]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Add the actual code of step-77.
authorWolfgang Bangerth <bangerth@colostate.edu>
Mon, 3 May 2021 23:56:43 +0000 (17:56 -0600)
committerWolfgang Bangerth <bangerth@colostate.edu>
Tue, 4 May 2021 21:37:39 +0000 (15:37 -0600)
examples/step-77/step-77.cc [new file with mode: 0644]

diff --git a/examples/step-77/step-77.cc b/examples/step-77/step-77.cc
new file mode 100644 (file)
index 0000000..61212bf
--- /dev/null
@@ -0,0 +1,677 @@
+/* ---------------------------------------------------------------------
+ *
+ * Copyright (C) 2021 by the deal.II authors
+ *
+ * This file is part of the deal.II library.
+ *
+ * The deal.II library is free software; you can use it, redistribute
+ * it, and/or modify it under the terms of the GNU Lesser General
+ * Public License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ * The full text of the license can be found in the file LICENSE.md at
+ * the top level directory of deal.II.
+ *
+ * ---------------------------------------------------------------------
+
+ *
+ * Author: Wolfgang Bangerth, Colorado State University, 2021.
+ * Based on step-15 by Sven Wetterauer, University of Heidelberg, 2012.
+ */
+
+
+// @sect3{Include files}
+
+// This program starts out like most others with well known include
+// files. Compared to the step-15 program from which most of what we
+// do here is copied, the only difference is the include of the header
+// files from which we import the SparseDirectUMFPACK class and the actual
+// interface to KINSOL:
+
+#include <deal.II/base/quadrature_lib.h>
+#include <deal.II/base/function.h>
+#include <deal.II/base/timer.h>
+#include <deal.II/base/utilities.h>
+
+#include <deal.II/lac/vector.h>
+#include <deal.II/lac/full_matrix.h>
+#include <deal.II/lac/sparse_matrix.h>
+#include <deal.II/lac/dynamic_sparsity_pattern.h>
+#include <deal.II/lac/affine_constraints.h>
+#include <deal.II/lac/sparse_direct.h>
+
+#include <deal.II/grid/tria.h>
+#include <deal.II/grid/grid_generator.h>
+#include <deal.II/grid/grid_refinement.h>
+
+#include <deal.II/dofs/dof_handler.h>
+#include <deal.II/dofs/dof_accessor.h>
+#include <deal.II/dofs/dof_tools.h>
+
+#include <deal.II/fe/fe_values.h>
+#include <deal.II/fe/fe_q.h>
+
+#include <deal.II/numerics/vector_tools.h>
+#include <deal.II/numerics/matrix_tools.h>
+#include <deal.II/numerics/data_out.h>
+#include <deal.II/numerics/error_estimator.h>
+#include <deal.II/numerics/solution_transfer.h>
+
+#include <deal.II/sundials/kinsol.h>
+
+#include <fstream>
+#include <iostream>
+
+
+namespace Step77
+{
+  using namespace dealii;
+
+
+  // @sect3{The <code>MinimalSurfaceProblem</code> class template}
+
+  // Similarly, the main class of this program is essentially a copy of the one
+  // in step-15. The class does, however, split the computation of the Jacobian
+  // (system) matrix (and its factorization using a direct solver) and residual
+  // into separate functions for the reasons outlined in the introduction. For
+  // the same reason, the class also has a pointer to a factorization of the
+  // Jacobian matrix that is reset every time we update the Jacobian matrix.
+  //
+  // (If you are wondering why the program uses a direct object for the Jacobian
+  // matrix but a pointer for the factorization: Every time KINSOL requests that
+  // the Jacobian be updated, we can simply write `jacobian_matrix=0;` to reset
+  // it to an empty matrix that we can then fill again. On the other hand, the
+  // SparseDirectUMFPACK class does not have any way to throw away its content
+  // or to replace it with a new factorization, and so we use a pointer: We just
+  // throw away the whole object and create a new one whenever we have a new
+  // Jacobian matrix to factor.)
+  //
+  // Finally, the class has a timer variable that we will use to assess how long
+  // the different parts of the program take so that we can assess whether
+  // KINSOL's tendency to not rebuild the matrix and its factorization makes
+  // sense. We will discuss this in the "Results" section below.
