]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Using Trilinos vectors and sparse-matrices
authorJoerg Frohne <frohne@mathematik.uni-siegen.de>
Wed, 19 Oct 2011 15:38:14 +0000 (15:38 +0000)
committerJoerg Frohne <frohne@mathematik.uni-siegen.de>
Wed, 19 Oct 2011 15:38:14 +0000 (15:38 +0000)
git-svn-id: https://svn.dealii.org/trunk@24642 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-41/step-41.cc [deleted file]

diff --git a/deal.II/examples/step-41/step-41.cc b/deal.II/examples/step-41/step-41.cc
deleted file mode 100644 (file)
index 6ae88cb..0000000
+++ /dev/null
@@ -1,940 +0,0 @@
-/* $Id: step-4.cc 24093 2011-08-16 13:58:12Z bangerth $ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */
-
-/*    $Id: step-4.cc 24093 2011-08-16 13:58:12Z bangerth $       */
-/*                                                                */
-/*    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 by the deal.II authors */
-/*                                                                */
-/*    This file is subject to QPL and may not be  distributed     */
-/*    without copyright and license information. Please refer     */
-/*    to the file deal.II/doc/license.html for the  text  and     */
-/*    further information on this license.                        */
-
-                                 // @sect3{Include files}
-
-                                // The first few (many?) include
-                                // files have already been used in
-                                // the previous example, so we will
-                                // not explain their meaning here
-                                // again.
-#include <deal.II/grid/tria.h>
-#include <deal.II/dofs/dof_handler.h>
-#include <deal.II/grid/grid_generator.h>
-#include <deal.II/grid/tria_accessor.h>
-#include <deal.II/grid/tria_iterator.h>
-#include <deal.II/dofs/dof_accessor.h>
-#include <deal.II/fe/fe_q.h>
-#include <deal.II/dofs/dof_tools.h>
-#include <deal.II/fe/fe_values.h>
-#include <deal.II/base/quadrature_lib.h>
-#include <deal.II/base/function.h>
-#include <deal.II/numerics/vectors.h>
-#include <deal.II/numerics/matrices.h>
-#include <deal.II/lac/vector.h>
-#include <deal.II/lac/full_matrix.h>
-#include <deal.II/lac/sparse_matrix.h>
-#include <deal.II/lac/compressed_sparsity_pattern.h>
-#include <deal.II/lac/solver_cg.h>
-#include <deal.II/lac/solver_bicgstab.h>
-#include <deal.II/lac/precondition.h>
-
-#include <deal.II/numerics/data_out.h>
-#include <fstream>
-#include <iostream>
-#include <list>
-
-                                // This is new, however: in the previous
-                                // example we got some unwanted output from
-                                // the linear solvers. If we want to suppress
-                                // it, we have to include this file and add a
-                                // single line somewhere to the program (see
-                                // the main() function below for that):
-#include <deal.II/base/logstream.h>
-
-                                // The final step, as in previous
-                                // programs, is to import all the
-                                // deal.II class and function names
-                                // into the global namespace:
-using namespace dealii;
-
-                                 // @sect3{The <code>Step4</code> class template}
-
-                                // This is again the same
-                                // <code>Step4</code> class as in the
-                                // previous example. The only
-                                // difference is that we have now
-                                // declared it as a class with a
-                                // template parameter, and the
-                                // template parameter is of course
-                                // the spatial dimension in which we
-                                // would like to solve the Laplace
-                                // equation. Of course, several of
-                                // the member variables depend on
-                                // this dimension as well, in
-                                // particular the Triangulation
-                                // class, which has to represent
-                                // quadrilaterals or hexahedra,
-                                // respectively. Apart from this,
-                                // everything is as before.
