* <h3>Usage</h3>
*
* The constructor of this class takes three arguments: the polynomial degree
- * of the desire Qp mapping, a reference to the vector that defines the
+ * of the desired Qp mapping, a reference to the vector that defines the
* mapping from the initial configuration to the current configuration, and a
* reference to the DoFHandler. The most common case is to use the solution
* vector for the problem under consideration as the shift vector. The key
- * requirement is that the number of components of the given vector field be
+ * requirement is that the number of components of the given vector field must be
* equal to (or possibly greater than) the number of space dimensions. If
* there are more components than space dimensions (for example, if one is
* working with a coupled problem where there are additional solution
* the triangulation and associate the desired shift vector to it.
*
* Typically, the DoFHandler operates on a finite element that is constructed
- * as a system element (FESystem) from continuous FE_Q() objects. An example
+ * as a system element (FESystem) from continuous FE_Q objects. An example
* is shown below:
* @code
* FESystem<dim> fe(FE_Q<dim>(2), dim, FE_Q<dim>(1), 1);
* that whenever you use this object, the given objects still represent valid
* data.
*
- * To enable the use of the MappingQ1Eulerian class also in the context of
+ * To enable the use of the MappingQEulerian class also in the context of
* parallel codes using the PETSc or Trilinos wrapper classes, the type
* of the vector can be specified as template parameter <tt>VectorType</tt>.
*
* the second argument. The first dim components of this function will be
* interpreted as the displacement we use in defining the mapping, relative
* to the location of cells of the underlying triangulation.
+ * @param[in] level. Is the multi-grid level at which the mapping will
+ * be used. It is mainly used to check if the size of the @p euler_vector
+ * is consistent with the @p euler_dof_handler .
*/
MappingQEulerian (const unsigned int degree,
const DoFHandler<dim,spacedim> &euler_dof_handler,
- const VectorType &euler_vector);
+ const VectorType &euler_vector,
+ const unsigned int level = numbers::invalid_unsigned_int);
/**
* Return the mapped vertices of the cell. For the current class, this
Mapping<dim,spacedim> *clone () const;
/**
- * Always returns @p false because MappingQ1Eulerian does not in general
+ * Always returns @p false because MappingQEulerian does not in general
* preserve vertex locations (unless the translation vector happens to
- * provide for zero displacements at vertex locations).
+ * provide zero displacements at vertex locations).
*/
virtual
bool preserves_vertex_locations () const;
/**
- * Exception
+ * Exception which is thrown when the mapping is being evaluated at
+ * non-active cell.
*/
DeclException0 (ExcInactiveCell);
private:
+ /**
+ * Multigrid level at which the mapping is to be used.
+ */
+ const unsigned int level;
+
/**
* A class derived from MappingQGeneric that provides the generic mapping
* with support points on boundary objects so that the corresponding Q3
compute_mapping_support_points(const typename Triangulation<dim,spacedim>::cell_iterator &cell) const;
/**
- * Always returns @p false because MappingQ1Eulerian does not in general
+ * Always returns @p false because MappingQEulerianGeneric does not in general
* preserve vertex locations (unless the translation vector happens to
* provide for zero displacements at vertex locations).
*/
* Special quadrature rule used to define the support points in the
* reference configuration.
*/
-
class SupportQuadrature : public Quadrature<dim>
{
public:
/**
* Constructor, with an argument defining the desired polynomial degree.
*/
-
SupportQuadrature (const unsigned int map_degree);
};
MappingQEulerian<dim, VectorType, spacedim>::
MappingQEulerian (const unsigned int degree,
const DoFHandler<dim,spacedim> &euler_dof_handler,
- const VectorType &euler_vector)
+ const VectorType &euler_vector,
+ const unsigned int level)
:
MappingQ<dim,spacedim>(degree, true),
euler_vector(&euler_vector),
- euler_dof_handler(&euler_dof_handler)
+ euler_dof_handler(&euler_dof_handler),
+ level(level)
{
// reset the q1 mapping we use for interior cells (and previously
// set by the MappingQ constructor) to a MappingQ1Eulerian with the
MappingQEulerian<dim, VectorType, spacedim>::MappingQEulerianGeneric::
compute_mapping_support_points (const typename Triangulation<dim,spacedim>::cell_iterator &cell) const
{
- // first, basic assertion with respect to vector size,
+ const bool mg_vector = mapping_q_eulerian.level != numbers::invalid_unsigned_int;
- const types::global_dof_index n_dofs = mapping_q_eulerian.euler_dof_handler->n_dofs();
+ const types::global_dof_index n_dofs = mg_vector ?
