--- /dev/null
+/* ---------------------------------------------------------------------
+ *
+ * Copyright (C) 2021 by the deal.II authors
+ *
+ * This file is part of the deal.II library.
+ *
+ * The deal.II library is free software; you can use it, redistribute
+ * it, and/or modify it under the terms of the GNU Lesser General
+ * Public License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ * The full text of the license can be found in the file LICENSE.md at
+ * the top level directory of deal.II.
+ *
+ * ---------------------------------------------------------------------
+
+ *
+ * Author: Wolfgang Bangerth, Colorado State University, 2021.
+ * Based on step-15 by Sven Wetterauer, University of Heidelberg, 2012.
+ */
+
+
+// @sect3{Include files}
+
+// This program starts out like most others with well known include
+// files. Compared to the step-15 program from which most of what we
+// do here is copied, the only difference is the include of the header
+// files from which we import the SparseDirectUMFPACK class and the actual
+// interface to KINSOL:
+
+#include <deal.II/base/quadrature_lib.h>
+#include <deal.II/base/function.h>
+#include <deal.II/base/timer.h>
+#include <deal.II/base/utilities.h>
+
+#include <deal.II/lac/vector.h>
+#include <deal.II/lac/full_matrix.h>
+#include <deal.II/lac/sparse_matrix.h>
+#include <deal.II/lac/dynamic_sparsity_pattern.h>
+#include <deal.II/lac/affine_constraints.h>
+#include <deal.II/lac/sparse_direct.h>
+
+#include <deal.II/grid/tria.h>
+#include <deal.II/grid/grid_generator.h>
+#include <deal.II/grid/grid_refinement.h>
+
+#include <deal.II/dofs/dof_handler.h>
+#include <deal.II/dofs/dof_accessor.h>
+#include <deal.II/dofs/dof_tools.h>
+
+#include <deal.II/fe/fe_values.h>
+#include <deal.II/fe/fe_q.h>
+
+#include <deal.II/numerics/vector_tools.h>
+#include <deal.II/numerics/matrix_tools.h>
+#include <deal.II/numerics/data_out.h>
+#include <deal.II/numerics/error_estimator.h>
+#include <deal.II/numerics/solution_transfer.h>
+
+#include <deal.II/sundials/kinsol.h>
+
+#include <fstream>
+#include <iostream>
+
+
+namespace Step77
+{
+ using namespace dealii;
+
+
+ // @sect3{The <code>MinimalSurfaceProblem</code> class template}
+
+ // Similarly, the main class of this program is essentially a copy of the one
+ // in step-15. The class does, however, split the computation of the Jacobian
+ // (system) matrix (and its factorization using a direct solver) and residual
+ // into separate functions for the reasons outlined in the introduction. For
+ // the same reason, the class also has a pointer to a factorization of the
+ // Jacobian matrix that is reset every time we update the Jacobian matrix.
+ //
+ // (If you are wondering why the program uses a direct object for the Jacobian
+ // matrix but a pointer for the factorization: Every time KINSOL requests that
+ // the Jacobian be updated, we can simply write `jacobian_matrix=0;` to reset
+ // it to an empty matrix that we can then fill again. On the other hand, the
+ // SparseDirectUMFPACK class does not have any way to throw away its content
+ // or to replace it with a new factorization, and so we use a pointer: We just
+ // throw away the whole object and create a new one whenever we have a new
+ // Jacobian matrix to factor.)
+ //
+ // Finally, the class has a timer variable that we will use to assess how long
+ // the different parts of the program take so that we can assess whether
+ // KINSOL's tendency to not rebuild the matrix and its factorization makes
+ // sense. We will discuss this in the "Results" section below.