-template <int dim>
-class Step4 
-{
-  public:
-    Step4 ();
-    void run ();
-    
-  private:
-    void make_grid ();
-    void setup_system();
-    void assemble_system ();
-    void projection_active_set ();
-    void solve ();
-    void output_results (Vector<double> vector_to_plot, const std::string& title) const;
-
-    Triangulation<dim>   triangulation;
-    FE_Q<dim>            fe;
-    DoFHandler<dim>      dof_handler;
-
-    ConstraintMatrix     constraints;
-    
-    SparsityPattern      sparsity_pattern;
-    SparseMatrix<double> system_matrix;
-    SparseMatrix<double> system_matrix_complete;
-
-    Vector<double>       solution;
-    Vector<double>       system_rhs;
-    Vector<double>       system_rhs_complete;
-    Vector<double>       resid_vector;
-    Vector<double>       active_set;
-
-    std::map<unsigned int,double> boundary_values;
-};
-
-
-                                 // @sect3{Right hand side and boundary values}
-
-                                // In the following, we declare two more
-                                // classes denoting the right hand side and
-                                // the non-homogeneous Dirichlet boundary
-                                // values. Both are functions of a
-                                // dim-dimensional space variable, so we
-                                // declare them as templates as well.
-                                //
-                                // Each of these classes is derived from a
-                                // common, abstract base class Function,
-                                // which declares the common interface which
-                                // all functions have to follow. In
-                                // particular, concrete classes have to
-                                // overload the <code>value</code> function,
-                                // which takes a point in dim-dimensional
-                                // space as parameters and shall return the
-                                // value at that point as a
-                                // <code>double</code> variable.
-                                //
-                                // The <code>value</code> function takes a
-                                // second argument, which we have here named
-                                // <code>component</code>: This is only meant
-                                // for vector valued functions, where you may
-                                // want to access a certain component of the
-                                // vector at the point
-                                // <code>p</code>. However, our functions are
-                                // scalar, so we need not worry about this
-                                // parameter and we will not use it in the
-                                // implementation of the functions. Inside
-                                // the library's header files, the Function
-                                // base class's declaration of the
-                                // <code>value</code> function has a default
-                                // value of zero for the component, so we
-                                // will access the <code>value</code>
-                                // function of the right hand side with only
-                                // one parameter, namely the point where we
-                                // want to evaluate the function. A value for
-                                // the component can then simply be omitted
-                                // for scalar functions.
-                                //
-                                // Note that the C++ language forces
-                                // us to declare and define a
-                                // constructor to the following
-                                // classes even though they are
-                                // empty. This is due to the fact
-                                // that the base class has no default
-                                // constructor (i.e. one without
-                                // arguments), even though it has a
-                                // constructor which has default
-                                // values for all arguments.
-template <int dim>
-class RightHandSide : public Function<dim> 
-{
-  public:
-    RightHandSide () : Function<dim>() {}
-    
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
-
-
-
-template <int dim>
-class BoundaryValues : public Function<dim> 
-{
-  public:
-    BoundaryValues () : Function<dim>() {}
-    
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
-
-template <int dim>
-class Obstacle : public Function<dim> 
-{
-  public:
-    Obstacle () : Function<dim>() {}
-    
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
-
-
-
-                                // For this example, we choose as right hand
-                                // side function to function $4(x^4+y^4)$ in
-                                // 2D, or $4(x^4+y^4+z^4)$ in 3D. We could
-                                // write this distinction using an
-                                // if-statement on the space dimension, but
-                                // here is a simple way that also allows us
-                                // to use the same function in 1D (or in 4D,
-                                // if you should desire to do so), by using a
-                                // short loop.  Fortunately, the compiler
-                                // knows the size of the loop at compile time
-                                // (remember that at the time when you define
-                                // the template, the compiler doesn't know
-                                // the value of <code>dim</code>, but when it later
-                                // encounters a statement or declaration
-                                // <code>RightHandSide@<2@></code>, it will take the
-                                // template, replace all occurrences of dim
-                                // by 2 and compile the resulting function);
-                                // in other words, at the time of compiling
-                                // this function, the number of times the
-                                // body will be executed is known, and the
-                                // compiler can optimize away the overhead
-                                // needed for the loop and the result will be
-                                // as fast as if we had used the formulas
-                                // above right away.
-                                //
-                                // The last thing to note is that a
-                                // <code>Point@<dim@></code> denotes a point in
-                                // dim-dimensionsal space, and its individual
-                                // components (i.e. $x$, $y$,
-                                // ... coordinates) can be accessed using the
-                                // () operator (in fact, the [] operator will
-                                // work just as well) with indices starting
-                                // at zero as usual in C and C++.