+  template <int dim>
+  class MinimalSurfaceProblem
+  {
+  public:
+    MinimalSurfaceProblem();
+    void run();
+
+  private:
+    void setup_system(const bool initial_step);
+    void solve(const Vector<double> &rhs,
+               Vector<double> &      solution,
+               const double          tolerance);
+    void refine_mesh();
+    void output_results(const unsigned int refinement_cycle);
+    void set_boundary_values();
+    void compute_and_factorize_jacobian(const Vector<double> &evaluation_point);
+    void compute_residual(const Vector<double> &evaluation_point,
+                          Vector<double> &      residual);
+
+    Triangulation<dim> triangulation;
+
+    DoFHandler<dim> dof_handler;
+    FE_Q<dim>       fe;
+
+    AffineConstraints<double> hanging_node_constraints;
+
+    SparsityPattern                      sparsity_pattern;
+    SparseMatrix<double>                 jacobian_matrix;
+    std::unique_ptr<SparseDirectUMFPACK> jacobian_matrix_factorization;
+
+    Vector<double> current_solution;
+
+    TimerOutput computing_timer;
+  };
+
+
+
+  // @sect3{Boundary condition}
+
+  // The classes implementing boundary values are a copy from step-15:
+  template <int dim>
+  class BoundaryValues : public Function<dim>
+  {
+  public:
+    virtual double value(const Point<dim> & p,
+                         const unsigned int component = 0) const override;
+  };
+
+
+  template <int dim>
+  double BoundaryValues<dim>::value(const Point<dim> &p,
+                                    const unsigned int /*component*/) const
+  {
+    return std::sin(2 * numbers::PI * (p[0] + p[1]));
+  }
+
+
+  // @sect3{The <code>MinimalSurfaceProblem</code> class implementation}
+
+  // @sect4{Constructor and set up functions}
+
+  // The following few functions are also essentially copies of what
+  // step-15 already does, and so there is little to discuss.
+  template <int dim>
+  MinimalSurfaceProblem<dim>::MinimalSurfaceProblem()
+    : dof_handler(triangulation)
+    , fe(1)
+    , computing_timer(std::cout, TimerOutput::never, TimerOutput::wall_times)
+  {}
+
+
+
+  template <int dim>
+  void MinimalSurfaceProblem<dim>::setup_system(const bool initial_step)
+  {
+    TimerOutput::Scope t(computing_timer, "set up");
+
+    if (initial_step)
+      {
+        dof_handler.distribute_dofs(fe);
+        current_solution.reinit(dof_handler.n_dofs());
+
+        hanging_node_constraints.clear();
+        DoFTools::make_hanging_node_constraints(dof_handler,
+                                                hanging_node_constraints);
+        hanging_node_constraints.close();
+      }
+
+    DynamicSparsityPattern dsp(dof_handler.n_dofs());
+    DoFTools::make_sparsity_pattern(dof_handler, dsp);
+
+    hanging_node_constraints.condense(dsp);
+
+    sparsity_pattern.copy_from(dsp);
+    jacobian_matrix.reinit(sparsity_pattern);
+    jacobian_matrix_factorization.reset();
+  }
+
+
+
+  // @sect4{Assembling and factorizing the Jacobian matrix}
+
+  // The following function is then responsible for assembling and factorizing
+  // the Jacobian matrix. The first half of the function is in essence the
+  // `assemble_system()` function of step-15, except that it does not deal with
+  // also forming a right hand side vector (i.e., the residual) since we do not
+  // always have to do these operations at the same time.
+  //
+  // We put the whole assembly functionality into a code block enclosed by curly
+  // braces so that we can use a TimerOutput::Scope variable to measure how much
+  // time is spent in this code block, excluding everything that happens in this
+  // function after the matching closing brace `}`.