+ template <int dim>
+ class MinimalSurfaceProblem
+ {
+ public:
+ MinimalSurfaceProblem();
+ void run();
+
+ private:
+ void setup_system(const bool initial_step);
+ void solve(const Vector<double> &rhs,
+ Vector<double> & solution,
+ const double tolerance);
+ void refine_mesh();
+ void output_results(const unsigned int refinement_cycle);
+ void set_boundary_values();
+ void compute_and_factorize_jacobian(const Vector<double> &evaluation_point);
+ void compute_residual(const Vector<double> &evaluation_point,
+ Vector<double> & residual);
+
+ Triangulation<dim> triangulation;
+
+ DoFHandler<dim> dof_handler;
+ FE_Q<dim> fe;
+
+ AffineConstraints<double> hanging_node_constraints;
+
+ SparsityPattern sparsity_pattern;
+ SparseMatrix<double> jacobian_matrix;
+ std::unique_ptr<SparseDirectUMFPACK> jacobian_matrix_factorization;
+
+ Vector<double> current_solution;
+
+ TimerOutput computing_timer;
+ };
+
+
+
+ // @sect3{Boundary condition}
+
+ // The classes implementing boundary values are a copy from step-15:
+ template <int dim>
+ class BoundaryValues : public Function<dim>
+ {
+ public:
+ virtual double value(const Point<dim> & p,
+ const unsigned int component = 0) const override;
+ };
+
+
+ template <int dim>
+ double BoundaryValues<dim>::value(const Point<dim> &p,
+ const unsigned int /*component*/) const
+ {
+ return std::sin(2 * numbers::PI * (p[0] + p[1]));
+ }
+
+
+ // @sect3{The <code>MinimalSurfaceProblem</code> class implementation}
+
+ // @sect4{Constructor and set up functions}
+
+ // The following few functions are also essentially copies of what
+ // step-15 already does, and so there is little to discuss.
+ template <int dim>
+ MinimalSurfaceProblem<dim>::MinimalSurfaceProblem()
+ : dof_handler(triangulation)
+ , fe(1)
+ , computing_timer(std::cout, TimerOutput::never, TimerOutput::wall_times)
+ {}
+
+
+
+ template <int dim>
+ void MinimalSurfaceProblem<dim>::setup_system(const bool initial_step)
+ {
+ TimerOutput::Scope t(computing_timer, "set up");
+
+ if (initial_step)
+ {
+ dof_handler.distribute_dofs(fe);
+ current_solution.reinit(dof_handler.n_dofs());
+
+ hanging_node_constraints.clear();
+ DoFTools::make_hanging_node_constraints(dof_handler,
+ hanging_node_constraints);
+ hanging_node_constraints.close();
+ }
+
+ DynamicSparsityPattern dsp(dof_handler.n_dofs());
+ DoFTools::make_sparsity_pattern(dof_handler, dsp);
+
+ hanging_node_constraints.condense(dsp);
+
+ sparsity_pattern.copy_from(dsp);
+ jacobian_matrix.reinit(sparsity_pattern);
+ jacobian_matrix_factorization.reset();
+ }
+
+
+
+ // @sect4{Assembling and factorizing the Jacobian matrix}
+
+ // The following function is then responsible for assembling and factorizing
+ // the Jacobian matrix. The first half of the function is in essence the
+ // `assemble_system()` function of step-15, except that it does not deal with
+ // also forming a right hand side vector (i.e., the residual) since we do not
+ // always have to do these operations at the same time.
+ //
+ // We put the whole assembly functionality into a code block enclosed by curly
+ // braces so that we can use a TimerOutput::Scope variable to measure how much
+ // time is spent in this code block, excluding everything that happens in this
+ // function after the matching closing brace `}`.
