--- /dev/null
+@TechReport{CKPS00,
+ author = {Cockburn, Bernardo and Kanschat, Guido and Perugia, Ilaria and
+ Schötzau, Dominik},
+ title = {Superconvergence of the Local Discontinuous Galerkin
+ Method for Elliptic Problems on Cartesian Grids},
+ institution = UMSI,
+ year = 2000,
+ number = {2000/71}
+}
--- /dev/null
+<html>
+<head>
+<title>Abstract</title>
+<body>
+<h1>Abstract</h1>
+
+ In this paper, we present a super-convergence result for the Local
+Discontinuous Galerkin method for a model elliptic problem on
+Cartesian grids. We identify a <em>special</em> numerical flux for
+which the <em>L<sup>2</sup></em>-norm of the gradient and the
+<em>L<sup>2</sup></em>-norm of the potential are of order
+<em>k+1/2</em> and <em>k+1</em>, respectively, when tensor product
+polynomials of degree at most <em>k</em> are used; for arbitrary
+meshes, this special LDG method gives only the orders of convergence
+of <em>k</em> and <em>k+1/2</em>, respectively. We present a series
+of numerical examples which establish the sharpness of our theoretical
+results.
+</body>
+</html>
<h3>Publications in 2000</h3>
<ol>
+ <li> <p>
+ Bernardo Cockburn, <a href="http://gaia.iwr.uni-heidelberg.de/~kanschat"
+ target="_top">Guido Kanschat</a>, Ilaria Perugia, Dominik Schötzau
+ <br>
+ <strong>Superconvergence of the Local Discontinuous Galerkin
+ Method for Elliptic Problems on Cartesian Grids
+ </strong>
+ <br>
+ Preprint no. 2000/71, University of Minnesota Super Computing Institute
+ <br>
+ (<a href="http:2000/ckps.html" target="body">Abstract</a>,
+ <a href="2000/ckps.bib" target="body">BibTeX
+ entry</a>)
+ </p>
+
<li> <p>
<a href="http://gaia.iwr.uni-heidelberg.de/~wolf"
target="_top">Wolfgang Bangerth</a>