+ mapping_q_eulerian.euler_dof_handler->n_dofs(mapping_q_eulerian.level) :
+ mapping_q_eulerian.euler_dof_handler->n_dofs();
const types::global_dof_index vector_size = mapping_q_eulerian.euler_vector->size();
+
(void)n_dofs;
(void)vector_size;
typename DoFHandler<dim,spacedim>::cell_iterator dof_cell(*cell,
mapping_q_eulerian.euler_dof_handler);
- Assert (dof_cell->active() == true, ExcInactiveCell());
+ Assert (mg_vector || dof_cell->active() == true, ExcInactiveCell());
// our quadrature rule is chosen so that each quadrature point corresponds
- // to a support point in the undeformed configuration. we can then query
+ // to a support point in the undeformed configuration. We can then query
// the given displacement field at these points to determine the shift
// vector that maps the support points to the deformed configuration.
- // we assume that the given field contains dim displacement components, but
+ // We assume that the given field contains dim displacement components, but
// that there may be other solution components as well (e.g. pressures).
// this class therefore assumes that the first dim components represent the
// actual shift vector we need, and simply ignores any components after
- // that. this implies that the user should order components appropriately,
+ // that. This implies that the user should order components appropriately,
// or create a separate dof handler for the displacements.
-
const unsigned int n_support_pts = support_quadrature.size();
const unsigned int n_components = mapping_q_eulerian.euler_dof_handler->get_fe(0).n_components();
shift_vector(n_support_pts,
Vector<typename VectorType::value_type>(n_components));
+ std::vector<types::global_dof_index> dof_indices(mapping_q_eulerian.euler_dof_handler->get_fe(0).dofs_per_cell);
// fill shift vector for each support point using an fe_values object. make
// sure that the fe_values variable isn't used simultaneously from different
// threads
Threads::Mutex::ScopedLock lock(fe_values_mutex);
fe_values.reinit(dof_cell);
- fe_values.get_function_values(*mapping_q_eulerian.euler_vector, shift_vector);
+ if (mg_vector)
+ {
+ dof_cell->get_mg_dof_indices(dof_indices);
+ fe_values.get_function_values(*mapping_q_eulerian.euler_vector,
+ dof_indices,
+ shift_vector);
+ }
+ else
+ fe_values.get_function_values(*mapping_q_eulerian.euler_vector, shift_vector);
// and finally compute the positions of the support points in the deformed
// configuration.
--- /dev/null
+// ---------------------------------------------------------------------
+//
+// Copyright (C) 2017 by the deal.II authors
+//
+// This file is part of the deal.II library.
+//
+// The deal.II library is free software; you can use it, redistribute
+// it, and/or modify it under the terms of the GNU Lesser General
+// Public License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+// The full text of the license can be found in the file LICENSE at
+// the top level of the deal.II distribution.
+//
+// ---------------------------------------------------------------------
+
+
+// test that MappingQEulerian works in parallel with geometric multigrids.
+// We apply a simple linear deformation which can be represented exactly
+// at the coarse level.