-template <int dim>
-double RightHandSide<dim>::value (const Point<dim> &p,
-                                 const unsigned int /*component*/) const 
-{
-  double return_value = 0;
-  // for (unsigned int i=0; i<dim; ++i)
-  //   return_value += 4*std::pow(p(i), 4);
-
-  return return_value;
-}
-
-
-                                // As boundary values, we choose x*x+y*y in
-                                // 2D, and x*x+y*y+z*z in 3D. This happens to
-                                // be equal to the square of the vector from
-                                // the origin to the point at which we would
-                                // like to evaluate the function,
-                                // irrespective of the dimension. So that is
-                                // what we return:
-template <int dim>
-double BoundaryValues<dim>::value (const Point<dim> &p,
-                                  const unsigned int /*component*/) const 
-{
-  double return_value = 0;
-
-  return return_value;
-}
-
-template <int dim>
-double Obstacle<dim>::value (const Point<dim> &p,
-                            const unsigned int /*component*/) const 
-{
-  return 2.0*p.square() - 0.5;
-}
-
-
-
-                                 // @sect3{Implementation of the <code>Step4</code> class}
-
-                                 // Next for the implementation of the class
-                                 // template that makes use of the functions
-                                 // above. As before, we will write everything
-                                 // as templates that have a formal parameter
-                                 // <code>dim</code> that we assume unknown at
-                                 // the time we define the template
-                                 // functions. Only later, the compiler will
-                                 // find a declaration of
-                                 // <code>Step4@<2@></code> (in the
-                                 // <code>main</code> function, actually) and
-                                 // compile the entire class with
-                                 // <code>dim</code> replaced by 2, a process
-                                 // referred to as `instantiation of a
-                                 // template'. When doing so, it will also
-                                 // replace instances of
-                                 // <code>RightHandSide@<dim@></code> by
-                                 // <code>RightHandSide@<2@></code> and
-                                 // instantiate the latter class from the
-                                 // class template.
-                                 //
-                                 // In fact, the compiler will also find a
-                                 // declaration
-                                 // <code>Step4@<3@></code> in
-                                 // <code>main()</code>. This will cause it to
-                                 // again go back to the general
-                                 // <code>Step4@<dim@></code>
-                                 // template, replace all occurrences of
-                                 // <code>dim</code>, this time by 3, and
-                                 // compile the class a second time. Note that
-                                 // the two instantiations
-                                 // <code>Step4@<2@></code> and
-                                 // <code>Step4@<3@></code> are
-                                 // completely independent classes; their only
-                                 // common feature is that they are both
-                                 // instantiated from the same general
-                                 // template, but they are not convertible
-                                 // into each other, for example, and share no
-                                 // code (both instantiations are compiled
-                                 // completely independently).
-
-
-                                 // @sect4{Step4::Step4}
-
-                                // After this introduction, here is the
-                                // constructor of the <code>Step4</code>
-                                // class. It specifies the desired polynomial
-                                // degree of the finite elements and
-                                // associates the DoFHandler to the
-                                // triangulation just as in the previous
-                                // example program, step-3:
-template <int dim>
-Step4<dim>::Step4 ()
-               :
-                fe (1),
-               dof_handler (triangulation)
-{}
-
-
-                                 // @sect4{Step4::make_grid}
-
-                                // Grid creation is something inherently
-                                // dimension dependent. However, as long as
-                                // the domains are sufficiently similar in 2D
-                                // or 3D, the library can abstract for
-                                // you. In our case, we would like to again
-                                // solve on the square $[-1,1]\times [-1,1]$
-                                // in 2D, or on the cube $[-1,1] \times
-                                // [-1,1] \times [-1,1]$ in 3D; both can be
-                                // termed GridGenerator::hyper_cube(), so we may
-                                // use the same function in whatever
-                                // dimension we are. Of course, the functions
-                                // that create a hypercube in two and three
-                                // dimensions are very much different, but
-                                // that is something you need not care
-                                // about. Let the library handle the
-                                // difficult things.
