]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Go a bit further.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 12 May 2008 21:26:26 +0000 (21:26 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 12 May 2008 21:26:26 +0000 (21:26 +0000)
git-svn-id: https://svn.dealii.org/trunk@16084 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-33/doc/intro.dox
deal.II/examples/step-33/step-33.cc

index f0e0cc88126418de48d6a3c4c2192cc891c0705a..319b6095f1f8f36ff18f0d346e079aaccca4ca49 100644 (file)
@@ -251,13 +251,22 @@ tends not to slow the simulation to a halt.  This, of course, is purely a heuris
 if the author's advisor heard about it, the author would likely be exiled forever from the finite
  element error estimation community.
 
-<h3> Input Deck </h3>
+<h3>Input deck, initial and boundary conditions</h3>
 
 We use an input file deck to drive the simulation.  In this way, we can alter the boundary conditions
 and other important properties of the simulation without having to recompile.  For more information on 
 the format, look at the <a href="#Results">results section</a>, where we
 describe an example input file in more detail.
 
+In previous example programs, we have usually hard-coded the initial
+and boundary conditions. In this program, we instead use the
+expression parser class FunctionParser so that we can specify a
+generic expression in the input file and have it parsed at run time &mdash;
+this way, we can change initial conditions without the need to
+recompile the program. Consequently, no classes named
+InitialConditions or BoundaryConditions will be declared in the
+program below.
+
 
 
 
index a49ae86710c2f46ccdcdaeda8de3c2e783decc6c..02a1d389351c73cb04ebcd70e46964bcfeb24ca7 100644 (file)
@@ -234,13 +234,19 @@ struct EulerEquations
       }
 
 
-                                    // On the boundaries of the domain and across hanging nodes we use
-                                    // a numerical flux function to enforce boundary conditions.  This routine
-                                    // is the basic Lax-Friedrich's flux with a stabilization parameter
-                                    // $\alpha$.
+                                    // On the boundaries of the
+                                    // domain and across hanging
+                                    // nodes we use a numerical flux
+                                    // function to enforce boundary
+                                    // conditions.  This routine is
+                                    // the basic Lax-Friedrich's flux
+                                    // with a stabilization parameter
+                                    // $\alpha$. It's form has also
+                                    // been given already in the
+                                    // introduction:
     template <typename number>
     static
-    void numerical_normal_flux(const Point<dim> &normal,
+    void numerical_normal_flux(const Point<dim>          &normal,
                               const std::vector<number> &Wplus,
                               const std::vector<number> &Wminus,
                               const double alpha,
@@ -268,127 +274,6 @@ template <int dim>
 const double EulerEquations<dim>::gas_gamma = 1.4;
 
 
-
-
-
-                                // @sect3{Initial and side condition parsing}
-                                // For the initial condition we use the expression parser function
-                                // object.
-template <int dim>
-class InitialCondition :  public FunctionParser<dim> 
-{
-  public:
-    InitialCondition ();
-    
-                                    // This function should be called after parsing, but before using
-                                    // the object.  It formalizes the expressions and initializes the
-                                    // function parser with the appropriate expressions.
-    void Init();
-
-                                    // During parsing we call this function as the initial condition
-                                    // for one of the $\mathbf{w}$ variables is encountered.
-
-    void set_ic(int _row, std::string &expr) {
-      expressions[_row] = expr;
-    }
-
-    virtual void vector_value_list (const std::vector<Point<dim> > &points,
-                                   std::vector<Vector<double> >   &value_list) const;
-  private:
-    std::vector<std::string> expressions;
-};
-
-template <int dim>
-InitialCondition<dim>::InitialCondition () :
-               FunctionParser<dim> (EulerEquations<dim>::n_components),
-                expressions(EulerEquations<dim>::n_components, "0.0")
-{}
-
-                                // Here we set up x,y,z as the variables that one should use in the input
-                                // deck to describe their initial condition.
-template<int dim>
-void InitialCondition<dim>::Init() {
-  std::map<std::string, double> constants;
-  constants["M_PI"] =  M_PI;
-  std::string variables = (dim == 2 ? "x,y" : "x,y,z");
-
-  FunctionParser<dim>::initialize(variables, expressions, constants);
-
-}
-
-template <int dim>
-void InitialCondition<dim>::vector_value_list (const std::vector<Point<dim> > &points,
-                                              std::vector<Vector<double> >   &value_list) const 
-{
-  const unsigned int n_points = points.size();
-
-  Assert (value_list.size() == n_points, 
-         ExcDimensionMismatch (value_list.size(), n_points));
-
-  for (unsigned int p=0; p<n_points; ++p)
-    InitialCondition<dim>::vector_value (points[p],
-                                        value_list[p]);
-}
-
-                                // As above, we use the expression function parser for boundary conditions.
-template <int dim>
-class SideCondition :  public FunctionParser<dim> 
-{
-  public:
-    SideCondition (int ncomp);
-    ~SideCondition ();
-
-                                    // As above.
-    void Init();
-                                    // As above.
-    void set_coeff_row(int _row_n, std::string &expr);
-    
-    virtual void vector_value_list (const std::vector<Point<dim> > &points,
-                                   std::vector<Vector<double> >   &value_list) const;
-  private:
-    std::vector<std::string> expressions;
-};
-
-template <int dim>
-SideCondition<dim>::SideCondition (int ncomp) :
-               FunctionParser<dim> (ncomp),
-                expressions(ncomp, "0.0")
-{
-}
-template <int dim>
-void SideCondition<dim>::set_coeff_row (int _row_n, std::string &expr) 
-{
-  expressions[_row_n] = expr;
-}
-
-template <int dim>
-void SideCondition<dim>::Init() {
-  std::map<std::string, double> constants;
-  constants["M_PI"] =  M_PI;
-  std::string variables = (dim == 2 ? "x,y" : "x,y,z");
-
-  FunctionParser<dim>::initialize(variables, expressions, constants);
-
-}
-
-template <int dim>
-SideCondition<dim>::~SideCondition () 
-{
-}
-
-template <int dim>
-void SideCondition<dim>::vector_value_list (const std::vector<Point<dim> > &points,
-                                           std::vector<Vector<double> >   &value_list) const 
-{
-  const unsigned int n_points = points.size();
-
-  Assert (value_list.size() == n_points, 
-         ExcDimensionMismatch (value_list.size(), n_points));
-
-  for (unsigned int p=0; p<n_points; ++p)
-    SideCondition<dim>::vector_value (points[p],
-                                     value_list[p]);
-}
                                 // @sect3{Conservation Law class}
                                 // Here we define a Conservation Law class that helps group
                                 // operations and data for our Euler equations into a manageable
@@ -470,7 +355,7 @@ class ConsLaw
     ParameterHandler prm;
                                     // Name of the mesh to read in.
     string mesh;
-    InitialCondition<dim> ic;
+    FunctionParser<dim> initial_conditions;
 