+//
+// inspired by _07
+
+#include "../tests.h"
+
+#include <deal.II/grid/tria.h>
+#include <deal.II/grid/tria_accessor.h>
+#include <deal.II/grid/tria_iterator.h>
+#include <deal.II/lac/full_matrix.h>
+#include <deal.II/lac/identity_matrix.h>
+#include <deal.II/base/quadrature_lib.h>
+#include <deal.II/base/thread_management.h>
+#include <deal.II/base/function.h>
+#include <deal.II/lac/vector.h>
+#include <deal.II/lac/vector_memory.h>
+#include <deal.II/lac/filtered_matrix.h>
+#include <deal.II/lac/precondition.h>
+#include <deal.II/lac/solver_cg.h>
+#include <deal.II/lac/sparse_matrix.h>
+#include <deal.II/grid/grid_generator.h>
+#include <deal.II/grid/grid_reordering.h>
+#include <deal.II/grid/grid_tools.h>
+#include <deal.II/grid/tria.h>
+#include <deal.II/grid/tria_accessor.h>
+#include <deal.II/grid/tria_iterator.h>
+#include <deal.II/distributed/tria.h>
+#include <deal.II/dofs/dof_handler.h>
+#include <deal.II/dofs/dof_accessor.h>
+#include <deal.II/dofs/dof_tools.h>
+#include <deal.II/lac/constraint_matrix.h>
+#include <deal.II/lac/petsc_parallel_vector.h>
+#include <deal.II/fe/mapping_q1.h>
+#include <deal.II/fe/mapping_q_eulerian.h>
+#include <deal.II/fe/fe_q.h>
+#include <deal.II/fe/fe_system.h>
+#include <deal.II/multigrid/mg_transfer_matrix_free.h>
+#include <deal.II/numerics/vector_tools.h>
+#include <deal.II/numerics/data_out.h>
+#include <deal.II/base/multithread_info.h>
+#include <deal.II/matrix_free/matrix_free.h>
+#include <deal.II/matrix_free/fe_evaluation.h>
+#include <iostream>
+#include <vector>
+
+
+
+
+
+
+using namespace dealii;
+
+
+template <int dim>
+class Displacement : public Function<dim>
+{
+public:
+ Displacement() :
+ Function<dim>(dim)
+ {}
+
+ double value (const Point<dim> &p,
+ const unsigned int component) const
+ {
+ return (0.1 + 2.*component) + (0.2 + 3.*component) * p[component];
+ }
+
+ template <typename NumberType>
+ Tensor<1,dim, VectorizedArray<NumberType> >
+ shift_value(const Point<dim, VectorizedArray<NumberType>> &p_vec) const
+ {
+ Tensor<1,dim, VectorizedArray<NumberType>> shift_vec;
+ Point<dim> p;
+ for (unsigned int v = 0; v < VectorizedArray<NumberType>::n_array_elements; ++v)
+ {
+ for (unsigned int d = 0; d < dim; ++d)
+ p[d] = p_vec[d][v];
+
+ for (unsigned int d = 0; d < dim; ++d)
+ shift_vec[d][v] = this->value(p,d);
+ }
+
+ return shift_vec;
+
+ }
+};
+
+
+template <int dim, int fe_degree=2, int n_q_points=fe_degree+1, typename NumberType=double, typename LevelNumberType=NumberType>
+void test (const unsigned int n_ref = 0)
+{
+ Displacement<dim> displacement_function;
+ const unsigned int euler_fe_degree=2;
+
+ deallog << "dim=" << dim << std::endl;
+ MPI_Comm mpi_communicator(MPI_COMM_WORLD);
+ unsigned int myid = Utilities::MPI::this_mpi_process (mpi_communicator);
+ unsigned int numproc = Utilities::MPI::n_mpi_processes (mpi_communicator);
+
+ deallog << "numproc=" << numproc << std::endl;
+
+ parallel::distributed::Triangulation<dim>
+ triangulation (mpi_communicator,
+ Triangulation<dim>::limit_level_difference_at_vertices,
+ parallel::distributed::Triangulation<dim>::construct_multigrid_hierarchy);
+ GridGenerator::hyper_cube (triangulation, -1, 1);
+ triangulation.refine_global(3);
+
+ // do some adaptive refinement
+ for (unsigned int ref=0; ref<n_ref; ++ref)
+ {
+ for (typename Triangulation<dim>::active_cell_iterator cell=triangulation.begin_active();
+ cell != triangulation.end(); ++cell)
+ if (cell->is_locally_owned() &&
+ (cell->center().norm() < 0.5 && (cell->level() < 5 ||
+ cell->center().norm() > 0.45)
+ ||
+ (dim == 2 && cell->center().norm() > 1.2)))
+ cell->set_refine_flag();
+ triangulation.execute_coarsening_and_refinement();
+ }
+
+ FE_Q<dim> fe (fe_degree);
+ DoFHandler<dim> dof_handler (triangulation);
+ dof_handler.distribute_dofs(fe);
+ dof_handler.distribute_mg_dofs();
+
+ // quadrature for MatrixFree, not related to the degree in the
+ // FE displacement field.
