+++ /dev/null
-/* $Id$ */
-/* Author: Wolfgang Bangerth, ETH Zurich, 2002 */
-
-/* $Id$ */
-/* Version: $Name$ */
-/* */
-/* Copyright (C) 2002, 2003, 2004, 2008, 2010 by the deal.II authors */
-/* */
-/* This file is subject to QPL and may not be distributed */
-/* without copyright and license information. Please refer */
-/* to the file deal.II/doc/license.html for the text and */
-/* further information on this license. */
-
-
- // Start out with well known things...
-#include <deal.II/base/quadrature_lib.h>
-#include <deal.II/base/function.h>
-#include <deal.II/base/logstream.h>
-#include <deal.II/base/thread_management.h>
-#include <deal.II/lac/vector.h>
-#include <deal.II/lac/full_matrix.h>
-#include <deal.II/lac/compressed_sparsity_pattern.h>
-#include <deal.II/lac/sparse_matrix.h>
-#include <deal.II/lac/solver_cg.h>
-#include <deal.II/lac/vector_memory.h>
-#include <deal.II/lac/precondition.h>
-#include <deal.II/grid/tria.h>
-#include <deal.II/grid/grid_generator.h>
-#include <deal.II/grid/grid_out.h>
-#include <deal.II/grid/tria_accessor.h>
-#include <deal.II/grid/tria_iterator.h>
-#include <deal.II/grid/grid_refinement.h>
-#include <deal.II/grid/tria_boundary_lib.h>
-#include <deal.II/grid/intergrid_map.h>
-#include <deal.II/dofs/dof_handler.h>
-#include <deal.II/lac/constraint_matrix.h>
-#include <deal.II/dofs/dof_accessor.h>
-#include <deal.II/dofs/dof_tools.h>
-#include <deal.II/fe/fe_q.h>
-#include <deal.II/fe/fe_values.h>
-#include <deal.II/fe/fe_tools.h>
-#include <deal.II/fe/mapping_q.h>
-#include <deal.II/numerics/vector_tools.h>
-#include <deal.II/numerics/matrix_tools.h>
-#include <deal.II/numerics/data_out.h>
-#include <deal.II/numerics/error_estimator.h>
-#include <deal.II/numerics/derivative_approximation.h>
-
-#include <iostream>
-#include <fstream>
-#include <list>
-#include <algorithm>
-#include <numeric>
-#include <stdlib.h>
-
-#ifdef HAVE_STD_STRINGSTREAM
-# include <sstream>
-#else
-# include <strstream>
-#endif
-
-using namespace dealii;
-
-
-/**
- * The number of iterations the program shall do. This is given as a
- * parameter to the executable.
- */
-unsigned int n_steps = 0;
-/**
- * The present step.
- */
-unsigned int step;
-
- /**
- * Declare the coefficient in front
- * of the Laplace operator of the
- * equation.
- */
-template <int dim>
-class LaplaceCoefficient : public Function<dim>
-{
- public:
- virtual double value (const Point<dim> &p,
- const unsigned int) const
- {
- return 1.+p*p;
- }
-};
-
-
- /**
- * Same for the coefficient in front
- * of the mass term.
- */
-template <int dim>
-class MassCoefficient : public Function<dim>
-{
- public:
- virtual double value (const Point<dim> &p,
- const unsigned int) const
- {
- double factor = 1;
- for (unsigned int d=0; d<dim; ++d)
- factor *= std::sin(4*p(d));
- return 1.+factor/2;
- }
-};
-
-
-
- // @sect3{Evaluating the solution}
-
- // As mentioned in the introduction,
- // significant parts of the program
- // have simply been taken over from
- // the step-13 example program. We
- // therefore only comment on those
- // things that are new.
- //
- // First, the framework for
- // evaluation of solutions is
- // unchanged, i.e. the base class is
- // the same, and the class to
- // evaluate the solution at a grid
- // point is unchanged:
-namespace Evaluation
-{
- // @sect4{The EvaluationBase class}
- template <int dim>
- class EvaluationBase
- {
- public:
- virtual ~EvaluationBase ();
-
- void set_refinement_cycle (const unsigned int refinement_cycle);
-
- virtual void operator () (const DoFHandler<dim> &dof_handler,
- const Vector<double> &solution) const = 0;
-
- unsigned int refinement_cycle;
- };
-
-
- template <int dim>
- EvaluationBase<dim>::~EvaluationBase ()
- {}
-
-
-
- template <int dim>
- void
- EvaluationBase<dim>::set_refinement_cycle (const unsigned int step)
- {
- refinement_cycle = step;
- }
-
-
- // @sect4{The PointValueEvaluation class}
- template <int dim>
- class PointValueEvaluation : public EvaluationBase<dim>
- {
- public:
- PointValueEvaluation (const Point<dim> &evaluation_point);
-
- virtual void operator () (const DoFHandler<dim> &dof_handler,
- const Vector<double> &solution) const;
-
- DeclException1 (ExcEvaluationPointNotFound,
- Point<dim>,
- << "The evaluation point " << arg1
- << " was not found among the vertices of the present grid.");
-
- const Point<dim> evaluation_point;
- };
-
-
- template <int dim>
- PointValueEvaluation<dim>::
- PointValueEvaluation (const Point<dim> &evaluation_point)
- :
- evaluation_point (evaluation_point)
- {}
-
-
-
- template <int dim>
- void
- PointValueEvaluation<dim>::
- operator () (const DoFHandler<dim> &dof_handler,
- const Vector<double> &solution) const
- {
- double point_value = 1e20;
-
- typename DoFHandler<dim>::active_cell_iterator
- cell = dof_handler.begin_active(),
- endc = dof_handler.end();
- bool evaluation_point_found = false;
- for (; (cell!=endc) && !evaluation_point_found; ++cell)
- for (unsigned int vertex=0;
- vertex<GeometryInfo<dim>::vertices_per_cell;
- ++vertex)
- if (cell->vertex(vertex).distance (evaluation_point)
- <
- cell->diameter() * 1e-8)
- {
- point_value = solution(cell->vertex_dof_index(vertex,0));
-
- evaluation_point_found = true;
- break;
- };
-
- AssertThrow (evaluation_point_found,
- ExcEvaluationPointNotFound(evaluation_point));
-
- std::cout << " Point value=" << point_value
- << std::endl;
- }
-
-
- // @sect4{The PointXDerivativeEvaluation class}
-
- // Besides the class implementing
- // the evaluation of the solution
- // at one point, we here provide
- // one which evaluates the gradient
- // at a grid point. Since in
- // general the gradient of a finite
- // element function is not
- // continuous at a vertex, we have
- // to be a little bit more careful
- // here. What we do is to loop over
- // all cells, even if we have found
- // the point already on one cell,
- // and use the mean value of the
- // gradient at the vertex taken
- // from all adjacent cells.
- //
- // Given the interface of the
- // ``PointValueEvaluation'' class,
- // the declaration of this class
- // provides little surprise, and
- // neither does the constructor:
- template <int dim>
- class PointXDerivativeEvaluation : public EvaluationBase<dim>
- {
- public:
- PointXDerivativeEvaluation (const Point<dim> &evaluation_point);
-
- virtual void operator () (const DoFHandler<dim> &dof_handler,
- const Vector<double> &solution) const;
-
- DeclException1 (ExcEvaluationPointNotFound,
- Point<dim>,
- << "The evaluation point " << arg1
- << " was not found among the vertices of the present grid.");
-
- const Point<dim> evaluation_point;
- };
-
-
- template <int dim>
- PointXDerivativeEvaluation<dim>::
- PointXDerivativeEvaluation (const Point<dim> &evaluation_point)
- :
- evaluation_point (evaluation_point)
- {}
-
-
- // The more interesting things
- // happen inside the function doing
- // the actual evaluation:
- template <int dim>
- void
- PointXDerivativeEvaluation<dim>::
- operator () (const DoFHandler<dim> &dof_handler,
- const Vector<double> &solution) const
- {
- // This time initialize the
- // return value with something
- // useful, since we will have to
- // add up a number of
- // contributions and take the
- // mean value afterwards...
- double point_derivative = 0;
-
- // ...then have some objects of
- // which the meaning wil become
- // clear below...
- QTrapez<dim> vertex_quadrature;
- MappingQ<dim> mapping (4);
- FEValues<dim> fe_values (mapping, dof_handler.get_fe(),
- vertex_quadrature,
- update_gradients | update_q_points);
- std::vector<Tensor<1,dim> >
- solution_gradients (vertex_quadrature.n_quadrature_points);
-
- // ...and next loop over all cells
- // and their vertices, and count
- // how often the vertex has been
- // found:
- typename DoFHandler<dim>::active_cell_iterator
- cell = dof_handler.begin_active(),
- endc = dof_handler.end();
- unsigned int evaluation_point_hits = 0;
- for (; cell!=endc; ++cell)
- for (unsigned int vertex=0;
- vertex<GeometryInfo<dim>::vertices_per_cell;
- ++vertex)
- if (cell->vertex(vertex) == evaluation_point)
- {
- // Things are now no more
- // as simple, since we
- // can't get the gradient
- // of the finite element
- // field as before, where
- // we simply had to pick
- // one degree of freedom
- // at a vertex.