                                     // Enums for the various supported boundary conditions.
     typedef enum {INFLOW_BC = 1, OUTFLOW_BC=2, NO_PENETRATION_BC=3, PRESSURE_BC=4} bc_type;
@@ -578,10 +463,8 @@ void ConsLaw<dim>::add_boundary(unsigned int bd,
 template <int dim>
 void ConsLaw<dim>::initialize() {
   VectorTools::interpolate(dof_handler,
-                           ic, solution);
-  VectorTools::interpolate(dof_handler,
-                           ic, nlsolution);
-
+                           initial_conditions, solution);
+  nlsolution = solution;
 }
 
                                 // @sect3{Assembly}
@@ -1228,6 +1111,7 @@ ConsLaw<dim>::ConsLaw ()
                 T(0),
                 dT(0.05),
                 TF(10),
+               initial_conditions (EulerEquations<dim>::n_components),
                 is_stationary(false),
                 Map(NULL),
                 Matrix(NULL),
@@ -1877,12 +1761,15 @@ void ConsLaw<dim>::load_parameters(const char *infile){
 
                                     // Define a parser for every boundary, though it may be
                                     // unused.
-    SideCondition<dim> *sd = new SideCondition<dim>(EulerEquations<dim>::n_components);
+    FunctionParser<dim> *sd = new FunctionParser<dim>(EulerEquations<dim>::n_components);
+
+    std::vector<std::string> expressions(EulerEquations<dim>::n_components, "0.0");
+    
     char bd[512];
     std::sprintf(bd, "boundary_%d", b);
     prm.enter_subsection(bd);
 
-    const std::string &nopen = prm.get("no penetration");
+    const std::string nopen = prm.get("no penetration");
 
                                     // Determine how each component is handled.
     for (unsigned int di = 0; di < EulerEquations<dim>::n_components; di++) {
@@ -1896,29 +1783,35 @@ void ConsLaw<dim>::load_parameters(const char *infile){
         flags[di] = NO_PENETRATION_BC;
       } else if (btype == "inflow") {
         flags[di] = INFLOW_BC;
-        sd->set_coeff_row(di, var_value);  
+        expressions[di] = var_value;
       } else if (btype == "pressure") {
         flags[di] = PRESSURE_BC;
-        sd->set_coeff_row(di, var_value);  
+        expressions[di] = var_value;
       }
     } 
     prm.leave_subsection();
 
                                     // Add the boundary condition to the law.
-    sd->Init();
+    sd->initialize (FunctionParser<dim>::default_variable_names(),
+                   expressions,
+                   std::map<std::string, double>());
     add_boundary(b, flags, sd);
   }
 
                                   // Initial conditions.
   prm.enter_subsection("initial condition");
-  for (unsigned int di = 0; di < EulerEquations<dim>::n_components; di++) {
-    char var[512];
-
-    std::sprintf(var, "w_%d value", di);
-    std::string var_value = prm.get(var);
-    ic.set_ic(di, var_value);  
+  {
+    std::vector<std::string> expressions;
+    for (unsigned int di = 0; di < EulerEquations<dim>::n_components; di++)
+      {
+       char var[512];
+       std::sprintf(var, "w_%d value", di);
+       expressions.push_back (prm.get(var));
+      }
+    initial_conditions.initialize (FunctionParser<dim>::default_variable_names(),
+                                  expressions,
+                                  std::map<std::string, double>());
   }
-  ic.Init();
   prm.leave_subsection();
 
                                   // The linear solver.
@@ -2138,13 +2031,18 @@ void ConsLaw<dim>::run ()
 
                                 // The following ``main'' function is
                                 // similar to previous examples and
-                                // need not to be commented on.
+                                // need not to be commented on. Note
+                                // that the program aborts if no
+                                // input file name is given on the
+                                // command line.
 int main (int argc, char *argv[]) 
 {
-  if (argc != 2) {
-    std::cout << "Usage:" << argv[0] << " infile" << std::endl;
-    std::exit(1);
-  }
+  if (argc != 2)
+    {
+      std::cout << "Usage:" << argv[0] << " infile" << std::endl;
+      std::exit(1);
+    }
+  
   try
     {
       ConsLaw<2> cons;

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.