+ QGauss<1> quadrature_formula(n_q_points);
+
+
+ FESystem<dim> fe_euler(FE_Q<dim>(euler_fe_degree), dim);
+ DoFHandler<dim> dof_handler_euler(triangulation);
+ dof_handler_euler.distribute_dofs(fe_euler);
+ dof_handler_euler.distribute_mg_dofs ();
+
+ const IndexSet &locally_owned_dofs_euler = dof_handler_euler.locally_owned_dofs ();
+ IndexSet locally_relevant_dofs_euler;
+ DoFTools::extract_locally_relevant_dofs (dof_handler_euler,locally_relevant_dofs_euler);
+
+ const IndexSet &locally_owned_dofs = dof_handler.locally_owned_dofs ();
+ IndexSet locally_relevant_dofs;
+ DoFTools::extract_locally_relevant_dofs (dof_handler,locally_relevant_dofs);
+
+ // constraints:
+ ConstraintMatrix constraints_euler;
+ constraints_euler.reinit (locally_relevant_dofs_euler);
+ DoFTools::make_hanging_node_constraints (dof_handler_euler, constraints_euler);
+ constraints_euler.close ();
+
+ ConstraintMatrix constraints;
+ constraints.reinit (locally_relevant_dofs);
+ DoFTools::make_hanging_node_constraints (dof_handler, constraints);
+ constraints_euler.close ();
+
+ // MG constraints:
+ MGConstrainedDoFs mg_constrained_dofs_euler;
+ mg_constrained_dofs_euler.initialize(dof_handler_euler);
+
+ // Displacement vector
+ LinearAlgebra::distributed::Vector<NumberType> displacement;
+ displacement.reinit(locally_owned_dofs_euler,
+ locally_relevant_dofs_euler,
+ mpi_communicator);
+
+ VectorTools::project<dim,LinearAlgebra::distributed::Vector<NumberType>,dim>
+ (dof_handler_euler,
+ constraints_euler,
+ QGauss<dim>(n_q_points),
+ displacement_function,
+ displacement);
+ displacement.update_ghost_values();
+
+ MGTransferMatrixFree<dim, LevelNumberType> mg_transfer_euler(mg_constrained_dofs_euler);
+ mg_transfer_euler.build(dof_handler);
+
+ // now the core of the test:
+ const unsigned int max_level = dof_handler.get_triangulation().n_global_levels()-1;
+ const unsigned int min_level = 0;
+ MGLevelObject<LinearAlgebra::distributed::Vector<LevelNumberType>> displacement_level(min_level, max_level);
+ mg_transfer_euler.interpolate_to_mg(dof_handler_euler,displacement_level, displacement);
+
+ // First, check fine-level only:
+ {
+ MappingQEulerian<dim,LinearAlgebra::distributed::Vector<NumberType>>
+ euler_fine(euler_fe_degree, dof_handler_euler, displacement);
+
+
+
+ MatrixFree<dim,NumberType> matrix_free_euler;
+ typename MatrixFree<dim,NumberType>::AdditionalData data;
+ data.tasks_parallel_scheme = MatrixFree<dim,NumberType>::AdditionalData::partition_color;
+ data.mapping_update_flags = update_values | update_gradients | update_JxW_values | update_quadrature_points;
+ matrix_free_euler.reinit (euler_fine, dof_handler, constraints, quadrature_formula, data);
+
+ MatrixFree<dim,NumberType> matrix_free;
+ matrix_free.reinit (dof_handler, constraints, quadrature_formula, data);
+
+
+ // test fine-level mapping:
+ {
+ FEEvaluation<dim,fe_degree,n_q_points,1,NumberType> fe_eval_euler(matrix_free_euler);
+ FEEvaluation<dim,fe_degree,n_q_points,1,NumberType> fe_eval(matrix_free);
+ const unsigned int n_cells = matrix_free_euler.n_macro_cells();
+ Assert (matrix_free_euler.n_macro_cells() == matrix_free.n_macro_cells(),
+ ExcInternalError());
+ const unsigned int nqp = fe_eval.n_q_points;