- //
- // Rather, we have to
- // evaluate the finite
- // element field on this
- // cell, and at a certain
- // point. As you know,
- // evaluating finite
- // element fields at
- // certain points is done
- // through the
- // ``FEValues'' class, so
- // we use that. The
- // question is: the
- // ``FEValues'' object
- // needs to be a given a
- // quadrature formula and
- // can then compute the
- // values of finite
- // element quantities at
- // the quadrature
- // points. Here, we don't
- // want to do quadrature,
- // we simply want to
- // specify some points!
- //
- // Nevertheless, the same
- // way is chosen: use a
- // special quadrature
- // rule with points at
- // the vertices, since
- // these are what we are
- // interested in. The
- // appropriate rule is
- // the trapezoidal rule,
- // so that is the reason
- // why we used that one
- // above.
- //
- // Thus: initialize the
- // ``FEValues'' object on
- // this cell,
- fe_values.reinit (cell);
- // and extract the
- // gradients of the
- // solution vector at the
- // vertices:
- fe_values.get_function_grads (solution,
- solution_gradients);
-
- // Now we have the
- // gradients at all
- // vertices, so pick out
- // that one which belongs
- // to the evaluation
- // point (note that the
- // order of vertices is
- // not necessarily the
- // same as that of the
- // quadrature points):
- unsigned int q_point = 0;
- for (; q_point<solution_gradients.size(); ++q_point)
- if (fe_values.quadrature_point(q_point) ==
- evaluation_point)
- break;
-
- // Check that the
- // evaluation point was
- // indeed found,
- Assert (q_point < solution_gradients.size(),
- ExcInternalError());
- // and if so take the
- // x-derivative of the
- // gradient there as the
- // value which we are
- // interested in, and
- // increase the counter
- // indicating how often
- // we have added to that
- // variable:
- point_derivative += solution_gradients[q_point][0];
- ++evaluation_point_hits;
-
- // Finally break out of
- // the innermost loop
- // iterating over the
- // vertices of the
- // present cell, since if
- // we have found the
- // evaluation point at
- // one vertex it cannot
- // be at a following
- // vertex as well:
- break;
- };
-
- // Now we have looped over all
- // cells and vertices, so check
- // whether the point was found:
- AssertThrow (evaluation_point_hits > 0,
- ExcEvaluationPointNotFound(evaluation_point));
-
- // We have simply summed up the
- // contributions of all adjacent
- // cells, so we still have to
- // compute the mean value. Once
- // this is done, report the status:
- point_derivative /= evaluation_point_hits;
- std::cout << " Point x-derivative=" << point_derivative
- << std::endl;
- }
-
-
-
- // @sect4{The GridOutput class}
-
- // Since this program has a more
- // difficult structure (it computed
- // a dual solution in addition to a
- // primal one), writing out the
- // solution is no more done by an
- // evaluation object since we want
- // to write both solutions at once
- // into one file, and that requires
- // some more information than
- // available to the evaluation
- // classes.
- //
- // However, we also want to look at
- // the grids generated. This again
- // can be done with one such
- // class. Its structure is analog
- // to the ``SolutionOutput'' class
- // of the previous example program,
- // so we do not discuss it here in
- // more detail. Furthermore,
- // everything that is used here has
- // already been used in previous
- // example programs.
- template <int dim>
- class GridOutput : public EvaluationBase<dim>
- {
- public:
- GridOutput (const std::string &output_name_base);
-
- virtual void operator () (const DoFHandler<dim> &dof_handler,
- const Vector<double> &solution) const;
-
- const std::string output_name_base;
- };
-
-
- template <int dim>
- GridOutput<dim>::
- GridOutput (const std::string &output_name_base)
- :
- output_name_base (output_name_base)
- {}
-
-
- template <int dim>
- void
- GridOutput<dim>::operator () (const DoFHandler<dim> &dof_handler,
- const Vector<double> &/*solution*/) const
- {
-#ifdef HAVE_STD_STRINGSTREAM
- std::ostringstream filename;
-#else
- std::ostrstream filename;
-#endif
- filename << "spec2006-447.dealII/"
- << output_name_base << "-"
- << this->refinement_cycle
- << ".eps"
- << std::ends;
-#ifdef HAVE_STD_STRINGSTREAM
- std::ofstream out (filename.str().c_str());
-#else
- std::ofstream out (filename.str());
-#endif
-
- GridOut().write_eps (dof_handler.get_tria(), out);
- }
-}
-
-
- // @sect3{The Laplace solver classes}
-
- // Next are the actual solver
- // classes. Again, we discuss only
- // the differences to the previous
- // program.
-namespace LaplaceSolver
-{
- // Before everything else,
- // forward-declare one class that
- // we will have later, since we
- // will want to make it a friend of
- // some of the classes that follow,
- // which requires the class to be
- // known:
- template <int dim> class WeightedResidual;
-
-
- // @sect4{The Laplace solver base class}
-
- // This class is almost unchanged,
- // with the exception that it
- // declares two more functions:
- // ``output_solution'' will be used
- // to generate output files from
- // the actual solutions computed by
- // derived classes, and the
- // ``set_refinement_cycle''
- // function by which the testing
- // framework sets the number of the
- // refinement cycle to a local
- // variable in this class; this
- // number is later used to generate
- // filenames for the solution
- // output.
- template <int dim>
- class Base
- {
- public:
- Base (Triangulation<dim> &coarse_grid);
- virtual ~Base ();
-
- virtual void solve_problem () = 0;
- virtual void postprocess (const Evaluation::EvaluationBase<dim> &postprocessor) const = 0;
- virtual void refine_grid () = 0;
- virtual unsigned int n_dofs () const = 0;
-
- virtual void set_refinement_cycle (const unsigned int cycle);
-
- virtual void output_solution () const = 0;
-
-
- const SmartPointer<Triangulation<dim> > triangulation;
-
- unsigned int refinement_cycle;
- };
-
-
- template <int dim>
- Base<dim>::Base (Triangulation<dim> &coarse_grid)
- :
- triangulation (&coarse_grid)
- {}
-
-
- template <int dim>
- Base<dim>::~Base ()
- {}
-
-
-
- template <int dim>
- void
- Base<dim>::set_refinement_cycle (const unsigned int cycle)
- {
- refinement_cycle = cycle;
- }
-
-
- // @sect4{The Laplace Solver class}
-
- // Likewise, the ``Solver'' class
- // is entirely unchanged and will
- // thus not be discussed.