-template <int dim>
-void Step4<dim>::make_grid ()
-{
-  GridGenerator::hyper_cube (triangulation, -1, 1);
-  triangulation.refine_global (6);
-  
-  std::cout << "   Number of active cells: "
-           << triangulation.n_active_cells()
-           << std::endl
-           << "   Total number of cells: "
-           << triangulation.n_cells()
-           << std::endl;
-}
-
-                                 // @sect4{Step4::setup_system}
-
-                                // This function looks
-                                // exactly like in the previous example,
-                                // although it performs actions that in their
-                                // details are quite different if
-                                // <code>dim</code> happens to be 3. The only
-                                // significant difference from a user's
-                                // perspective is the number of cells
-                                // resulting, which is much higher in three
-                                // than in two space dimensions!
-template <int dim>
-void Step4<dim>::setup_system ()
-{
-  dof_handler.distribute_dofs (fe);
-
-  std::cout << "   Number of degrees of freedom: "
-           << dof_handler.n_dofs()
-           << std::endl;
-
-  CompressedSparsityPattern c_sparsity(dof_handler.n_dofs());
-  DoFTools::make_sparsity_pattern (dof_handler, c_sparsity, constraints, false);
-//   c_sparsity.compress ();
-  sparsity_pattern.copy_from(c_sparsity);
-  
-  system_matrix.reinit (sparsity_pattern);
-  system_matrix_complete.reinit (sparsity_pattern);
-  
-  solution.reinit (dof_handler.n_dofs());
-  system_rhs.reinit (dof_handler.n_dofs());
-  system_rhs_complete.reinit (dof_handler.n_dofs());
-  resid_vector.reinit (dof_handler.n_dofs());
-  active_set.reinit (dof_handler.n_dofs());
-}
-
-
-                                 // @sect4{Step4::assemble_system}
-
-                                // Unlike in the previous example, we
-                                // would now like to use a
-                                // non-constant right hand side
-                                // function and non-zero boundary
-                                // values. Both are tasks that are
-                                // readily achieved with a only a few
-                                // new lines of code in the
-                                // assemblage of the matrix and right
-                                // hand side.
-                                //
-                                // More interesting, though, is the
-                                // way we assemble matrix and right
-                                // hand side vector dimension
-                                // independently: there is simply no
-                                // difference to the 
-                                // two-dimensional case. Since the
-                                // important objects used in this
-                                // function (quadrature formula,
-                                // FEValues) depend on the dimension
-                                // by way of a template parameter as
-                                // well, they can take care of
-                                // setting up properly everything for
-                                // the dimension for which this
-                                // function is compiled. By declaring
-                                // all classes which might depend on
-                                // the dimension using a template
-                                // parameter, the library can make
-                                // nearly all work for you and you
-                                // don't have to care about most
-                                // things.
-template <int dim>
-void Step4<dim>::assemble_system () 
-{  
-  QGauss<dim>  quadrature_formula(2);
-
-                                  // We wanted to have a non-constant right
-                                  // hand side, so we use an object of the
-                                  // class declared above to generate the
-                                  // necessary data. Since this right hand
-                                  // side object is only used locally in the
-                                  // present function, we declare it here as
-                                  // a local variable:
-  const RightHandSide<dim> right_hand_side;
-
-                                  // Compared to the previous example, in
-                                  // order to evaluate the non-constant right
-                                  // hand side function we now also need the
-                                  // quadrature points on the cell we are
-                                  // presently on (previously, we only
-                                  // required values and gradients of the
-                                  // shape function from the
-                                  // FEValues object, as well as
-                                  // the quadrature weights,
-                                  // FEValues::JxW() ). We can tell the
-                                  // FEValues object to do for
-                                  // us by also giving it the
-                                  // #update_quadrature_points
-                                  // flag:
-  FEValues<dim> fe_values (fe, quadrature_formula, 
-                          update_values   | update_gradients |
-                           update_quadrature_points | update_JxW_values);
-
-                                  // We then again define a few
-                                  // abbreviations. The values of these
-                                  // variables of course depend on the
-                                  // dimension which we are presently
-                                  // using. However, the FE and Quadrature
-                                  // classes do all the necessary work for
-                                  // you and you don't have to care about the
-                                  // dimension dependent parts:
-  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int   n_q_points    = quadrature_formula.size();
-
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       cell_rhs (dofs_per_cell);
-
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-                                   // Next, we again have to loop over all
-                                  // cells and assemble local contributions.