+ template <int dim>
+ void MinimalSurfaceProblem<dim>::compute_and_factorize_jacobian(
+ const Vector<double> &evaluation_point)
+ {
+ {
+ TimerOutput::Scope t(computing_timer, "assembling the Jacobian");
+
+ std::cout << " Computing Jacobian matrix" << std::endl;
+
+ const QGauss<dim> quadrature_formula(fe.degree + 1);
+
+ jacobian_matrix = 0;
+
+ FEValues<dim> fe_values(fe,
+ quadrature_formula,
+ update_gradients | update_quadrature_points |
+ update_JxW_values);
+
+ const unsigned int dofs_per_cell = fe.n_dofs_per_cell();
+ const unsigned int n_q_points = quadrature_formula.size();
+
+ FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);
+
+ std::vector<Tensor<1, dim>> evaluation_point_gradients(n_q_points);
+
+ std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
+
+ for (const auto &cell : dof_handler.active_cell_iterators())
+ {
+ cell_matrix = 0;
+
+ fe_values.reinit(cell);
+
+ fe_values.get_function_gradients(evaluation_point,
+ evaluation_point_gradients);
+
+ for (unsigned int q = 0; q < n_q_points; ++q)
+ {
+ const double coeff =
+ 1.0 / std::sqrt(1 + evaluation_point_gradients[q] *
+ evaluation_point_gradients[q]);
+
+ for (unsigned int i = 0; i < dofs_per_cell; ++i)
+ {
+ for (unsigned int j = 0; j < dofs_per_cell; ++j)
+ cell_matrix(i, j) +=
+ (((fe_values.shape_grad(i, q) // ((\nabla \phi_i
+ * coeff // * a_n
+ * fe_values.shape_grad(j, q)) // * \nabla \phi_j)
+ - // -
+ (fe_values.shape_grad(i, q) // (\nabla \phi_i
+ * coeff * coeff * coeff // * a_n^3
+ *
+ (fe_values.shape_grad(j, q) // * (\nabla \phi_j
+ * evaluation_point_gradients[q]) // * \nabla u_n)
+ * evaluation_point_gradients[q])) // * \nabla u_n)))
+ * fe_values.JxW(q)); // * dx
+ }
+ }
+
+ cell->get_dof_indices(local_dof_indices);
+ hanging_node_constraints.distribute_local_to_global(cell_matrix,
+ local_dof_indices,
+ jacobian_matrix);
+ }
+
+ std::map<types::global_dof_index, double> boundary_values;
+ VectorTools::interpolate_boundary_values(dof_handler,
+ 0,
+ Functions::ZeroFunction<dim>(),
+ boundary_values);
+ Vector<double> dummy_solution(dof_handler.n_dofs());
+ Vector<double> dummy_rhs(dof_handler.n_dofs());
+ MatrixTools::apply_boundary_values(boundary_values,
+ jacobian_matrix,
+ dummy_solution,
+ dummy_rhs);
+ }
+
+ // The second half of the function then deals with factorizing the
+ // so-computed matrix. To do this, we first create a new SparseDirectUMFPACK
+ // object and by assigning it to the member variable
+ // `jacobian_matrix_factorization`, we also destroy whatever object that
+ // pointer previously pointed to (if any). Then we tell the object to
+ // factorize the Jacobian.
+ //
+ // As above, we enclose this block of code into curly braces and use a timer
+ // to assess how long this part of the program takes.
+ //
+ // (Strictly speaking, we don't actually need the matrix any more after we
+ // are done here, and could throw the matrix object away. A code intended to
+ // be memory efficient would do this, and only create the matrix object in
+ // this function, rather than as a member variable of the surrounding class.
+ // We omit this step here because using the same coding style as in previous
+ // tutorial programs breeds familiarity with the common style and helps make
+ // these tutorial programs easier to read.)
+ {
+ TimerOutput::Scope t(computing_timer, "factorizing the Jacobian");
+
+ std::cout << " Factorizing Jacobian matrix" << std::endl;
+
+ jacobian_matrix_factorization = std::make_unique<SparseDirectUMFPACK>();
+ jacobian_matrix_factorization->factorize(jacobian_matrix);
+ }
+ }
+
+
+
+ // @sect4{Computing the residual vector}
+
+ // The second part of what `assemble_system()` used to do in step-15 is
+ // computing the residual vector, i.e., the right hand side vector of the
+ // Newton linear systems. We have broken this out of the previous function,
+ // but the following function will be easy to understand if you understood
+ // what `assemble_system()` in step-15 did. Importantly, however, we need to
+ // compute the residual not linearized around the current solution vector, but
+ // whatever we get from KINSOL. This is necessary for operations such as line
+ // search where we want to know what the residual $F(U^k + \alpha_k \delta
+ // U^K)$ is for different values of $\alpha_k$; KINSOL in those cases simply
+ // gives us the argument to the function $F$ and we then compute the residual
+ // $F(\cdot)$ at this point.
+ //
+ // The function prints the norm of the so-computed residual at the end as a
+ // way for us to follow along the progress of the program.