- template <int dim>
- class Solver : public virtual Base<dim>
- {
- public:
- Solver (Triangulation<dim> &triangulation,
- const FiniteElement<dim> &fe,
- const Quadrature<dim> &quadrature,
- const Quadrature<dim-1> &face_quadrature,
- const Function<dim> &boundary_values);
- virtual
- ~Solver ();
-
- virtual
- void
- solve_problem ();
-
- virtual
- void
- postprocess (const Evaluation::EvaluationBase<dim> &postprocessor) const;
-
- virtual
- unsigned int
- n_dofs () const;
-
-
- const SmartPointer<const FiniteElement<dim> > fe;
- const SmartPointer<const Quadrature<dim> > quadrature;
- const SmartPointer<const Quadrature<dim-1> > face_quadrature;
- DoFHandler<dim> dof_handler;
- Vector<double> solution;
- const SmartPointer<const Function<dim> > boundary_values;
-
- virtual void assemble_rhs (Vector<double> &rhs) const = 0;
-
-
- struct LinearSystem
- {
- LinearSystem (const DoFHandler<dim> &dof_handler);
-
- void solve (Vector<double> &solution) const;
-
- ConstraintMatrix hanging_node_constraints;
- SparsityPattern sparsity_pattern;
- SparseMatrix<double> matrix;
- Vector<double> rhs;
- };
-
- void
- assemble_linear_system (LinearSystem &linear_system);
-
- void
- assemble_matrix (LinearSystem &linear_system,
- const typename DoFHandler<dim>::active_cell_iterator &begin_cell,
- const typename DoFHandler<dim>::active_cell_iterator &end_cell,
- Threads::ThreadMutex &mutex) const;
- };
-
-
-
- template <int dim>
- Solver<dim>::Solver (Triangulation<dim> &triangulation,
- const FiniteElement<dim> &fe,
- const Quadrature<dim> &quadrature,
- const Quadrature<dim-1> &face_quadrature,
- const Function<dim> &boundary_values)
- :
- Base<dim> (triangulation),
- fe (&fe),
- quadrature (&quadrature),
- face_quadrature (&face_quadrature),
- dof_handler (triangulation),
- boundary_values (&boundary_values)
- {}
-
-
- template <int dim>
- Solver<dim>::~Solver ()
- {
- dof_handler.clear ();
- }
-
-
- template <int dim>
- void
- Solver<dim>::solve_problem ()
- {
- dof_handler.distribute_dofs (*fe);
- solution.reinit (dof_handler.n_dofs());
-
- LinearSystem linear_system (dof_handler);
- assemble_linear_system (linear_system);
- linear_system.solve (solution);
- }
-
-
- template <int dim>
- void
- Solver<dim>::
- postprocess (const Evaluation::EvaluationBase<dim> &postprocessor) const
- {
- postprocessor (dof_handler, solution);
- }
-
-
- template <int dim>
- unsigned int
- Solver<dim>::n_dofs () const
- {
- return dof_handler.n_dofs();
- }
-
-
- template <int dim>
- void
- Solver<dim>::assemble_linear_system (LinearSystem &linear_system)
- {
- typedef
- typename DoFHandler<dim>::active_cell_iterator
- active_cell_iterator;
-
- const unsigned int n_threads = multithread_info.n_default_threads;
- std::vector<std::pair<active_cell_iterator,active_cell_iterator> >
- thread_ranges
- = Threads::split_range<active_cell_iterator> (dof_handler.begin_active (),
- dof_handler.end (),
- n_threads);
-
- Threads::ThreadMutex mutex;
- Threads::ThreadGroup<> threads;
- for (unsigned int thread=0; thread<n_threads; ++thread)
- threads += Threads::spawn (*this, &Solver<dim>::assemble_matrix)
- (linear_system,
- thread_ranges[thread].first,
- thread_ranges[thread].second,
- mutex);
-
- assemble_rhs (linear_system.rhs);
- linear_system.hanging_node_constraints.condense (linear_system.rhs);
-
- std::map<unsigned int,double> boundary_value_map;
- VectorTools::interpolate_boundary_values (dof_handler,
- 0,
- *boundary_values,
- boundary_value_map);
-
- threads.join_all ();
- linear_system.hanging_node_constraints.condense (linear_system.matrix);
-
- MatrixTools::apply_boundary_values (boundary_value_map,
- linear_system.matrix,
- solution,
- linear_system.rhs);
- }
-
-
- template <int dim>
- void
- Solver<dim>::assemble_matrix (LinearSystem &linear_system,
- const typename DoFHandler<dim>::active_cell_iterator &begin_cell,
- const typename DoFHandler<dim>::active_cell_iterator &end_cell,
- Threads::ThreadMutex &mutex) const
- {
- MappingQ<dim> mapping (4);
- FEValues<dim> fe_values (mapping, *fe, *quadrature,
- UpdateFlags(update_gradients | update_values |
- update_q_points |
- update_JxW_values));
-
- const unsigned int dofs_per_cell = fe->dofs_per_cell;
- const unsigned int n_q_points = quadrature->n_quadrature_points;
-
- FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
-
- std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell);
-
- std::vector<double> laplace_coefficients (fe_values.n_quadrature_points);
- std::vector<double> mass_coefficients (fe_values.n_quadrature_points);
-
-
- for (typename DoFHandler<dim>::active_cell_iterator cell=begin_cell;
- cell!=end_cell; ++cell)
- {
- cell_matrix = 0;
-
- fe_values.reinit (cell);
-
- LaplaceCoefficient<dim>().value_list (fe_values.get_quadrature_points(),
- laplace_coefficients);
- MassCoefficient<dim>().value_list (fe_values.get_quadrature_points(),
- mass_coefficients);
-
-
- for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- cell_matrix(i,j) += ((fe_values.shape_grad(i,q_point) *
- fe_values.shape_grad(j,q_point) *
- laplace_coefficients[q_point]
- +
- fe_values.shape_value(i,q_point) *
- fe_values.shape_value(j,q_point) *
- mass_coefficients[q_point]
- ) *
- fe_values.JxW(q_point));
-
-
- cell->get_dof_indices (local_dof_indices);
- Threads::ThreadMutex::ScopedLock lock (mutex);
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- linear_system.matrix.add (local_dof_indices[i],
- local_dof_indices[j],
- cell_matrix(i,j));
- };
- }
-
-
- template <int dim>
- Solver<dim>::LinearSystem::
- LinearSystem (const DoFHandler<dim> &dof_handler)
- {
- hanging_node_constraints.clear ();
-
- void (*mhnc_p) (const DoFHandler<dim> &,
- ConstraintMatrix &)
- = &DoFTools::make_hanging_node_constraints;
-
- Threads::Thread<>
- mhnc_thread = Threads::spawn (mhnc_p)(dof_handler, hanging_node_constraints);
-
- // make sparsity pattern. since
- // in 3d the usual way just blows
- // the roof w.r.t. memory
- // consumption, use the detour
- // via a compressed sparsity
- // pattern that we later copy
- // over
- CompressedSparsityPattern csp(dof_handler.n_dofs(),
- dof_handler.n_dofs());
- DoFTools::make_sparsity_pattern (dof_handler, csp);
-
- mhnc_thread.join ();
- hanging_node_constraints.close ();
- hanging_node_constraints.condense (csp);
-
- sparsity_pattern.copy_from(csp);
- matrix.reinit (sparsity_pattern);
- rhs.reinit (dof_handler.n_dofs());
- }
-
-
-
- template <int dim>
- void
- Solver<dim>::LinearSystem::solve (Vector<double> &solution) const
- {
- SolverControl solver_control (solution.size(), 1e-6);
- PrimitiveVectorMemory<> vector_memory;
- SolverCG<> cg (solver_control, vector_memory);
-
- PreconditionJacobi<> preconditioner;
- preconditioner.initialize(matrix);
-
- cg.solve (matrix, solution, rhs, preconditioner);
-
- hanging_node_constraints.distribute (solution);
- }
-
-
-
-
- // @sect4{The PrimalSolver class}
-
- // The ``PrimalSolver'' class is
- // also mostly unchanged except for
- // overloading the functions
- // ``solve_problem'', ``n_dofs'',
- // and ``postprocess'' of the base
- // class, and implementing the
- // ``output_solution''
- // function. These overloaded
- // functions do nothing particular
- // besides calling the functions of
- // the base class -- that seems
- // superfluous, but works around a
- // bug in a popular compiler which
- // requires us to write such
- // functions for the following
- // scenario: Besides the
- // ``PrimalSolver'' class, we will
- // have a ``DualSolver'', both
- // derived from ``Solver''. We will
- // then have a final classes which
- // derived from these two, which
- // will then have two instances of
- // the ``Solver'' class as its base
- // classes. If we want, for
- // example, the number of degrees
- // of freedom of the primal solver,
- // we would have to indicate this
- // like so:
- // ``PrimalSolver<dim>::n_dofs()''.
- // However, the compiler does not
- // accept this since the ``n_dofs''
- // function is actually from a base
- // class of the ``PrimalSolver''
- // class, so we have to inject the
- // name from the base to the
- // derived class using these
- // additional functions.
- //
- // Regarding the implementation of
- // the ``output_solution''
- // function, we keep the
- // ``GlobalRefinement'' and
- // ``RefinementKelly'' classes in
- // this program, and they can then
- // rely on the default
- // implementation of this function
- // which simply outputs the primal
- // solution. The class implementing
- // dual weighted error estimators
- // will overload this function
- // itself, to also output the dual
- // solution.
- //
- // Except for this, the class is
- // unchanged with respect to the
- // previous example.
- template <int dim>
- class PrimalSolver : public Solver<dim>
- {
- public:
- PrimalSolver (Triangulation<dim> &triangulation,
- const FiniteElement<dim> &fe,
- const Quadrature<dim> &quadrature,
- const Quadrature<dim-1> &face_quadrature,
- const Function<dim> &rhs_function,
- const Function<dim> &boundary_values);
-
- virtual
- void solve_problem ();
-
- virtual
- unsigned int n_dofs () const;
-
- virtual
- void postprocess (const Evaluation::EvaluationBase<dim> &postprocessor) const;
-
- virtual
- void output_solution () const;
-
-
- const SmartPointer<const Function<dim> > rhs_function;
- virtual void assemble_rhs (Vector<double> &rhs) const;
-
- // Now, in order to work around
- // some problems in one of the
- // compilers this library can
- // be compiled with, we will
- // have to use some
- // workarounds. This will
- // require that we declare a
- // class that is actually
- // derived from the present
- // one, as a friend (strange as
- // that seems). The full
- // rationale will be explained
- // below.