-                                  // Note, that a cell is a quadrilateral in
-                                  // two space dimensions, but a hexahedron
-                                  // in 3D. In fact, the
-                                  // <code>active_cell_iterator</code> data
-                                  // type is something different, depending
-                                  // on the dimension we are in, but to the
-                                  // outside world they look alike and you
-                                  // will probably never see a difference
-                                  // although the classes that this typedef
-                                  // stands for are in fact completely
-                                  // unrelated:
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-  
-  for (; cell!=endc; ++cell)
-    {
-      fe_values.reinit (cell);
-      cell_matrix = 0;
-      cell_rhs = 0;
-
-                                      // Now we have to assemble the
-                                      // local matrix and right hand
-                                      // side. This is done exactly
-                                      // like in the previous
-                                      // example, but now we revert
-                                      // the order of the loops
-                                      // (which we can safely do
-                                      // since they are independent
-                                      // of each other) and merge the
-                                      // loops for the local matrix
-                                      // and the local vector as far
-                                      // as possible to make
-                                      // things a bit faster.
-                                       //
-                                       // Assembling the right hand side
-                                       // presents the only significant
-                                       // difference to how we did things in
-                                       // step-3: Instead of using a constant
-                                       // right hand side with value 1, we use
-                                       // the object representing the right
-                                       // hand side and evaluate it at the
-                                       // quadrature points:
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-       for (unsigned int i=0; i<dofs_per_cell; ++i)
-         {
-           for (unsigned int j=0; j<dofs_per_cell; ++j)
-             cell_matrix(i,j) += (fe_values.shape_grad (i, q_point) *
-                                  fe_values.shape_grad (j, q_point) *
-                                  fe_values.JxW (q_point));
-
-           cell_rhs(i) += (fe_values.shape_value (i, q_point) *
-                           right_hand_side.value (fe_values.quadrature_point (q_point)) *
-                           fe_values.JxW (q_point));
-         }
-                                       // As a final remark to these loops:
-                                       // when we assemble the local
-                                       // contributions into
-                                       // <code>cell_matrix(i,j)</code>, we
-                                       // have to multiply the gradients of
-                                       // shape functions $i$ and $j$ at point
-                                       // q_point and multiply it with the
-                                       // scalar weights JxW. This is what
-                                       // actually happens:
-                                       // <code>fe_values.shape_grad(i,q_point)</code>
-                                       // returns a <code>dim</code>
-                                       // dimensional vector, represented by a
-                                       // <code>Tensor@<1,dim@></code> object,
-                                       // and the operator* that multiplies it
-                                       // with the result of
-                                       // <code>fe_values.shape_grad(j,q_point)</code>
-                                       // makes sure that the <code>dim</code>
-                                       // components of the two vectors are
-                                       // properly contracted, and the result
-                                       // is a scalar floating point number
-                                       // that then is multiplied with the
-                                       // weights. Internally, this operator*
-                                       // makes sure that this happens
-                                       // correctly for all <code>dim</code>
-                                       // components of the vectors, whether
-                                       // <code>dim</code> be 2, 3, or any
-                                       // other space dimension; from a user's
-                                       // perspective, this is not something
-                                       // worth bothering with, however,
-                                       // making things a lot simpler if one
-                                       // wants to write code dimension
-                                       // independently.
-      
-                                      // With the local systems assembled,
-                                      // the transfer into the global matrix
-                                      // and right hand side is done exactly
-                                      // as before, but here we have again
-                                      // merged some loops for efficiency:
-      cell->get_dof_indices (local_dof_indices);
-//       for (unsigned int i=0; i<dofs_per_cell; ++i)
-//     {
-//       for (unsigned int j=0; j<dofs_per_cell; ++j)
-//         system_matrix.add (local_dof_indices[i],
-//                            local_dof_indices[j],
-//                            cell_matrix(i,j));
-//       
-//       system_rhs(local_dof_indices[i]) += cell_rhs(i);
-//     }
-       
-      constraints.distribute_local_to_global (cell_matrix, cell_rhs,
-                                              local_dof_indices,
-                                              system_matrix, system_rhs);
-    }
-  
-//                                // As the final step in this function, we
-//                                // wanted to have non-homogeneous boundary
-//                                // values in this example, unlike the one
-//                                // before. This is a simple task, we only
-//                                // have to replace the
-//                                // ZeroFunction used there by
-//                                // an object of the class which describes
-//                                // the boundary values we would like to use
-//                                // (i.e. the <code>BoundaryValues</code>
-//                                // class declared above):
-// 
-//   MatrixTools::apply_boundary_values (boundary_values,
-//                                   system_matrix,
-//                                   solution,
-//                                   system_rhs);
-}
-
-                                 // @sect4{Step4::projection_active_set}
-
-                                // Projection and updating of the active set
-                                 // for the dofs which penetrates the obstacle.
