfortunately, time-harmonic Maxwell's equations lack the usual notion
of local smoothing properties, which renders the usual suspects, such
as a geometric multigrid (see the Multigrid class), largely useless. A
- possible extension would be to implement a Schwarz preconditioner
- (based on domain decomposition), or a sweeping preconditioner.
+ possible extension would be to implement an additive Schwarz preconditioner
+ (based on domain decomposition, see for example
+ @cite Gopalakrishnan2003), or a sweeping preconditioner (see for
+ example @cite Ying2012).
</li>
<li>
Another possible extension of the current program is to introduce local