- friend class WeightedResidual<dim>;
- };
-
-
- template <int dim>
- PrimalSolver<dim>::
- PrimalSolver (Triangulation<dim> &triangulation,
- const FiniteElement<dim> &fe,
- const Quadrature<dim> &quadrature,
- const Quadrature<dim-1> &face_quadrature,
- const Function<dim> &rhs_function,
- const Function<dim> &boundary_values)
- :
- Base<dim> (triangulation),
- Solver<dim> (triangulation, fe,
- quadrature, face_quadrature,
- boundary_values),
- rhs_function (&rhs_function)
- {}
-
-
- template <int dim>
- void
- PrimalSolver<dim>::solve_problem ()
- {
- Solver<dim>::solve_problem ();
- }
-
-
-
- template <int dim>
- unsigned int
- PrimalSolver<dim>::n_dofs() const
- {
- return Solver<dim>::n_dofs();
- }
-
-
- template <int dim>
- void
- PrimalSolver<dim>::
- postprocess (const Evaluation::EvaluationBase<dim> &postprocessor) const
- {
- Solver<dim>::postprocess(postprocessor);
- }
-
-
- template <int dim>
- void
- PrimalSolver<dim>::output_solution () const
- {
- abort ();
- }
-
-
-
- template <int dim>
- void
- PrimalSolver<dim>::
- assemble_rhs (Vector<double> &rhs) const
- {
- MappingQ<dim> mapping (4);
- FEValues<dim> fe_values (mapping, *this->fe, *this->quadrature,
- UpdateFlags(update_values |
- update_q_points |
- update_JxW_values));
-
- const unsigned int dofs_per_cell = this->fe->dofs_per_cell;
- const unsigned int n_q_points = this->quadrature->n_quadrature_points;
-
- Vector<double> cell_rhs (dofs_per_cell);
- std::vector<double> rhs_values (n_q_points);
- std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell);
-
- typename DoFHandler<dim>::active_cell_iterator
- cell = this->dof_handler.begin_active(),
- endc = this->dof_handler.end();
- for (; cell!=endc; ++cell)
- {
- cell_rhs = 0;
-
- fe_values.reinit (cell);
-
- rhs_function->value_list (fe_values.get_quadrature_points(),
- rhs_values);
-
- for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- cell_rhs(i) += (fe_values.shape_value(i,q_point) *
- rhs_values[q_point] *
- fe_values.JxW(q_point));
-
- cell->get_dof_indices (local_dof_indices);
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- rhs(local_dof_indices[i]) += cell_rhs(i);
- }
- }
-
-
- // @sect4{The RefinementGlobal and RefinementKelly classes}
-
- // For the following two classes,
- // the same applies as for most of
- // the above: the class is taken
- // from the previous example as-is:
- template <int dim>
- class RefinementGlobal : public PrimalSolver<dim>
- {
- public:
- RefinementGlobal (Triangulation<dim> &coarse_grid,
- const FiniteElement<dim> &fe,
- const Quadrature<dim> &quadrature,
- const Quadrature<dim-1> &face_quadrature,
- const Function<dim> &rhs_function,
- const Function<dim> &boundary_values);
-
- virtual void refine_grid ();
- };
-
-
-
- template <int dim>
- RefinementGlobal<dim>::
- RefinementGlobal (Triangulation<dim> &coarse_grid,
- const FiniteElement<dim> &fe,
- const Quadrature<dim> &quadrature,
- const Quadrature<dim-1> &face_quadrature,
- const Function<dim> &rhs_function,
- const Function<dim> &boundary_values)
- :
- Base<dim> (coarse_grid),
- PrimalSolver<dim> (coarse_grid, fe, quadrature,
- face_quadrature, rhs_function,
- boundary_values)
- {}
-
-
-
- template <int dim>
- void
- RefinementGlobal<dim>::refine_grid ()
- {
- this->triangulation->refine_global (1);
- }
-
-
-
- template <int dim>
- class RefinementKelly : public PrimalSolver<dim>
- {
- public:
- RefinementKelly (Triangulation<dim> &coarse_grid,
- const FiniteElement<dim> &fe,
- const Quadrature<dim> &quadrature,
- const Quadrature<dim-1> &face_quadrature,
- const Function<dim> &rhs_function,
- const Function<dim> &boundary_values);
-
- virtual void refine_grid ();
- };
-
-
-
- template <int dim>
- RefinementKelly<dim>::
- RefinementKelly (Triangulation<dim> &coarse_grid,
- const FiniteElement<dim> &fe,
- const Quadrature<dim> &quadrature,
- const Quadrature<dim-1> &face_quadrature,
- const Function<dim> &rhs_function,
- const Function<dim> &boundary_values)
- :
- Base<dim> (coarse_grid),
- PrimalSolver<dim> (coarse_grid, fe, quadrature,
- face_quadrature,
- rhs_function, boundary_values)
- {}
-
-
-
- template <int dim>
- void
- RefinementKelly<dim>::refine_grid ()
- {
- Vector<float> estimated_error_per_cell (this->triangulation->n_active_cells());
- KellyErrorEstimator<dim>::estimate (this->dof_handler,
- QGauss<dim-1>(3),
- typename FunctionMap<dim>::type(),
- this->solution,
- estimated_error_per_cell);
- GridRefinement::refine_and_coarsen_fixed_number (*this->triangulation,
- estimated_error_per_cell,
- 0.2, 0.02);
- this->triangulation->execute_coarsening_and_refinement ();
- }
-
-
-
- // @sect4{The RefinementWeightedKelly class}
-
- // This class is a variant of the
- // previous one, in that it allows
- // to weight the refinement
- // indicators we get from the
- // library's Kelly indicator by
- // some function. We include this
- // class since the goal of this
- // example program is to
- // demonstrate automatic refinement
- // criteria even for complex output
- // quantities such as point values
- // or stresses. If we did not solve
- // a dual problem and compute the
- // weights thereof, we would
- // probably be tempted to give a
- // hand-crafted weighting to the
- // indicators to account for the
- // fact that we are going to
- // evaluate these quantities. This
- // class accepts such a weighting
- // function as argument to its
- // constructor:
- template <int dim>
- class RefinementWeightedKelly : public PrimalSolver<dim>
- {
- public:
- RefinementWeightedKelly (Triangulation<dim> &coarse_grid,
- const FiniteElement<dim> &fe,
- const Quadrature<dim> &quadrature,
- const Quadrature<dim-1> &face_quadrature,
- const Function<dim> &rhs_function,
- const Function<dim> &boundary_values,
- const Function<dim> &weighting_function);
-
- virtual void refine_grid ();
-
-
- const SmartPointer<const Function<dim> > weighting_function;
- };
-
-
-
- template <int dim>
- RefinementWeightedKelly<dim>::
- RefinementWeightedKelly (Triangulation<dim> &coarse_grid,
- const FiniteElement<dim> &fe,
- const Quadrature<dim> &quadrature,
- const Quadrature<dim-1> &face_quadrature,
- const Function<dim> &rhs_function,
- const Function<dim> &boundary_values,
- const Function<dim> &weighting_function)
- :
- Base<dim> (coarse_grid),
- PrimalSolver<dim> (coarse_grid, fe, quadrature,
- face_quadrature,
- rhs_function, boundary_values),
- weighting_function (&weighting_function)
- {}
-
-
-
- // Now, here comes the main
- // function, including the
- // weighting:
- template <int dim>
- void
- RefinementWeightedKelly<dim>::refine_grid ()
- {
- // First compute some residual
- // based error indicators for all
- // cells by a method already
- // implemented in the
- // library. What exactly is
- // computed can be read in the
- // documentation of that class.
- Vector<float> estimated_error (this->triangulation->n_active_cells());
- KellyErrorEstimator<dim>::estimate (this->dof_handler,
- *this->face_quadrature,
- typename FunctionMap<dim>::type(),
- this->solution,
- estimated_error);
-
- // Now we are going to weight
- // these indicators by the value
- // of the function given to the
- // constructor:
- typename DoFHandler<dim>::active_cell_iterator
- cell = this->dof_handler.begin_active(),
- endc = this->dof_handler.end();
- for (unsigned int cell_index=0; cell!=endc; ++cell, ++cell_index)
- estimated_error(cell_index)
- *= weighting_function->value (cell->center());
-
- GridRefinement::refine_and_coarsen_fixed_number (*this->triangulation,
- estimated_error,
- 0.2, 0.02);
- this->triangulation->execute_coarsening_and_refinement ();
- }
-
-}
-
-
- // @sect3{Equation data}
- //
- // In this example program, we work
- // with the same data sets as in the
- // previous one, but as it may so
- // happen that someone wants to run
- // the program with different
- // boundary values and right hand side
- // functions, or on a different grid,
- // we show a simple technique to do
- // exactly that. For more clarity, we
- // furthermore pack everything that
- // has to do with equation data into
- // a namespace of its own.