+  template <int dim>
+  void MinimalSurfaceProblem<dim>::compute_and_factorize_jacobian(
+    const Vector<double> &evaluation_point)
+  {
+    {
+      TimerOutput::Scope t(computing_timer, "assembling the Jacobian");
+
+      std::cout << "  Computing Jacobian matrix" << std::endl;
+
+      const QGauss<dim> quadrature_formula(fe.degree + 1);
+
+      jacobian_matrix = 0;
+
+      FEValues<dim> fe_values(fe,
+                              quadrature_formula,
+                              update_gradients | update_quadrature_points |
+                                update_JxW_values);
+
+      const unsigned int dofs_per_cell = fe.n_dofs_per_cell();
+      const unsigned int n_q_points    = quadrature_formula.size();
+
+      FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);
+
+      std::vector<Tensor<1, dim>> evaluation_point_gradients(n_q_points);
+
+      std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
+
+      for (const auto &cell : dof_handler.active_cell_iterators())
+        {
+          cell_matrix = 0;
+
+          fe_values.reinit(cell);
+
+          fe_values.get_function_gradients(evaluation_point,
+                                           evaluation_point_gradients);
+
+          for (unsigned int q = 0; q < n_q_points; ++q)
+            {
+              const double coeff =
+                1.0 / std::sqrt(1 + evaluation_point_gradients[q] *
+                                      evaluation_point_gradients[q]);
+
+              for (unsigned int i = 0; i < dofs_per_cell; ++i)
+                {
+                  for (unsigned int j = 0; j < dofs_per_cell; ++j)
+                    cell_matrix(i, j) +=
+                      (((fe_values.shape_grad(i, q)    // ((\nabla \phi_i
+                         * coeff                       //   * a_n
+                         * fe_values.shape_grad(j, q)) //   * \nabla \phi_j)
+                        -                              //  -
+                        (fe_values.shape_grad(i, q)    //  (\nabla \phi_i
+                         * coeff * coeff * coeff       //   * a_n^3
+                         *
+                         (fe_values.shape_grad(j, q)       //   * (\nabla \phi_j
+                          * evaluation_point_gradients[q]) //      * \nabla u_n)
+                         * evaluation_point_gradients[q])) //   * \nabla u_n)))
+                       * fe_values.JxW(q));                // * dx
+                }
+            }
+
+          cell->get_dof_indices(local_dof_indices);
+          hanging_node_constraints.distribute_local_to_global(cell_matrix,
+                                                              local_dof_indices,
+                                                              jacobian_matrix);
+        }
+
+      std::map<types::global_dof_index, double> boundary_values;
+      VectorTools::interpolate_boundary_values(dof_handler,
+                                               0,
+                                               Functions::ZeroFunction<dim>(),
+                                               boundary_values);
+      Vector<double> dummy_solution(dof_handler.n_dofs());
+      Vector<double> dummy_rhs(dof_handler.n_dofs());
+      MatrixTools::apply_boundary_values(boundary_values,
+                                         jacobian_matrix,
+                                         dummy_solution,
+                                         dummy_rhs);
+    }
+
+    // The second half of the function then deals with factorizing the
+    // so-computed matrix. To do this, we first create a new SparseDirectUMFPACK
+    // object and by assigning it to the member variable
+    // `jacobian_matrix_factorization`, we also destroy whatever object that
+    // pointer previously pointed to (if any). Then we tell the object to
+    // factorize the Jacobian.
+    //
+    // As above, we enclose this block of code into curly braces and use a timer
+    // to assess how long this part of the program takes.
+    //
+    // (Strictly speaking, we don't actually need the matrix any more after we
+    // are done here, and could throw the matrix object away. A code intended to
+    // be memory efficient would do this, and only create the matrix object in
+    // this function, rather than as a member variable of the surrounding class.
+    // We omit this step here because using the same coding style as in previous
+    // tutorial programs breeds familiarity with the common style and helps make
+    // these tutorial programs easier to read.)
+    {
+      TimerOutput::Scope t(computing_timer, "factorizing the Jacobian");
+
+      std::cout << "  Factorizing Jacobian matrix" << std::endl;
+
+      jacobian_matrix_factorization = std::make_unique<SparseDirectUMFPACK>();
+      jacobian_matrix_factorization->factorize(jacobian_matrix);
+    }
+  }
+
+
+
+  // @sect4{Computing the residual vector}
+
+  // The second part of what `assemble_system()` used to do in step-15 is
+  // computing the residual vector, i.e., the right hand side vector of the
+  // Newton linear systems. We have broken this out of the previous function,
+  // but the following function will be easy to understand if you understood
+  // what `assemble_system()` in step-15 did. Importantly, however, we need to
+  // compute the residual not linearized around the current solution vector, but
+  // whatever we get from KINSOL. This is necessary for operations such as line
+  // search where we want to know what the residual $F(U^k + \alpha_k \delta
+  // U^K)$ is for different values of $\alpha_k$; KINSOL in those cases simply
+  // gives us the argument to the function $F$ and we then compute the residual
+  // $F(\cdot)$ at this point.