+ template <int dim>
+ void MinimalSurfaceProblem<dim>::compute_residual(
+ const Vector<double> &evaluation_point,
+ Vector<double> & residual)
+ {
+ TimerOutput::Scope t(computing_timer, "assembling the residual");
+
+ std::cout << " Computing residual vector..." << std::flush;
+
+ const QGauss<dim> quadrature_formula(fe.degree + 1);
+ FEValues<dim> fe_values(fe,
+ quadrature_formula,
+ update_gradients | update_quadrature_points |
+ update_JxW_values);
+
+ const unsigned int dofs_per_cell = fe.n_dofs_per_cell();
+ const unsigned int n_q_points = quadrature_formula.size();
+
+ Vector<double> cell_residual(dofs_per_cell);
+ std::vector<Tensor<1, dim>> evaluation_point_gradients(n_q_points);
+
+ std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
+
+ for (const auto &cell : dof_handler.active_cell_iterators())
+ {
+ cell_residual = 0;
+ fe_values.reinit(cell);
+
+ fe_values.get_function_gradients(evaluation_point,
+ evaluation_point_gradients);
+
+
+ for (unsigned int q = 0; q < n_q_points; ++q)
+ {
+ const double coeff =
+ 1.0 / std::sqrt(1 + evaluation_point_gradients[q] *
+ evaluation_point_gradients[q]);
+
+ for (unsigned int i = 0; i < dofs_per_cell; ++i)
+ cell_residual(i) = (fe_values.shape_grad(i, q) // \nabla \phi_i
+ * coeff // * a_n
+ * evaluation_point_gradients[q] // * u_n
+ * fe_values.JxW(q)); // * dx
+ }
+
+ cell->get_dof_indices(local_dof_indices);
+ for (unsigned int i = 0; i < dofs_per_cell; ++i)
+ residual(local_dof_indices[i]) += cell_residual(i);
+ }
+
+ hanging_node_constraints.condense(residual);
+
+ for (const types::global_dof_index i :
+ DoFTools::extract_boundary_dofs(dof_handler))
+ residual(i) = 0;
+
+ for (const types::global_dof_index i :
+ DoFTools::extract_hanging_node_dofs(dof_handler))
+ residual(i) = 0;
+
+ std::cout << " norm=" << residual.l2_norm() << std::endl;
+ }
+
+
+
+ // @sect4{Solving linear systems with the Jacobian matrix}
+
+ // Next up is the function that implements the solution of a linear system
+ // with the Jacobian matrix. Since we have already factored the matrix when we
+ // built the matrix, solving a linear system comes down to applying the
+ // inverse matrix to the given right hand side vector: This is what the
+ // SparseDirectUMFPACK::vmult() function does that we use here. Following
+ // this, we have to make sure that we also address the values of hanging nodes
+ // in the solution vector, and this is done using
+ // AffineConstraints::distribute().
+ //
+ // The function takes an additional, but unused, argument `tolerance` that
+ // indicates how accurately we have to solve the linear system. The meaning of
+ // this argument is discussed in the introduction in the context of the
+ // "Eisenstat Walker trick", but since we are using a direct rather than an
+ // iterative solver, we are not using this opportunity to solve linear systems
+ // only inexactly.