- //
- // The underlying assumption is that
- // this is a research program, and
- // that there we often have a number
- // of test cases that consist of a
- // domain, a right hand side,
- // boundary values, possibly a
- // specified coefficient, and a
- // number of other parameters. They
- // often vary all at the same time
- // when shifting from one example to
- // another. To make handling such
- // sets of problem description
- // parameters simple is the goal of
- // the following.
- //
- // Basically, the idea is this: let
- // us have a structure for each set
- // of data, in which we pack
- // everything that describes a test
- // case: here, these are two
- // subclasses, one called
- // ``BoundaryValues'' for the
- // boundary values of the exact
- // solution, and one called
- // ``RightHandSide'', and then a way
- // to generate the coarse grid. Since
- // the solution of the previous
- // example program looked like curved
- // ridges, we use this name here for
- // the enclosing class. Note that the
- // names of the two inner classes
- // have to be the same for all
- // enclosing test case classes, and
- // also that we have attached the
- // dimension template argument to the
- // enclosing class rather than to the
- // inner ones, to make further
- // processing simpler. (From a
- // language viewpoint, a namespace
- // would be better to encapsulate
- // these inner classes, rather than a
- // structure. However, namespaces
- // cannot be given as template
- // arguments, so we use a structure
- // to allow a second object to select
- // from within its given
- // argument. The enclosing structure,
- // of course, has no member variables
- // apart from the classes it
- // declares, and a static function to
- // generate the coarse mesh; it will
- // in general never be instantiated.)
- //
- // The idea is then the following
- // (this is the right time to also
- // take a brief look at the code
- // below): we can generate objects
- // for boundary values and
- // right hand side by simply giving
- // the name of the outer class as a
- // template argument to a class which
- // we call here ``Data::SetUp'', and
- // it then creates objects for the
- // inner classes. In this case, to
- // get all that characterizes the
- // curved ridge solution, we would
- // simply generate an instance of
- // ``Data::SetUp<Data::CurvedRidge>'',
- // and everything we need to know
- // about the solution would be static
- // member variables and functions of
- // that object.
- //
- // This approach might seem like
- // overkill in this case, but will
- // become very handy once a certain
- // set up is not only characterized
- // by Dirichlet boundary values and a
- // right hand side function, but in
- // addition by material properties,
- // Neumann values, different boundary
- // descriptors, etc. In that case,
- // the ``SetUp'' class might consist
- // of a dozen or more objects, and
- // each descriptor class (like the
- // ``CurvedRidges'' class below)
- // would have to provide them. Then,
- // you will be happy to be able to
- // change from one set of data to
- // another by only changing the
- // template argument to the ``SetUp''
- // class at one place, rather than at
- // many.
- //
- // With this framework for different
- // test cases, we are almost
- // finished, but one thing remains:
- // by now we can select statically,
- // by changing one template argument,
- // which data set to choose. In order
- // to be able to do that dynamically,
- // i.e. at run time, we need a base
- // class. This we provide in the
- // obvious way, see below, with
- // virtual abstract functions. It
- // forces us to introduce a second
- // template parameter ``dim'' which
- // we need for the base class (which
- // could be avoided using some
- // template magic, but we omit that),
- // but that's all.
- //
- // Adding new testcases is now
- // simple, you don't have to touch
- // the framework classes, only a
- // structure like the
- // ``CurvedRidges'' one is needed.
-namespace Data
-{
- // @sect4{The SetUpBase and SetUp classes}
-
- // Based on the above description,
- // the ``SetUpBase'' class then
- // looks as follows. To allow using
- // the ``SmartPointer'' class with
- // this class, we derived from the
- // ``Subscriptor'' class.
- template <int dim>
- struct SetUpBase : public Subscriptor
- {
- virtual
- const Function<dim> & get_boundary_values () const = 0;
-
- virtual
- const Function<dim> & get_right_hand_side () const = 0;
-
- virtual
- void create_coarse_grid (Triangulation<dim> &coarse_grid) const = 0;
- };
-
-
- // And now for the derived class
- // that takes the template argument
- // as explained above. For some
- // reason, C++ requires us to
- // define a constructor (which
- // maybe empty), as otherwise a
- // warning is generated that some
- // data is not initialized.
- //
- // Here we pack the data elements
- // into private variables, and
- // allow access to them through the
- // methods of the base class.
- template <class Traits, int dim>
- struct SetUp : public SetUpBase<dim>
- {
- SetUp () {};
-
- virtual
- const Function<dim> & get_boundary_values () const;
-
- virtual
- const Function<dim> & get_right_hand_side () const;
-
-
- virtual
- void create_coarse_grid (Triangulation<dim> &coarse_grid) const;
-
-
- static const typename Traits::BoundaryValues boundary_values;
- static const typename Traits::RightHandSide right_hand_side;
- };
-
- // We have to provide definitions
- // for the static member variables
- // of the above class:
- template <class Traits, int dim>
- const typename Traits::BoundaryValues SetUp<Traits,dim>::boundary_values;
- template <class Traits, int dim>
- const typename Traits::RightHandSide SetUp<Traits,dim>::right_hand_side;
-
- // And definitions of the member
- // functions:
- template <class Traits, int dim>
- const Function<dim> &
- SetUp<Traits,dim>::get_boundary_values () const
- {
- return boundary_values;
- }
-
-
- template <class Traits, int dim>
- const Function<dim> &
- SetUp<Traits,dim>::get_right_hand_side () const
- {
- return right_hand_side;
- }
-
-
- template <class Traits, int dim>
- void
- SetUp<Traits,dim>::
- create_coarse_grid (Triangulation<dim> &coarse_grid) const
- {
- Traits::create_coarse_grid (coarse_grid);
- }
-
-
- // @sect4{The CurvedRidges class}
-
- // The class that is used to
- // describe the boundary values and
- // right hand side of the ``curved
- // ridge'' problem already used in
- // the step-13 example program is
- // then like so:
- template <int dim>
- struct CurvedRidges
- {
- class BoundaryValues : public Function<dim>
- {
- public:
- BoundaryValues () : Function<dim> () {};
-
- virtual double value (const Point<dim> &p,
- const unsigned int component) const;
- };
-
-
- class RightHandSide : public Function<dim>
- {
- public:
- RightHandSide () : Function<dim> () {};
-
- virtual double value (const Point<dim> &p,
- const unsigned int component) const;
- };
-
- static
- void
- create_coarse_grid (Triangulation<dim> &coarse_grid);
- };
-
-
- template <int dim>
- double
- CurvedRidges<dim>::BoundaryValues::
- value (const Point<dim> &p,
- const unsigned int /*component*/) const
- {
- double q = p(0);
- for (unsigned int i=1; i<dim; ++i)
- q += std::sin(10*p(i)+5*p(0)*p(0));
- const double exponential = std::exp(q);
- return exponential;
- }
-
-
-
- template <int dim>
- double
- CurvedRidges<dim>::RightHandSide::value (const Point<dim> &p,
- const unsigned int /*component*/) const
- {
- double q = p(0);
- for (unsigned int i=1; i<dim; ++i)
- q += std::sin(10*p(i)+5*p(0)*p(0));
- const double u = std::exp(q);
- double t1 = 1,
- t2 = 0,
- t3 = 0;
- for (unsigned int i=1; i<dim; ++i)
- {
- t1 += std::cos(10*p(i)+5*p(0)*p(0)) * 10 * p(0);
- t2 += 10*std::cos(10*p(i)+5*p(0)*p(0)) -
- 100*std::sin(10*p(i)+5*p(0)*p(0)) * p(0)*p(0);
- t3 += 100*std::cos(10*p(i)+5*p(0)*p(0))*std::cos(10*p(i)+5*p(0)*p(0)) -
- 100*std::sin(10*p(i)+5*p(0)*p(0));
- };
- t1 = t1*t1;
-
- return -u*(t1+t2+t3);
- }
-
-
- template <int dim>
- void
- CurvedRidges<dim>::
- create_coarse_grid (Triangulation<dim> &coarse_grid)
- {
- GridGenerator::hyper_cube (coarse_grid, -1, 1);
- coarse_grid.refine_global (2);
- }
-
-
- // @sect4{The Exercise_2_3 class}
-
- // This example program was written
- // while giving practical courses
- // for a lecture on adaptive finite
- // element methods and duality
- // based error estimates. For these
- // courses, we had one exercise,
- // which required to solve the
- // Laplace equation with constant
- // right hand side on a square
- // domain with a square hole in the
- // center, and zero boundary
- // values. Since the implementation
- // of the properties of this
- // problem is so particularly
- // simple here, lets do it. As the
- // number of the exercise was 2.3,
- // we take the liberty to retain
- // this name for the class as well.