+  //
+  // The function prints the norm of the so-computed residual at the end as a
+  // way for us to follow along the progress of the program.
+  template <int dim>
+  void MinimalSurfaceProblem<dim>::compute_residual(
+    const Vector<double> &evaluation_point,
+    Vector<double> &      residual)
+  {
+    TimerOutput::Scope t(computing_timer, "assembling the residual");
+
+    std::cout << "  Computing residual vector..." << std::flush;
+
+    const QGauss<dim> quadrature_formula(fe.degree + 1);
+    FEValues<dim>     fe_values(fe,
+                            quadrature_formula,
+                            update_gradients | update_quadrature_points |
+                              update_JxW_values);
+
+    const unsigned int dofs_per_cell = fe.n_dofs_per_cell();
+    const unsigned int n_q_points    = quadrature_formula.size();
+
+    Vector<double>              cell_residual(dofs_per_cell);
+    std::vector<Tensor<1, dim>> evaluation_point_gradients(n_q_points);
+
+    std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
+
+    for (const auto &cell : dof_handler.active_cell_iterators())
+      {
+        cell_residual = 0;
+        fe_values.reinit(cell);
+
+        fe_values.get_function_gradients(evaluation_point,
+                                         evaluation_point_gradients);
+
+
+        for (unsigned int q = 0; q < n_q_points; ++q)
+          {
+            const double coeff =
+              1.0 / std::sqrt(1 + evaluation_point_gradients[q] *
+                                    evaluation_point_gradients[q]);
+
+            for (unsigned int i = 0; i < dofs_per_cell; ++i)
+              cell_residual(i) = (fe_values.shape_grad(i, q) // \nabla \phi_i
+                                  * coeff                    // * a_n
+                                  * evaluation_point_gradients[q] // * u_n
+                                  * fe_values.JxW(q));            // * dx
+          }
+
+        cell->get_dof_indices(local_dof_indices);
+        for (unsigned int i = 0; i < dofs_per_cell; ++i)
+          residual(local_dof_indices[i]) += cell_residual(i);
+      }
+
+    hanging_node_constraints.condense(residual);
+
+    for (const types::global_dof_index i :
+         DoFTools::extract_boundary_dofs(dof_handler))
+      residual(i) = 0;
+
+    for (const types::global_dof_index i :
+         DoFTools::extract_hanging_node_dofs(dof_handler))
+      residual(i) = 0;
+
+    std::cout << " norm=" << residual.l2_norm() << std::endl;
+  }
+
+
+
+  // @sect4{Solving linear systems with the Jacobian matrix}
+
+  // Next up is the function that implements the solution of a linear system
+  // with the Jacobian matrix. Since we have already factored the matrix when we
+  // built the matrix, solving a linear system comes down to applying the
+  // inverse matrix to the given right hand side vector: This is what the
+  // SparseDirectUMFPACK::vmult() function does that we use here. Following
+  // this, we have to make sure that we also address the values of hanging nodes
+  // in the solution vector, and this is done using
+  // AffineConstraints::distribute().
+  //
+  // The function takes an additional, but unused, argument `tolerance` that
+  // indicates how accurately we have to solve the linear system. The meaning of
+  // this argument is discussed in the introduction in the context of the
+  // "Eisenstat Walker trick", but since we are using a direct rather than an
+  // iterative solver, we are not using this opportunity to solve linear systems
+  // only inexactly.