+ for (unsigned int cell=0; cell<n_cells; ++cell)
+ {
+ fe_eval_euler.reinit(cell);
+ fe_eval.reinit(cell);
+ for (unsigned int q=0; q<nqp; ++q)
+ {
+ const auto &v1 = fe_eval_euler.quadrature_point(q);
+ const auto &qp = fe_eval.quadrature_point(q);
+ const auto v2 = qp + displacement_function.shift_value(qp);
+ VectorizedArray<NumberType> dist = v1.distance(v2);
+ for (unsigned int v = 0; v < VectorizedArray<NumberType>::n_array_elements; ++v)
+ AssertThrow (dist[v] < 1e-8,
+ ExcMessage("distance: " + std::to_string(dist[v])));
+ }
+ }
+ }
+
+ }
+
+ // now go through all GMG levels:
+ std::set<types::boundary_id> dirichlet_boundary_ids;
+ dirichlet_boundary_ids.insert(0);
+ MGConstrainedDoFs mg_constrained_dofs;
+ mg_constrained_dofs.initialize(dof_handler);
+ mg_constrained_dofs.make_zero_boundary_constraints(dof_handler,dirichlet_boundary_ids);
+
+ for (unsigned int level = min_level; level <= max_level; ++level)
+ {
+ typename MatrixFree<dim,LevelNumberType>::AdditionalData mg_additional_data;
+ mg_additional_data.tasks_parallel_scheme = MatrixFree<dim,LevelNumberType>::AdditionalData::partition_color;
+ mg_additional_data.level_mg_handler = level;
+ mg_additional_data.mapping_update_flags = update_values | update_gradients | update_JxW_values | update_quadrature_points;
+
+ ConstraintMatrix level_constraints;
+ IndexSet relevant_dofs;
+ DoFTools::extract_locally_relevant_level_dofs(dof_handler, level,
+ relevant_dofs);
+ level_constraints.reinit(relevant_dofs);
+ level_constraints.add_lines(mg_constrained_dofs.get_boundary_indices(level));
+ level_constraints.close();
+
+ MatrixFree<dim,LevelNumberType> mg_level_euler;
+
+ MappingQEulerian<dim,LinearAlgebra::distributed::Vector<LevelNumberType>>
+ euler_level(euler_fe_degree, dof_handler_euler, displacement_level[level], level);
+
+ mg_level_euler.reinit (euler_level, dof_handler, level_constraints, quadrature_formula,
+ mg_additional_data);
+
+ MatrixFree<dim,LevelNumberType> mg_level;
+ mg_level.reinit (dof_handler, level_constraints, quadrature_formula,
+ mg_additional_data);
+
+ // go through all cells and quadrature points:
+ {
+ FEEvaluation<dim,fe_degree,n_q_points,1,NumberType> fe_eval_euler(mg_level_euler);
+ FEEvaluation<dim,fe_degree,n_q_points,1,NumberType> fe_eval(mg_level);
+ const unsigned int n_cells = mg_level_euler.n_macro_cells();
+ Assert (mg_level_euler.n_macro_cells() == mg_level.n_macro_cells(),
+ ExcInternalError());
+ const unsigned int nqp = fe_eval.n_q_points;
+ for (unsigned int cell=0; cell<n_cells; ++cell)
+ {
+ fe_eval_euler.reinit(cell);
+ fe_eval.reinit(cell);
+ for (unsigned int q=0; q<nqp; ++q)
+ {
+ const auto &v1 = fe_eval_euler.quadrature_point(q);
+ const auto &qp = fe_eval.quadrature_point(q);
+ const auto v2 = qp + displacement_function.shift_value(qp);
+ VectorizedArray<NumberType> dist = v1.distance(v2);
+ for (unsigned int v = 0; v < VectorizedArray<NumberType>::n_array_elements; ++v)
+ AssertThrow (dist[v] < 1e-8,
+ ExcMessage("Level " + std::to_string(level) +
+ " distance: " + std::to_string(dist[v])));
+ }
+ }
+ }
+ }
+
+ deallog << "Ok" << std::endl;
+}
+
+
+
+int main (int argc, char *argv[])
+{
+ Utilities::MPI::MPI_InitFinalize mpi_initialization (argc, argv, 1);
+ MPILogInitAll log;
+
+ test<2> ();
+}
+
+