- template <int dim>
- struct Exercise_2_3
- {
- // We need a class to denote
- // the boundary values of the
- // problem. In this case, this
- // is simple: it's the zero
- // function, so don't even
- // declare a class, just a
- // typedef:
- typedef ZeroFunction<dim> BoundaryValues;
-
- // Second, a class that denotes
- // the right hand side. Since
- // they are constant, just
- // subclass the corresponding
- // class of the library and be
- // done:
- class RightHandSide : public ConstantFunction<dim>
- {
- public:
- RightHandSide () : ConstantFunction<dim> (1.) {};
- };
-
- // Finally a function to
- // generate the coarse
- // grid. This is somewhat more
- // complicated here, see
- // immediately below.
- static
- void
- create_coarse_grid (Triangulation<dim> &coarse_grid);
- };
-
-
- // As stated above, the grid for
- // this example is the square
- // [-1,1]^2 with the square
- // [-1/2,1/2]^2 as hole in it. We
- // create the coarse grid as 4
- // times 4 cells with the middle
- // four ones missing.
- //
- // Of course, the example has an
- // extension to 3d, but since this
- // function cannot be written in a
- // dimension independent way we
- // choose not to implement this
- // here, but rather only specialize
- // the template for dim=2. If you
- // compile the program for 3d,
- // you'll get a message from the
- // linker that this function is not
- // implemented for 3d, and needs to
- // be provided.
- //
- // For the creation of this
- // geometry, the library has no
- // predefined method. In this case,
- // the geometry is still simple
- // enough to do the creation by
- // hand, rather than using a mesh
- // generator.
-/*
- template <>
- void
- Exercise_2_3<2>::
- create_coarse_grid (Triangulation<2> &coarse_grid)
- {
- // First define the space
- // dimension, to allow those
- // parts of the function that are
- // actually dimension independent
- // to use this variable. That
- // makes it simpler if you later
- // takes this as a starting point
- // to implement the 3d version.
- const unsigned int dim = 2;
-
- // Then have a list of
- // vertices. Here, they are 24 (5
- // times 5, with the middle one
- // omitted). It is probably best
- // to draw a sketch here. Note
- // that we leave the number of
- // vertices open at first, but
- // then let the compiler compute
- // this number afterwards. This
- // reduces the possibility of
- // having the dimension to large
- // and leaving the last ones
- // uninitialized.
- static const Point<2> vertices_1[]
- = { Point<2> (-1., -1.),
- Point<2> (-1./2, -1.),
- Point<2> (0., -1.),
- Point<2> (+1./2, -1.),
- Point<2> (+1, -1.),
-
- Point<2> (-1., -1./2.),
- Point<2> (-1./2, -1./2.),
- Point<2> (0., -1./2.),
- Point<2> (+1./2, -1./2.),
- Point<2> (+1, -1./2.),
-
- Point<2> (-1., 0.),
- Point<2> (-1./2, 0.),
- Point<2> (+1./2, 0.),
- Point<2> (+1, 0.),
-
- Point<2> (-1., 1./2.),
- Point<2> (-1./2, 1./2.),
- Point<2> (0., 1./2.),
- Point<2> (+1./2, 1./2.),
- Point<2> (+1, 1./2.),
-
- Point<2> (-1., 1.),
- Point<2> (-1./2, 1.),
- Point<2> (0., 1.),
- Point<2> (+1./2, 1.),
- Point<2> (+1, 1.) };
- const unsigned int
- n_vertices = sizeof(vertices_1) / sizeof(vertices_1[0]);
-
- // From this static list of
- // vertices, we generate an STL
- // vector of the vertices, as
- // this is the data type the
- // library wants to see.
- const std::vector<Point<dim> > vertices (&vertices_1[0],
- &vertices_1[n_vertices]);
-
- // Next, we have to define the
- // cells and the vertices they
- // contain. Here, we have 8
- // vertices, but leave the number
- // open and let it be computed
- // afterwards:
- static const int cell_vertices[][GeometryInfo<dim>::vertices_per_cell]
- = {{0, 1, 6,5},
- {1, 2, 7, 6},
- {2, 3, 8, 7},
- {3, 4, 9, 8},
- {5, 6, 11, 10},
- {8, 9, 13, 12},
- {10, 11, 15, 14},
- {12, 13, 18, 17},
- {14, 15, 20, 19},
- {15, 16, 21, 20},
- {16, 17, 22, 21},
- {17, 18, 23, 22}};
- const unsigned int
- n_cells = sizeof(cell_vertices) / sizeof(cell_vertices[0]);
-
- // Again, we generate a C++
- // vector type from this, but
- // this time by looping over the
- // cells (yes, this is
- // boring). Additionally, we set
- // the material indicator to zero
- // for all the cells:
- std::vector<CellData<dim> > cells (n_cells, CellData<dim>());
- for (unsigned int i=0; i<n_cells; ++i)
- {
- for (unsigned int j=0;
- j<GeometryInfo<dim>::vertices_per_cell;
- ++j)
- cells[i].vertices[j] = cell_vertices[i][j];
- cells[i].material_id = 0;
- };
-
- // Finally pass all this
- // information to the library to
- // generate a triangulation. The
- // last parameter may be used to
- // pass information about
- // non-zero boundary indicators
- // at certain faces of the
- // triangulation to the library,
- // but we don't want that here,
- // so we give an empty object:
- coarse_grid.create_triangulation (vertices,
- cells,
- SubCellData());
-
- // And since we want that the
- // evaluation point (3/4,3/4) in
- // this example is a grid point,
- // we refine once globally:
- coarse_grid.refine_global (1);
- }
-*/
-
-
- template <>
- void
- Exercise_2_3<3>::
- create_coarse_grid (Triangulation<3> &coarse_grid)
- {
- GridGenerator::hyper_ball (coarse_grid);
- static HyperBallBoundary<3> boundary;
- coarse_grid.set_boundary (0, boundary);
- coarse_grid.refine_global (1);
- }
-
-}
-
- // @sect4{Discussion}
- //
- // As you have now read through this
- // framework, you may be wondering
- // why we have not chosen to
- // implement the classes implementing
- // a certain setup (like the
- // ``CurvedRidges'' class) directly
- // as classes derived from
- // ``Data::SetUpBase''. Indeed, we
- // could have done very well so. The
- // only reason is that then we would
- // have to have member variables for
- // the solution and right hand side
- // classes in the ``CurvedRidges''
- // class, as well as member functions
- // overloading the abstract functions
- // of the base class giving access to
- // these member variables. The
- // ``SetUp'' class has the sole
- // reason to relieve us from the need
- // to reiterate these member
- // variables and functions that would
- // be necessary in all such
- // classes. In some way, the template
- // mechanism here only provides a way
- // to have default implementations
- // for a number of functions that
- // depend on external quantities and
- // can thus not be provided using
- // normal virtual functions, at least
- // not without the help of templates.
- //
- // However, there might be good
- // reasons to actually implement
- // classes derived from
- // ``Data::SetUpBase'', for example
- // if the solution or right hand side
- // classes require constructors that
- // take arguments, which the
- // ``Data::SetUpBase'' class cannot
- // provide. In that case, subclassing
- // is a worthwhile strategy. Other
- // possibilities for special cases
- // are to derive from
- // ``Data::SetUp<SomeSetUp>'' where
- // ``SomeSetUp'' denotes a class, or
- // even to explicitly specialize
- // ``Data::SetUp<SomeSetUp>''. The
- // latter allows to transparently use
- // the way the ``SetUp'' class is
- // used for other set-ups, but with
- // special actions taken for special
- // arguments.
- //
- // A final observation favoring the
- // approach taken here is the
- // following: we have found numerous
- // times that when starting a
- // project, the number of parameters
- // (usually boundary values, right
- // hand side, coarse grid, just as
- // here) was small, and the number of
- // test cases was small as well. One
- // then starts out by handcoding them
- // into a number of ``switch''
- // statements. Over time, projects
- // grow, and so does the number of
- // test cases. The number of
- // ``switch'' statements grows with
- // that, and their length as well,
- // and one starts to find ways to
- // consider impossible examples where
- // domains, boundary values, and
- // right hand sides do not fit
- // together any more, and starts
- // loosing the overview over the
- // whole structure. Encapsulating
- // everything belonging to a certain
- // test case into a structure of its
- // own has proven worthwhile for
- // this, as it keeps everything that
- // belongs to one test case in one
- // place. Furthermore, it allows to
- // put these things all in one or
- // more files that are only devoted
- // to test cases and their data,
- // without having to bring their
- // actual implementation into contact
- // with the rest of the program.
-
-
- // @sect3{Dual functionals}
-
- // As with the other components of
- // the program, we put everything we
- // need to describe dual functionals
- // into a namespace of its own, and
- // define an abstract base class that
- // provides the interface the class
- // solving the dual problem needs for
- // its work.
- //
- // We will then implement two such
- // classes, for the evaluation of a
- // point value and of the derivative
- // of the solution at that point. For
- // these functionals we already have
- // the corresponding evaluation
- // objects, so they are comlementary.