+  template <int dim>
+  void MinimalSurfaceProblem<dim>::solve(const Vector<double> &rhs,
+                                         Vector<double> &      solution,
+                                         const double /*tolerance*/)
+  {
+    TimerOutput::Scope t(computing_timer, "linear system solve");
+
+    std::cout << "  Solving linear system" << std::endl;
+
+    jacobian_matrix_factorization->vmult(solution, rhs);
+
+    hanging_node_constraints.distribute(solution);
+  }
+
+
+
+  // @sect4{Refining the mesh, setting boundary values, and generating graphical output}
+
+  // The following three functions are again simply copies of the ones in
+  // step-15:
+  template <int dim>
+  void MinimalSurfaceProblem<dim>::refine_mesh()
+  {
+    Vector<float> estimated_error_per_cell(triangulation.n_active_cells());
+
+    KellyErrorEstimator<dim>::estimate(
+      dof_handler,
+      QGauss<dim - 1>(fe.degree + 1),
+      std::map<types::boundary_id, const Function<dim> *>(),
+      current_solution,
+      estimated_error_per_cell);
+
+    GridRefinement::refine_and_coarsen_fixed_number(triangulation,
+                                                    estimated_error_per_cell,
+                                                    0.3,
+                                                    0.03);
+
+    triangulation.prepare_coarsening_and_refinement();
+
+    SolutionTransfer<dim> solution_transfer(dof_handler);
+    solution_transfer.prepare_for_coarsening_and_refinement(current_solution);
+
+    triangulation.execute_coarsening_and_refinement();
+
+    dof_handler.distribute_dofs(fe);
+
+    Vector<double> tmp(dof_handler.n_dofs());
+    solution_transfer.interpolate(current_solution, tmp);
+    current_solution = std::move(tmp);
+
+    hanging_node_constraints.clear();
+
+    DoFTools::make_hanging_node_constraints(dof_handler,
+                                            hanging_node_constraints);
+    hanging_node_constraints.close();
+
+    hanging_node_constraints.distribute(current_solution);
+
+    set_boundary_values();
+
+    setup_system(/*initial_step=*/false);
+  }
+
+
+
+  template <int dim>
+  void MinimalSurfaceProblem<dim>::set_boundary_values()
+  {
+    std::map<types::global_dof_index, double> boundary_values;
+    VectorTools::interpolate_boundary_values(dof_handler,
+                                             0,
+                                             BoundaryValues<dim>(),
+                                             boundary_values);
+    for (const auto &boundary_value : boundary_values)
+      current_solution(boundary_value.first) = boundary_value.second;
+
+    hanging_node_constraints.distribute(current_solution);
+  }
+
+
+
+  template <int dim>
+  void MinimalSurfaceProblem<dim>::output_results(
+    const unsigned int refinement_cycle)
+  {
+    TimerOutput::Scope t(computing_timer, "graphical output");
+
+    DataOut<dim> data_out;
+
+    data_out.attach_dof_handler(dof_handler);
+    data_out.add_data_vector(current_solution, "solution");
+    data_out.build_patches();
+
+    const std::string filename =
+      "solution-" + Utilities::int_to_string(refinement_cycle, 2) + ".vtu";
+    std::ofstream output(filename);
+    data_out.write_vtu(output);
+  }
+
+
+
+  // @sect4{The run() function and the overall logic of the program}
+
+  // The only function that *really* is interesting in this program is the one
+  // that drives the overall algorithm of starting on a coarse mesh, doing some
+  // mesh refinement cycles, and on each mesh using KINSOL to find the solution
+  // of the nonlinear algebraic equation we obtain from discretization on this
+  // mesh. The `refine_mesh()` function above makes sure that the solution on
+  // one mesh is used as the starting guess on the next mesh. We also use a
+  // TimerOutput object to measure how much time every operation on each mesh
+  // costs, and reset the timer at the beginning of each cycle.
+  //
+  // As discussed in the introduction, it is not necessary to solve problems on
+  // coarse meshes particularly accurately since these will only solve as
+  // starting guesses for the next mesh. As a consequence, we will use a target
+  // tolerance of
+  // $\tau=10^{-3} \frac{1}{10^k}$ for the $k$th mesh refinement cycle.
+  //
+  // All of this is encoded in the first part of this function:
+  template <int dim>
+  void MinimalSurfaceProblem<dim>::run()
+  {
+    GridGenerator::hyper_ball(triangulation);
+    triangulation.refine_global(2);
+
+    setup_system(/*initial_step=*/true);
+    set_boundary_values();
+
+    for (unsigned int refinement_cycle = 0; refinement_cycle < 6;
+         ++refinement_cycle)
+      {
+        computing_timer.reset();
+        std::cout << "Mesh refinement step " << refinement_cycle << std::endl;
+
+        if (refinement_cycle != 0)
+          refine_mesh();
+
+        const double target_tolerance = 1e-3 * std::pow(0.1, refinement_cycle);
+        std::cout << "  Target_tolerance: " << target_tolerance << std::endl
+                  << std::endl;
+
+        // This is where the fun starts. At the top we create the KINSOL solver
+        // object and feed it with an object that encodes a number of additional
+        // specifics (of which we only change the nonlinear tolerance we want to
+        // reach; but you might want to look into what other members the
+        // SUNDIALS::KINSOL::AdditionalData class has and play with them).
