*/
template <int dim, int spacedim>
void hyper_cube (Triangulation<dim,spacedim> &tria,
- const double left = 0.,
- const double right= 1.);
+ const double left = 0.,
+ const double right= 1.);
/**
* Same as hyper_cube(), but with the difference that not only one cell is
*/
template <int dim>
void subdivided_hyper_cube (Triangulation<dim> &tria,
- const unsigned int repetitions,
- const double left = 0.,
- const double right= 1.);
+ const unsigned int repetitions,
+ const double left = 0.,
+ const double right= 1.);
/**
* Create a coordinate-parallel brick from the two diagonally opposite
void hyper_rectangle (Triangulation<dim,spacedim> &tria,
const Point<spacedim> &p1,
const Point<spacedim> &p2,
- const bool colorize = false);
+ const bool colorize = false);
/**
* Create a coordinate-parallel parallelepiped from the two diagonally
const std::vector<unsigned int> &repetitions,
const Point<dim> &p1,
const Point<dim> &p2,
- const bool colorize=false);
+ const bool colorize=false);
/**
* Like the previous function. However, here the second argument does not
*/
template <int dim>
void
- subdivided_hyper_rectangle(Triangulation<dim> &tria,
- const std::vector<std::vector<double> > &step_sizes,
- const Point<dim> &p_1,
- const Point<dim> &p_2,
- const bool colorize);
+ subdivided_hyper_rectangle (Triangulation<dim> &tria,
+ const std::vector<std::vector<double> > &step_sizes,
+ const Point<dim> &p_1,
+ const Point<dim> &p_2,
+ const bool colorize);
/**
* Like the previous function, but with the following twist: the @p
subdivided_hyper_rectangle (Triangulation<dim> &tria,
const std::vector< std::vector<double> > &spacing,
const Point<dim> &p,
- const Table<dim,types::material_id> &material_id,
- const bool colorize=false);
+ const Table<dim,types::material_id> &material_id,
+ const bool colorize=false);
/**
* A parallelogram. The first corner point is the origin. The <tt>dim</tt>
*/
template <int dim>
void
- parallelogram(Triangulation<dim> &tria,
- const Point<dim> (&corners)[dim],
- const bool colorize=false);
+ parallelogram (Triangulation<dim> &tria,
+ const Point<dim> (&corners) [dim],
+ const bool colorize=false);
/**
* @deprecated Use the other function of same name.
*/
template <int dim>
void
- parallelogram(Triangulation<dim> &tria,
- const Tensor<2,dim> &corners,
- const bool colorize=false) DEAL_II_DEPRECATED;
+ parallelogram (Triangulation<dim> &tria,
+ const Tensor<2,dim> &corners,
+ const bool colorize=false) DEAL_II_DEPRECATED;
/**
* A parallelepiped. The first corner point is the origin. The
*/
template <int dim>
void
- parallelepiped (Triangulation<dim> &tria,
- const Point<dim> (&corners) [dim],
- const bool colorize = false);
+ parallelepiped (Triangulation<dim> &tria,
+ const Point<dim> (&corners) [dim],
+ const bool colorize = false);
/**
* A subdivided parallelepiped. The first corner point is the
template <int dim>
void
subdivided_parallelepiped (Triangulation<dim> &tria,
- const unsigned int ( n_subdivisions) [dim],
+ const unsigned int (n_subdivisions) [dim],
const Point<dim> (&corners) [dim],
const bool colorize = false);
*/
template <int dim>
void enclosed_hyper_cube (Triangulation<dim> &tria,
- const double left = 0.,
- const double right= 1.,
- const double thickness = 1.,
- const bool colorize = false);
+ const double left = 0.,
+ const double right= 1.,
+ const double thickness = 1.,
+ const bool colorize = false);
/**
* Initialize the given triangulation with a hyperball, i.e. a circle or a
template <int dim>
void hyper_ball (Triangulation<dim> &tria,
const Point<dim> ¢er = Point<dim>(),
- const double radius = 1.);
+ const double radius = 1.);
/**
* This class produces a half hyper-ball around <tt>center</tt>, which
template <int dim>
void half_hyper_ball (Triangulation<dim> &tria,
const Point<dim> ¢er = Point<dim>(),
- const double radius = 1.);
+ const double radius = 1.);
/**
* Create a cylinder around the x-axis. The cylinder extends from
*/
template <int dim>
void cylinder (Triangulation<dim> &tria,
- const double radius = 1.,
- const double half_length = 1.);
+ const double radius = 1.,
+ const double half_length = 1.);
/**
* Create a cutted cone around the x-axis. The cone extends from
template <int dim>
void
truncated_cone (Triangulation<dim> &tria,
- const double radius_0 = 1.0,
- const double radius_1 = 0.5,
- const double half_length = 1.0);
+ const double radius_0 = 1.0,
+ const double radius_1 = 0.5,
+ const double half_length = 1.0);
/**
* Initialize the given triangulation with a hyper-L consisting of exactly
*/
template <int dim>
void hyper_L (Triangulation<dim> &tria,
- const double left = -1.,
- const double right= 1.);
+ const double left = -1.,
+ const double right= 1.);
/**
* Initialize the given Triangulation with a hypercube with a slit. In each
*/
template <int dim>
void hyper_cube_slit (Triangulation<dim> &tria,
- const double left = 0.,
- const double right= 1.,
- const bool colorize = false);
+ const double left = 0.,
+ const double right = 1.,
+ const bool colorize = false);
/**
* Produce a hyper-shell, the region between two spheres around
* @note The triangulation needs to be void upon calling this function.