+ template <int dim>
+ void MinimalSurfaceProblem<dim>::solve(const Vector<double> &rhs,
+ Vector<double> & solution,
+ const double /*tolerance*/)
+ {
+ TimerOutput::Scope t(computing_timer, "linear system solve");
+
+ std::cout << " Solving linear system" << std::endl;
+
+ jacobian_matrix_factorization->vmult(solution, rhs);
+
+ hanging_node_constraints.distribute(solution);
+ }
+
+
+
+ // @sect4{Refining the mesh, setting boundary values, and generating graphical output}
+
+ // The following three functions are again simply copies of the ones in
+ // step-15:
+ template <int dim>
+ void MinimalSurfaceProblem<dim>::refine_mesh()
+ {
+ Vector<float> estimated_error_per_cell(triangulation.n_active_cells());
+
+ KellyErrorEstimator<dim>::estimate(
+ dof_handler,
+ QGauss<dim - 1>(fe.degree + 1),
+ std::map<types::boundary_id, const Function<dim> *>(),
+ current_solution,
+ estimated_error_per_cell);
+
+ GridRefinement::refine_and_coarsen_fixed_number(triangulation,
+ estimated_error_per_cell,
+ 0.3,
+ 0.03);
+
+ triangulation.prepare_coarsening_and_refinement();
+
+ SolutionTransfer<dim> solution_transfer(dof_handler);
+ solution_transfer.prepare_for_coarsening_and_refinement(current_solution);
+
+ triangulation.execute_coarsening_and_refinement();
+
+ dof_handler.distribute_dofs(fe);
+
+ Vector<double> tmp(dof_handler.n_dofs());
+ solution_transfer.interpolate(current_solution, tmp);
+ current_solution = std::move(tmp);
+
+ hanging_node_constraints.clear();
+
+ DoFTools::make_hanging_node_constraints(dof_handler,
+ hanging_node_constraints);
+ hanging_node_constraints.close();
+
+ hanging_node_constraints.distribute(current_solution);
+
+ set_boundary_values();
+
+ setup_system(/*initial_step=*/false);
+ }
+
+
+
+ template <int dim>
+ void MinimalSurfaceProblem<dim>::set_boundary_values()
+ {
+ std::map<types::global_dof_index, double> boundary_values;
+ VectorTools::interpolate_boundary_values(dof_handler,
+ 0,
+ BoundaryValues<dim>(),
+ boundary_values);
+ for (const auto &boundary_value : boundary_values)
+ current_solution(boundary_value.first) = boundary_value.second;
+
+ hanging_node_constraints.distribute(current_solution);
+ }
+
+
+
+ template <int dim>
+ void MinimalSurfaceProblem<dim>::output_results(
+ const unsigned int refinement_cycle)
+ {
+ TimerOutput::Scope t(computing_timer, "graphical output");
+
+ DataOut<dim> data_out;
+
+ data_out.attach_dof_handler(dof_handler);
+ data_out.add_data_vector(current_solution, "solution");
+ data_out.build_patches();
+
+ const std::string filename =
+ "solution-" + Utilities::int_to_string(refinement_cycle, 2) + ".vtu";
+ std::ofstream output(filename);
+ data_out.write_vtu(output);
+ }
+
+
+
+ // @sect4{The run() function and the overall logic of the program}
+
+ // The only function that *really* is interesting in this program is the one
+ // that drives the overall algorithm of starting on a coarse mesh, doing some
+ // mesh refinement cycles, and on each mesh using KINSOL to find the solution
+ // of the nonlinear algebraic equation we obtain from discretization on this
+ // mesh. The `refine_mesh()` function above makes sure that the solution on
+ // one mesh is used as the starting guess on the next mesh. We also use a
+ // TimerOutput object to measure how much time every operation on each mesh
+ // costs, and reset the timer at the beginning of each cycle.
+ //
+ // As discussed in the introduction, it is not necessary to solve problems on
+ // coarse meshes particularly accurately since these will only solve as
+ // starting guesses for the next mesh. As a consequence, we will use a target
+ // tolerance of
+ // $\tau=10^{-3} \frac{1}{10^k}$ for the $k$th mesh refinement cycle.
+ //
+ // All of this is encoded in the first part of this function:
+ template <int dim>
+ void MinimalSurfaceProblem<dim>::run()
+ {
+ GridGenerator::hyper_ball(triangulation);
+ triangulation.refine_global(2);
+
+ setup_system(/*initial_step=*/true);
+ set_boundary_values();
+
+ for (unsigned int refinement_cycle = 0; refinement_cycle < 6;
+ ++refinement_cycle)
+ {
+ computing_timer.reset();
+ std::cout << "Mesh refinement step " << refinement_cycle << std::endl;
+
+ if (refinement_cycle != 0)
+ refine_mesh();
+
+ const double target_tolerance = 1e-3 * std::pow(0.1, refinement_cycle);
+ std::cout << " Target_tolerance: " << target_tolerance << std::endl
+ << std::endl;
+
+ // This is where the fun starts. At the top we create the KINSOL solver
+ // object and feed it with an object that encodes a number of additional
+ // specifics (of which we only change the nonlinear tolerance we want to
+ // reach; but you might want to look into what other members the
+ // SUNDIALS::KINSOL::AdditionalData class has and play with them).