-template <int dim>
-void Step4<dim>::projection_active_set ()
-{
-//   const Obstacle<dim>     obstacle;
-//   std::vector<bool>       vertex_touched (triangulation.n_vertices(),
-//                                 false);
-// 
-//   boundary_values.clear ();
-//   VectorTools::interpolate_boundary_values (dof_handler,
-//                                         0,
-//                                         BoundaryValues<dim>(),
-//                                         boundary_values);
-// 
-//   typename DoFHandler<dim>::active_cell_iterator
-//     cell = dof_handler.begin_active(),
-//     endc = dof_handler.end();
-// 
-//   active_set = 0;
-//   unsigned int n = 0;
-//   for (; cell!=endc; ++cell)
-//     for (unsigned int v=0; v<GeometryInfo<2>::vertices_per_cell; ++v)
-//       {
-//     if (vertex_touched[cell->vertex_index(v)] == false)
-//       {
-//         vertex_touched[cell->vertex_index(v)] = true;
-//         unsigned int index_x = cell->vertex_dof_index (v,0);
-//         // unsigned int index_y = cell->vertex_dof_index (v,1);
-// 
-//         Point<dim> point (cell->vertex (v)[0], cell->vertex (v)[1]);
-//         double obstacle_value = obstacle.value (point);
-//         if (solution (index_x) >= obstacle_value && resid_vector (index_x) <= 0)
-//           {
-//             solution (index_x) = obstacle_value;
-//             boundary_values.insert (std::pair<unsigned int, double>(index_x, obstacle_value));
-//             active_set (index_x) = 1;
-//             n += 1;
-//           }
-//       }
-//       }
-//   std::cout<< "Number of active contraints: " << n <<std::endl;
-  
-  const Obstacle<dim>     obstacle;
-  std::vector<bool>       vertex_touched (triangulation.n_vertices(),
-                                   false);
-  typename DoFHandler<dim>::active_cell_iterator
-  cell = dof_handler.begin_active(),
-  endc = dof_handler.end();
-
-  constraints.clear();
-  active_set = 0;
-  for (; cell!=endc; ++cell)
-    for (unsigned int v=0; v<GeometryInfo<2>::vertices_per_cell; ++v)
-      {
-       unsigned int index_x = cell->vertex_dof_index (v,0);
-
-       Point<dim> point (cell->vertex (v)[0], cell->vertex (v)[1]);
-       double obstacle_value = obstacle.value (point);
-       if (solution (index_x) >= obstacle_value && resid_vector (index_x) <= 0)
-       {
-         constraints.add_line (index_x);
-         constraints.set_inhomogeneity (index_x, obstacle_value);
-         solution (index_x) = 0;
-         active_set (index_x) = 1;
-       }
-      }
-      
-  VectorTools::interpolate_boundary_values (dof_handler,
-                                           0,
-                                           BoundaryValues<dim>(),
-                                           constraints);
-  constraints.close ();
-}
-
-                                 // @sect4{Step4::solve}
-
-                                // Solving the linear system of
-                                // equations is something that looks
-                                // almost identical in most
-                                // programs. In particular, it is
-                                // dimension independent, so this
-                                // function is copied verbatim from the
-                                // previous example.