-namespace DualFunctional
-{
- // @sect4{The DualFunctionalBase class}
-
- // First start with the base class
- // for dual functionals. Since for
- // linear problems the
- // characteristics of the dual
- // problem play a role only in the
- // right hand side, we only need to
- // provide for a function that
- // assembles the right hand side
- // for a given discretization:
- template <int dim>
- class DualFunctionalBase : public Subscriptor
- {
- public:
- virtual
- void
- assemble_rhs (const DoFHandler<dim> &dof_handler,
- Vector<double> &rhs) const = 0;
- };
-
-
- // @sect4{The PointValueEvaluation class}
-
- // As a first application, we
- // consider the functional
- // corresponding to the evaluation
- // of the solution's value at a
- // given point which again we
- // assume to be a vertex. Apart
- // from the constructor that takes
- // and stores the evaluation point,
- // this class consists only of the
- // function that implements
- // assembling the right hand side.
- template <int dim>
- class PointValueEvaluation : public DualFunctionalBase<dim>
- {
- public:
- PointValueEvaluation (const Point<dim> &evaluation_point);
-
- virtual
- void
- assemble_rhs (const DoFHandler<dim> &dof_handler,
- Vector<double> &rhs) const;
-
- DeclException1 (ExcEvaluationPointNotFound,
- Point<dim>,
- << "The evaluation point " << arg1
- << " was not found among the vertices of the present grid.");
-
-
- const Point<dim> evaluation_point;
- };
-
-
- template <int dim>
- PointValueEvaluation<dim>::
- PointValueEvaluation (const Point<dim> &evaluation_point)
- :
- evaluation_point (evaluation_point)
- {}
-
-
- // As for doing the main purpose of
- // the class, assembling the right
- // hand side, let us first consider
- // what is necessary: The right
- // hand side of the dual problem is
- // a vector of values J(phi_i),
- // where J is the error functional,
- // and phi_i is the i-th shape
- // function. Here, J is the
- // evaluation at the point x0,
- // i.e. J(phi_i)=phi_i(x0).
- //
- // Now, we have assumed that the
- // evaluation point is a
- // vertex. Thus, for the usual
- // finite elements we might be
- // using in this program, we can
- // take for granted that at such a
- // point exactly one shape function
- // is nonzero, and in particular
- // has the value one. Thus, we set
- // the right hand side vector to
- // all-zeros, then seek for the
- // shape function associated with
- // that point and set the
- // corresponding value of the right
- // hand side vector to one:
- template <int dim>
- void
- PointValueEvaluation<dim>::
- assemble_rhs (const DoFHandler<dim> &dof_handler,
- Vector<double> &rhs) const
- {
- // So, first set everything to
- // zeros...
- rhs.reinit (dof_handler.n_dofs());
-
- // ...then loop over cells and
- // find the evaluation point
- // among the vertices (or very
- // close to a vertex, which may
- // happen due to floating point
- // round-off):
- typename DoFHandler<dim>::active_cell_iterator
- cell = dof_handler.begin_active(),
- endc = dof_handler.end();
- for (; cell!=endc; ++cell)
- for (unsigned int vertex=0;
- vertex<GeometryInfo<dim>::vertices_per_cell;
- ++vertex)
- if (cell->vertex(vertex).distance(evaluation_point)
- < cell->diameter()*1e-8)
- {
- // Ok, found, so set
- // corresponding entry,
- // and leave function
- // since we are finished:
- rhs(cell->vertex_dof_index(vertex,0)) = 1;
- return;
- };
-
- // Finally, a sanity check: if we
- // somehow got here, then we must
- // have missed the evaluation
- // point, so raise an exception
- // unconditionally:
- AssertThrow (false, ExcEvaluationPointNotFound(evaluation_point));
- }
-
-
- // @sect4{The PointXDerivativeEvaluation class}
-
- // As second application, we again
- // consider the evaluation of the
- // x-derivative of the solution at
- // one point. Again, the
- // declaration of the class, and
- // the implementation of its
- // constructor is not too
- // interesting:
- template <int dim>
- class PointXDerivativeEvaluation : public DualFunctionalBase<dim>
- {
- public:
- PointXDerivativeEvaluation (const Point<dim> &evaluation_point);
-
- virtual
- void
- assemble_rhs (const DoFHandler<dim> &dof_handler,
- Vector<double> &rhs) const;
-
- DeclException1 (ExcEvaluationPointNotFound,
- Point<dim>,
- << "The evaluation point " << arg1
- << " was not found among the vertices of the present grid.");
-
-
- const Point<dim> evaluation_point;
- };
-
-
- template <int dim>
- PointXDerivativeEvaluation<dim>::
- PointXDerivativeEvaluation (const Point<dim> &evaluation_point)
- :
- evaluation_point (evaluation_point)
- {}
-
-
- // What is interesting is the
- // implementation of this
- // functional: here,
- // J(phi_i)=d/dx phi_i(x0).
- //
- // We could, as in the
- // implementation of the respective
- // evaluation object take the
- // average of the gradients of each
- // shape function phi_i at this
- // evaluation point. However, we
- // take a slightly different
- // approach: we simply take the
- // average over all cells that
- // surround this point. The
- // question which cells
- // ``surrounds'' the evaluation
- // point is made dependent on the
- // mesh width by including those
- // cells for which the distance of
- // the cell's midpoint to the
- // evaluation point is less than
- // the cell's diameter.
- //
- // Taking the average of the
- // gradient over the area/volume of
- // these cells leads to a dual
- // solution which is very close to
- // the one which would result from
- // the point evaluation of the
- // gradient. It is simple to
- // justify theoretically that this
- // does not change the method
- // significantly.
- template <int dim>
- void
- PointXDerivativeEvaluation<dim>::
- assemble_rhs (const DoFHandler<dim> &dof_handler,
- Vector<double> &rhs) const
- {
- // Again, first set all entries
- // to zero:
- rhs.reinit (dof_handler.n_dofs());
-
- // Initialize a ``FEValues''
- // object with a quadrature
- // formula, have abbreviations
- // for the number of quadrature
- // points and shape functions...
- QGauss<dim> quadrature(4);
- MappingQ<dim> mapping (4);
- FEValues<dim> fe_values (mapping, dof_handler.get_fe(), quadrature,
- update_gradients |
- update_q_points |
- update_JxW_values);
- const unsigned int n_q_points = fe_values.n_quadrature_points;
- const unsigned int dofs_per_cell = dof_handler.get_fe().dofs_per_cell;
-
- // ...and have two objects that
- // are used to store the global
- // indices of the degrees of
- // freedom on a cell, and the
- // values of the gradients of the
- // shape functions at the
- // quadrature points:
- Vector<double> cell_rhs (dofs_per_cell);
- std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell);
-
- // Finally have a variable in
- // which we will sum up the
- // area/volume of the cells over
- // which we integrate, by
- // integrating the unit functions
- // on these cells:
- double total_volume = 0;
-
- // Then start the loop over all
- // cells, and select those cells
- // which are close enough to the
- // evaluation point:
- typename DoFHandler<dim>::active_cell_iterator
- cell = dof_handler.begin_active(),
- endc = dof_handler.end();
- for (; cell!=endc; ++cell)
- if (cell->center().distance(evaluation_point) <=
- cell->diameter())
- {
- // If we have found such a
- // cell, then initialize
- // the ``FEValues'' object
- // and integrate the
- // x-component of the
- // gradient of each shape
- // function, as well as the
- // unit function for the
- // total area/volume.
- fe_values.reinit (cell);
- cell_rhs = 0;
-
- for (unsigned int q=0; q<n_q_points; ++q)
- {
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- cell_rhs(i) += fe_values.shape_grad(i,q)[0] *
- fe_values.JxW (q);
- total_volume += fe_values.JxW (q);
- };
-
- // If we have the local
- // contributions,
- // distribute them to the
- // global vector:
- cell->get_dof_indices (local_dof_indices);
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- rhs(local_dof_indices[i]) += cell_rhs(i);
- };
-
- // After we have looped over all
- // cells, check whether we have
- // found any at all, by making
- // sure that their volume is
- // non-zero. If not, then the
- // results will be botched, as
- // the right hand side should
- // then still be zero, so throw
- // an exception:
- AssertThrow (total_volume > 0,
- ExcEvaluationPointNotFound(evaluation_point));
-
- // Finally, we have by now only
- // integrated the gradients of
- // the shape functions, not
- // taking their mean value. We
- // fix this by dividing by the
- // measure of the volume over
- // which we have integrated:
- rhs.scale (1./total_volume);
- }
-
-
-}
-
-
- // @sect3{Extending the LaplaceSolver namespace}
-namespace LaplaceSolver
-{
-
- // @sect4{The DualSolver class}
-
- // In the same way as the
- // ``PrimalSolver'' class above, we
- // now implement a
- // ``DualSolver''. It has all the
- // same features, the only
- // difference is that it does not
- // take a function object denoting
- // a right hand side object, but
- // now takes a
- // ``DualFunctionalBase'' object
- // that will assemble the right
- // hand side vector of the dual
- // problem. The rest of the class
- // is rather trivial.
