const unsigned int n_u = dofs_per_component[0],
n_p = dofs_per_component[dim];
- std::cout << " Number of active cells: "
+ std::cout << "Number of active cells: "
<< triangulation.n_active_cells()
<< std::endl
- << " Total number of cells: "
+ << "Total number of cells: "
<< triangulation.n_cells()
<< std::endl
- << " Number of degrees of freedom: "
+ << "Number of degrees of freedom: "
<< dof_handler.n_dofs()
<< " (" << n_u << '+' << n_p << ')'
<< std::endl;
cg.solve (schur_complement, solution.block(1), schur_rhs,
preconditioner);
- std::cout << " " << solver_control.last_step()
+ std::cout << solver_control.last_step()
<< " CG Schur complement iterations to obtain convergence."
<< std::endl;
}
&velocity_mask);
const double u_l2_error = cellwise_errors.l2_norm();
- std::cout << " Errors: ||e_p||_L2 = " << p_l2_error
+ std::cout << "Errors: ||e_p||_L2 = " << p_l2_error
<< ", ||e_u||_L2 = " << u_l2_error
<< std::endl;
}
// exception is that we pass the
// degree of the finite element space
// to the constructor of the mixed
- // laplace problem.
+ // laplace problem (here, we use
+ // zero-th order elements).
int main ()
{
try