-template <int dim>
-void Step4<dim>::solve () 
-{
-  ReductionControl        reduction_control (100, 1e-12, 1e-2);
-  SolverCG<>              solver (reduction_control);
-  SolverBicgstab<>        solver_bicgstab (reduction_control);
-  PreconditionSSOR<SparseMatrix<double> > precondition;
-  precondition.initialize (system_matrix, 1.2);
-
-  solver.solve (system_matrix, solution, system_rhs, precondition);
-
-  std::cout << "Initial error: " << reduction_control.initial_value() <<std::endl;
-  std::cout << "   " << reduction_control.last_step()
-           << " CG iterations needed to obtain convergence with an error: "
-           <<  reduction_control.last_value()
-           << std::endl;
-
-  constraints.distribute (solution);
-}
-
-                                 // @sect4{Step4::output_results}
-
-                                // This function also does what the
-                                // respective one did in step-3. No changes
-                                // here for dimension independence either.
-                                 //
-                                 // The only difference to the previous
-                                 // example is that we want to write output in
-                                 // VTK format, rather than for gnuplot. VTK
-                                 // format is currently the most widely used
-                                 // one and is supported by a number of
-                                 // visualization programs such as Visit and
-                                 // Paraview (for ways to obtain these
-                                 // programs see the ReadMe file of
-                                 // deal.II). To write data in this format, we
-                                 // simply replace the
-                                 // <code>data_out.write_gnuplot</code> call
-                                 // by <code>data_out.write_vtk</code>.
-                                 //
-                                 // Since the program will run both 2d and 3d
-                                 // versions of the laplace solver, we use the
-                                 // dimension in the filename to generate
-                                 // distinct filenames for each run (in a
-                                 // better program, one would check whether
-                                 // <code>dim</code> can have other values
-                                 // than 2 or 3, but we neglect this here for
-                                 // the sake of brevity).
-template <int dim>
-void Step4<dim>::output_results (Vector<double> vector_to_plot, const std::string& title) const
-{
-  DataOut<dim> data_out;
-
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (vector_to_plot, "vector_to_plot");
-
-  data_out.build_patches ();
-
-  std::ofstream output_vtk (dim == 2 ?
-                           (title + ".vtk").c_str () :
-                           (title + ".vtk").c_str ());
-  data_out.write_vtk (output_vtk);
-
-  std::ofstream output_gnuplot (dim == 2 ?
-                               (title + ".gp").c_str () :
-                               (title + ".gp").c_str ());
-  data_out.write_gnuplot (output_gnuplot);
-}
-
-
-
-                                 // @sect4{Step4::run}
-
-                                 // This is the function which has the
-                                // top-level control over
-                                // everything. Apart from one line of
-                                // additional output, it is the same
-                                // as for the previous example.
-template <int dim>
-void Step4<dim>::run () 
-{
-  std::cout << "Solving problem in " << dim << " space dimensions." << std::endl;
-
-  make_grid();
-  setup_system ();
-
-  constraints.clear ();
-  VectorTools::interpolate_boundary_values (dof_handler,
-                                           0,
-                                           BoundaryValues<dim>(),
-                                           constraints);
-  constraints.close ();
-  ConstraintMatrix constraints_complete (constraints);
-  assemble_system ();
-
-  system_matrix_complete.copy_from (system_matrix);
-  system_rhs_complete = system_rhs;
-
-  std::cout<< "Update Active Set:" <<std::endl;
-  solution = 0;
-  resid_vector = 0;
-  projection_active_set ();
-
-  for (unsigned int i=0; i<solution.size (); i++)
-    {
-//       std::ostringstream filename_matrix;
-//       filename_matrix << "system_matrix_";
-//       filename_matrix << i;
-//       filename_matrix << ".dat";
-//       std::ofstream matrix (filename_matrix.str ().c_str());
-
-      std::cout<< "Assemble System:" <<std::endl;
-      system_matrix = 0;
-      system_rhs = 0;
-      assemble_system ();
-//       constraints.print (matrix);
-//       system_matrix.print (matrix);
-//       for (unsigned int k=0; k<solution.size (); k++)
-//     std::cout<< system_rhs (k) << ", "
-//              << solution (k) << ", "
-//              << system_rhs.l2_norm ()
-//              <<std::endl;
-      std::cout<< "Solve System" <<std::endl;
-      solve ();
-
-      std::ostringstream filename_solution;
-      filename_solution << "solution_";
-      filename_solution << i;
-      output_results (solution, filename_solution.str ());
-
-      resid_vector = 0;
-      resid_vector -= system_rhs_complete;
-      system_matrix_complete.vmult_add  (resid_vector, solution);
-
-      for (unsigned int k = 0; k<solution.size (); k++)
-       if (resid_vector (k) < 0)
-         resid_vector (k) = 0;
-
-      std::ostringstream filename_residuum;
-      filename_residuum << "residuum_";
-      filename_residuum << i;
-      output_results (resid_vector, filename_residuum.str ());
-
-      std::ostringstream filename_active_set;
-      filename_active_set << "active_set_";
-      filename_active_set << i;