+        {
+          SUNDIALS::KINSOL<Vector<double>>::AdditionalData additional_data;
+          additional_data.function_tolerance = target_tolerance;
+
+          SUNDIALS::KINSOL<Vector<double>> nonlinear_solver(additional_data);
+
+          // Then we have to describe the operations that were already mentioned
+          // in the introduction. In essence, we have to teach KINSOL how to (i)
+          // resize a vector to the correct size, (ii) compute the residual
+          // vector, (iii) compute the Jacobian matrix (during which we also
+          // compute its factorization), and (iv) solve a linear system with the
+          // Jacobian.
+          //
+          // All four of these operations are represented by member variables of
+          // the SUNDIALS::KINSOL class that are of type `std::function`, i.e.,
+          // they are objects to which we can assign a pointer to a function or,
+          // as we do here, a "lambda function" that takes the appropriate
+          // arguments and returns the appropriate information. By convention,
+          // KINSOL wants that functions doing something nontrivial return an
+          // integer where zero indicates success. It turns out that we can do
+          // all of this in just 25 lines of code.
+          //
+          // (If you're not familiar what "lambda functions" are, take
+          // a look at step-12 or at the
+          // [wikipedia page](https://en.wikipedia.org/wiki/Anonymous_function)
+          // on the subject. The idea of lambda functions is that one
+          // wants to define a function with a certain set of
+          // arguments, but (i) not make it a named functions because,
+          // typically, the function is used in only one place and it
+          // seems unnecessary to give it a global name; and (ii) that
+          // the function has access to some of the variables that
+          // exist at the place where it is defined, including member
+          // variables. The syntax of lambda functions is awkward, but
+          // ultimately quite useful.)
+          //
+          // At the very end of the code block we then tell KINSOL to go to work
+          // and solve our problem. The member functions called from the
+          // 'residual', 'setup_jacobian', and 'solve_jacobian_system' functions
+          // will then print output to screen that allows us to follow along
+          // with the progress of the program.
+          nonlinear_solver.reinit_vector = [&](Vector<double> &x) {
+            x.reinit(dof_handler.n_dofs());
+          };
+
+          nonlinear_solver.residual =
+            [&](const Vector<double> &evaluation_point,
+                Vector<double> &      residual) {
+              compute_residual(evaluation_point, residual);
+
+              return 0;
+            };
+
+          nonlinear_solver.setup_jacobian =
+            [&](const Vector<double> &current_u,
+                const Vector<double> & /*current_f*/) {
+              compute_and_factorize_jacobian(current_u);
+
+              return 0;
+            };
+
+          nonlinear_solver.solve_with_jacobian = [&](const Vector<double> &rhs,
+                                                     Vector<double> &      dst,
+                                                     const double tolerance) {
+            this->solve(rhs, dst, tolerance);
+
+            return 0;
+          };
+
+          nonlinear_solver.solve(current_solution);
+        }
+
+        // The rest is then just house-keeping: Writing data to a file for
+        // visualizing, and showing a summary of the timing collected so that we
+        // can interpret how long each operation has taken, how often it was
+        // executed, etc:
+        output_results(refinement_cycle);
+
+        computing_timer.print_summary();
+
+        std::cout << std::endl;
+      }
+  }
+} // namespace Step77
+
+
+int main()
+{
+  try
+    {
+      using namespace Step77;
+
+      MinimalSurfaceProblem<2> laplace_problem_2d;
+      laplace_problem_2d.run();
+    }
+  catch (std::exception &exc)
+    {
+      std::cerr << std::endl
+                << std::endl
+                << "----------------------------------------------------"
+                << std::endl;
+      std::cerr << "Exception on processing: " << std::endl
+                << exc.what() << std::endl
+                << "Aborting!" << std::endl
+                << "----------------------------------------------------"
+                << std::endl;
+
+      return 1;
+    }
+  catch (...)
+    {
+      std::cerr << std::endl
+                << std::endl
+                << "----------------------------------------------------"
+                << std::endl;
+      std::cerr << "Unknown exception!" << std::endl
+                << "Aborting!" << std::endl
+                << "----------------------------------------------------"
+                << std::endl;
+      return 1;
+    }
+  return 0;
+}

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.