+ {
+ SUNDIALS::KINSOL<Vector<double>>::AdditionalData additional_data;
+ additional_data.function_tolerance = target_tolerance;
+
+ SUNDIALS::KINSOL<Vector<double>> nonlinear_solver(additional_data);
+
+ // Then we have to describe the operations that were already mentioned
+ // in the introduction. In essence, we have to teach KINSOL how to (i)
+ // resize a vector to the correct size, (ii) compute the residual
+ // vector, (iii) compute the Jacobian matrix (during which we also
+ // compute its factorization), and (iv) solve a linear system with the
+ // Jacobian.
+ //
+ // All four of these operations are represented by member variables of
+ // the SUNDIALS::KINSOL class that are of type `std::function`, i.e.,
+ // they are objects to which we can assign a pointer to a function or,
+ // as we do here, a "lambda function" that takes the appropriate
+ // arguments and returns the appropriate information. By convention,
+ // KINSOL wants that functions doing something nontrivial return an
+ // integer where zero indicates success. It turns out that we can do
+ // all of this in just 25 lines of code.
+ //
+ // (If you're not familiar what "lambda functions" are, take
+ // a look at step-12 or at the
+ // [wikipedia page](https://en.wikipedia.org/wiki/Anonymous_function)
+ // on the subject. The idea of lambda functions is that one
+ // wants to define a function with a certain set of
+ // arguments, but (i) not make it a named functions because,
+ // typically, the function is used in only one place and it
+ // seems unnecessary to give it a global name; and (ii) that
+ // the function has access to some of the variables that
+ // exist at the place where it is defined, including member
+ // variables. The syntax of lambda functions is awkward, but
+ // ultimately quite useful.)
+ //
+ // At the very end of the code block we then tell KINSOL to go to work
+ // and solve our problem. The member functions called from the
+ // 'residual', 'setup_jacobian', and 'solve_jacobian_system' functions
+ // will then print output to screen that allows us to follow along
+ // with the progress of the program.
+ nonlinear_solver.reinit_vector = [&](Vector<double> &x) {
+ x.reinit(dof_handler.n_dofs());
+ };
+
+ nonlinear_solver.residual =
+ [&](const Vector<double> &evaluation_point,
+ Vector<double> & residual) {
+ compute_residual(evaluation_point, residual);
+
+ return 0;
+ };
+
+ nonlinear_solver.setup_jacobian =
+ [&](const Vector<double> ¤t_u,
+ const Vector<double> & /*current_f*/) {
+ compute_and_factorize_jacobian(current_u);
+
+ return 0;
+ };
+
+ nonlinear_solver.solve_with_jacobian = [&](const Vector<double> &rhs,
+ Vector<double> & dst,
+ const double tolerance) {
+ this->solve(rhs, dst, tolerance);
+
+ return 0;
+ };
+
+ nonlinear_solver.solve(current_solution);
+ }
+
+ // The rest is then just house-keeping: Writing data to a file for
+ // visualizing, and showing a summary of the timing collected so that we
+ // can interpret how long each operation has taken, how often it was
+ // executed, etc:
+ output_results(refinement_cycle);
+
+ computing_timer.print_summary();
+
+ std::cout << std::endl;
+ }
+ }
+} // namespace Step77
+
+
+int main()
+{
+ try
+ {
+ using namespace Step77;
+
+ MinimalSurfaceProblem<2> laplace_problem_2d;
+ laplace_problem_2d.run();
+ }
+ catch (std::exception &exc)
+ {
+ std::cerr << std::endl
+ << std::endl
+ << "----------------------------------------------------"
+ << std::endl;
+ std::cerr << "Exception on processing: " << std::endl
+ << exc.what() << std::endl
+ << "Aborting!" << std::endl
+ << "----------------------------------------------------"
+ << std::endl;
+
+ return 1;
+ }
+ catch (...)
+ {
+ std::cerr << std::endl
+ << std::endl
+ << "----------------------------------------------------"
+ << std::endl;
+ std::cerr << "Unknown exception!" << std::endl
+ << "Aborting!" << std::endl
+ << "----------------------------------------------------"
+ << std::endl;
+ return 1;
+ }
+ return 0;
+}