-      output_results (active_set, filename_active_set.str ());
-
-      double resid = resid_vector.l2_norm ();
-      std::cout<< i << ". Residuum = " << resid <<std::endl;
-      if (resid < 1e-10)
-       {
-         break;
-       }
-
-      std::cout<< "Update Active Set:"<<std::endl;
-      projection_active_set ();
-    }
-}
-
-
-                                 // @sect3{The <code>main</code> function}
-
-                                // And this is the main function. It also
-                                // looks mostly like in step-3, but if you
-                                // look at the code below, note how we first
-                                // create a variable of type
-                                // <code>Step4@<2@></code> (forcing
-                                // the compiler to compile the class template
-                                // with <code>dim</code> replaced by
-                                // <code>2</code>) and run a 2d simulation,
-                                // and then we do the whole thing over in 3d.
-                                //
-                                // In practice, this is probably not what you
-                                // would do very frequently (you probably
-                                // either want to solve a 2d problem, or one
-                                // in 3d, but not both at the same
-                                // time). However, it demonstrates the
-                                // mechanism by which we can simply change
-                                // which dimension we want in a single place,
-                                // and thereby force the compiler to
-                                // recompile the dimension independent class
-                                // templates for the dimension we
-                                // request. The emphasis here lies on the
-                                // fact that we only need to change a single
-                                // place. This makes it rather trivial to
-                                // debug the program in 2d where computations
-                                // are fast, and then switch a single place
-                                // to a 3 to run the much more computing
-                                // intensive program in 3d for `real'
-                                // computations.
-                                //
-                                // Each of the two blocks is enclosed in
-                                // braces to make sure that the
-                                // <code>laplace_problem_2d</code> variable
-                                // goes out of scope (and releases the memory
-                                // it holds) before we move on to allocate
-                                // memory for the 3d case. Without the
-                                // additional braces, the
-                                // <code>laplace_problem_2d</code> variable
-                                // would only be destroyed at the end of the
-                                // function, i.e. after running the 3d
-                                // problem, and would needlessly hog memory
-                                // while the 3d run could actually use it.
-                                 //
-                                 // Finally, the first line of the function is
-                                 // used to suppress some output.  Remember
-                                 // that in the previous example, we had the
-                                 // output from the linear solvers about the
-                                 // starting residual and the number of the
-                                 // iteration where convergence was
-                                 // detected. This can be suppressed through
-                                 // the <code>deallog.depth_console(0)</code>
-                                 // call.
-                                 //
-                                 // The rationale here is the following: the
-                                 // deallog (i.e. deal-log, not de-allog)
-                                 // variable represents a stream to which some
-                                 // parts of the library write output. It
-                                 // redirects this output to the console and
-                                 // if required to a file. The output is
-                                 // nested in a way so that each function can
-                                 // use a prefix string (separated by colons)
-                                 // for each line of output; if it calls
-                                 // another function, that may also use its
-                                 // prefix which is then printed after the one
-                                 // of the calling function. Since output from
-                                 // functions which are nested deep below is
-                                 // usually not as important as top-level
-                                 // output, you can give the deallog variable
-                                 // a maximal depth of nested output for
-                                 // output to console and file. The depth zero
-                                 // which we gave here means that no output is
-                                 // written. By changing it you can get more
-                                 // information about the innards of the
-                                 // library.
-int main () 
-{
-  deallog.depth_console (0);
-  {
-    Step4<2> laplace_problem_2d;
-    laplace_problem_2d.run ();
-  }
-  
-  // {
-  //   Step4<3> laplace_problem_3d;
-  //   laplace_problem_3d.run ();
-  // }
-  
-  return 0;
-}

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.