*/
template <int dim>
- void hyper_shell (Triangulation<dim> &tria,
- const Point<dim> ¢er,
+ void hyper_shell (Triangulation<dim> &tria,
+ const Point<dim> ¢er,
const double inner_radius,
const double outer_radius,
- const unsigned int n_cells = 0,
- bool colorize = false);
+ const unsigned int n_cells = 0,
+ bool colorize = false);
/**
* Produce a half hyper-shell, i.e. the space between two circles in two
* @note The triangulation needs to be void upon calling this function.
*/
template <int dim>
- void half_hyper_shell (Triangulation<dim> &tria,
- const Point<dim> ¢er,
+ void half_hyper_shell (Triangulation<dim> &tria,
+ const Point<dim> ¢er,
const double inner_radius,
const double outer_radius,
- const unsigned int n_cells = 0,
- const bool colorize = false);
+ const unsigned int n_cells = 0,
+ const bool colorize = false);
/**
* @note The triangulation needs to be void upon calling this function.
*/
template <int dim>
- void quarter_hyper_shell (Triangulation<dim> &tria,
- const Point<dim> ¢er,
+ void quarter_hyper_shell (Triangulation<dim> &tria,
+ const Point<dim> ¢er,
const double inner_radius,
const double outer_radius,
- const unsigned int n_cells = 0,
- const bool colorize = false);
+ const unsigned int n_cells = 0,
+ const bool colorize = false);
/**
* Produce a domain that is the space between two cylinders in 3d, with
* @note The triangulation needs to be void upon calling this function.
*/
template <int dim>
- void cylinder_shell (Triangulation<dim> &tria,
+ void cylinder_shell (Triangulation<dim> &tria,
const double length,
const double inner_radius,
const double outer_radius,
- const unsigned int n_radial_cells = 0,
- const unsigned int n_axial_cells = 0);
+ const unsigned int n_radial_cells = 0,
+ const unsigned int n_axial_cells = 0);
* torus.
*/
- void torus (Triangulation<2,3> &tria,
- const double R,
- const double r);
+ void torus (Triangulation<2,3> &tria,
+ const double R,
+ const double r);
/**
* get the number 0 and the hole gets number 1.
*/
template<int dim>
- void hyper_cube_with_cylindrical_hole (Triangulation<dim> &triangulation,
- const double inner_radius = .25,
- const double outer_radius = .5,
- const double L = .5,
- const unsigned int repetition = 1,
- const bool colorize = false);
+ void hyper_cube_with_cylindrical_hole (
+ Triangulation<dim> &triangulation,
+ const double inner_radius = .25,
+ const double outer_radius = .5,
+ const double L = .5,
+ const unsigned int repetition = 1,
+ const bool colorize = false);
/**
* Produce a ring of cells in 3D that is cut open, twisted and glued
* @param R The radius of the circle, which forms the middle line of the torus containing the loop of cells. Must be greater than @p r.
* @param r The radius of the cylinder bend together as loop.
*/
- void moebius (Triangulation<3,3> &tria,
- const unsigned int n_cells,
- const unsigned int n_rotations,
- const double R,
- const double r);
+ void moebius (Triangulation<3,3> &tria,
+ const unsigned int n_cells,
+ const unsigned int n_rotations,
+ const double R,
+ const double r);
/**
* Given the two triangulations specified as the first two arguments, create
* get the next two free boundary indicators.
*/
void
- extrude_triangulation(const Triangulation<2, 2> &input,
- const unsigned int n_slices,
- const double height,
- Triangulation<3,3> &result);
+ extrude_triangulation (const Triangulation<2, 2> &input,
+ const unsigned int n_slices,
+ const double height,
+ Triangulation<3,3> &result);
/**
* This function transformes the @p Triangulation @p tria smoothly to a