- //
- // Since both primal and dual
- // solver will use the same
- // triangulation, but different
- // discretizations, it now becomes
- // clear why we have made the
- // ``Base'' class a virtual one:
- // since the final class will be
- // derived from both
- // ``PrimalSolver'' as well as
- // ``DualSolver'', it would have
- // two ``Base'' instances, would we
- // not have marked the inheritance
- // as virtual. Since in many
- // applications the base class
- // would store much more
- // information than just the
- // triangulation which needs to be
- // shared between primal and dual
- // solvers, we do not usually want
- // to use two such base classes.
- template <int dim>
- class DualSolver : public Solver<dim>
- {
- public:
- DualSolver (Triangulation<dim> &triangulation,
- const FiniteElement<dim> &fe,
- const Quadrature<dim> &quadrature,
- const Quadrature<dim-1> &face_quadrature,
- const DualFunctional::DualFunctionalBase<dim> &dual_functional);
-
- virtual
- void
- solve_problem ();
-
- virtual
- unsigned int
- n_dofs () const;
-
- virtual
- void
- postprocess (const Evaluation::EvaluationBase<dim> &postprocessor) const;
-
-
- const SmartPointer<const DualFunctional::DualFunctionalBase<dim> > dual_functional;
- virtual void assemble_rhs (Vector<double> &rhs) const;
-
- static const ZeroFunction<dim> boundary_values;
-
- // Same as above -- make a
- // derived class a friend of
- // this one:
- friend class WeightedResidual<dim>;
- };
-
- template <int dim>
- const ZeroFunction<dim> DualSolver<dim>::boundary_values;
-
- template <int dim>
- DualSolver<dim>::
- DualSolver (Triangulation<dim> &triangulation,
- const FiniteElement<dim> &fe,
- const Quadrature<dim> &quadrature,
- const Quadrature<dim-1> &face_quadrature,
- const DualFunctional::DualFunctionalBase<dim> &dual_functional)
- :
- Base<dim> (triangulation),
- Solver<dim> (triangulation, fe,
- quadrature, face_quadrature,
- boundary_values),
- dual_functional (&dual_functional)
- {}
-
-
- template <int dim>
- void
- DualSolver<dim>::solve_problem ()
- {
- Solver<dim>::solve_problem ();
- }
-
-
-
- template <int dim>
- unsigned int
- DualSolver<dim>::n_dofs() const
- {
- return Solver<dim>::n_dofs();
- }
-
-
- template <int dim>
- void
- DualSolver<dim>::
- postprocess (const Evaluation::EvaluationBase<dim> &postprocessor) const
- {
- Solver<dim>::postprocess(postprocessor);
- }
-
-
-
- template <int dim>
- void
- DualSolver<dim>::
- assemble_rhs (Vector<double> &rhs) const
- {
- dual_functional->assemble_rhs (this->dof_handler, rhs);
- }
-
-
- // @sect4{The WeightedResidual class}
-
- // Here finally comes the main
- // class of this program, the one
- // that implements the dual
- // weighted residual error
- // estimator. It joins the primal
- // and dual solver classes to use
- // them for the computation of
- // primal and dual solutions, and
- // implements the error
- // representation formula for use
- // as error estimate and mesh
- // refinement.
- //
- // The first few of the functions
- // of this class are mostly
- // overriders of the respective
- // functions of the base class:
- template <int dim>
- class WeightedResidual : public PrimalSolver<dim>,
- public DualSolver<dim>
- {
- public:
- WeightedResidual (Triangulation<dim> &coarse_grid,
- const FiniteElement<dim> &primal_fe,
- const FiniteElement<dim> &dual_fe,
- const Quadrature<dim> &quadrature,
- const Quadrature<dim-1> &face_quadrature,
- const Function<dim> &rhs_function,
- const Function<dim> &boundary_values,
- const DualFunctional::DualFunctionalBase<dim> &dual_functional);
-
- virtual
- void
- solve_problem ();
-
- virtual
- void
- postprocess (const Evaluation::EvaluationBase<dim> &postprocessor) const;
-
- virtual
- unsigned int
- n_dofs () const;
-
- virtual void refine_grid ();
-
- virtual
- void
- output_solution () const;
-
-
- // In the private section, we
- // have two functions that are
- // used to call the
- // ``solve_problem'' functions
- // of the primal and dual base
- // classes. These two functions
- // will be called in parallel
- // by the ``solve_problem''
- // function of this class.
- void solve_primal_problem ();
- void solve_dual_problem ();
- // Then declare abbreviations
- // for active cell iterators,
- // to avoid that we have to
- // write this lengthy name
- // over and over again:
-
- typedef
- typename DoFHandler<dim>::active_cell_iterator
- active_cell_iterator;
-
- // Next, declare a data type
- // that we will us to store the
- // contribution of faces to the
- // error estimator. The idea is
- // that we can compute the face
- // terms from each of the two
- // cells to this face, as they
- // are the same when viewed
- // from both sides. What we
- // will do is to compute them
- // only once, based on some
- // rules explained below which
- // of the two adjacent cells
- // will be in charge to do
- // so. We then store the
- // contribution of each face in
- // a map mapping faces to their
- // values, and only collect the
- // contributions for each cell
- // by looping over the cells a
- // second time and grabbing the
- // values from the map.
- //
- // The data type of this map is
- // declared here:
- typedef
- typename std::map<typename DoFHandler<dim>::face_iterator,double>
- FaceIntegrals;
-
- // In the computation of the
- // error estimates on cells and
- // faces, we need a number of
- // helper objects, such as
- // ``FEValues'' and
- // ``FEFaceValues'' functions,
- // but also temporary objects
- // storing the values and
- // gradients of primal and dual
- // solutions, for
- // example. These fields are
- // needed in the three
- // functions that do the
- // integration on cells, and
- // regular and irregular faces,
- // respectively.
- //
- // There are three reasonable
- // ways to provide these
- // fields: first, as local
- // variables in the function
- // that needs them; second, as
- // member variables of this
- // class; third, as arguments
- // passed to that function.
- //
- // These three alternatives all
- // have drawbacks: the third
- // that their number is not
- // neglectable and would make
- // calling these functions a
- // lengthy enterprise. The
- // second has the drawback that
- // it disallows
- // parallelization, since the
- // threads that will compute
- // the error estimate have to
- // have their own copies of
- // these variables each, so
- // member variables of the
- // enclosing class will not
- // work. The first approach,
- // although straightforward,
- // has a subtle but important
- // drawback: we will call these
- // functions over and over
- // again, many thousand times
- // maybe; it has now turned out
- // that allocating vectors and
- // other objects that need
- // memory from the heap is an
- // expensive business in terms
- // of run-time, since memory
- // allocation is expensive when
- // several threads are
- // involved. In our experience,
- // more than 20 per cent of the
- // total run time of error
- // estimation functions are due
- // to memory allocation, if
- // done on a per-call level. It
- // is thus significantly better
- // to allocate the memory only
- // once, and recycle the
- // objects as often as
- // possible.
- //
- // What to do? Our answer is to
- // use a variant of the third
- // strategy, namely generating
- // these variables once in the
- // main function of each
- // thread, and passing them
- // down to the functions that
- // do the actual work. To avoid
- // that we have to give these
- // functions a dozen or so
- // arguments, we pack all these
- // variables into two
- // structures, one which is
- // used for the computations on
- // cells, the other doing them
- // on the faces. Instead of
- // many individual objects, we
- // will then only pass one such
- // object to these functions,
- // making their calling
- // sequence simpler.
- struct CellData
- {
- MappingQ<dim> mapping;
- FEValues<dim> fe_values;
- const SmartPointer<const Function<dim> > right_hand_side;
-
- std::vector<double> cell_residual;
- std::vector<double> rhs_values;
- std::vector<double> dual_weights;
- typename std::vector<Tensor<2,dim> > cell_grad_grads;
- CellData (const FiniteElement<dim> &fe,
- const Quadrature<dim> &quadrature,
- const Function<dim> &right_hand_side);
- };
-
- struct FaceData
- {
- MappingQ<dim> mapping;
- FEFaceValues<dim> fe_face_values_cell;
- FEFaceValues<dim> fe_face_values_neighbor;
- FESubfaceValues<dim> fe_subface_values_cell;
-
- std::vector<double> jump_residual;
- std::vector<double> dual_weights;
- typename std::vector<Tensor<1,dim> > cell_grads;
- typename std::vector<Tensor<1,dim> > neighbor_grads;
- FaceData (const FiniteElement<dim> &fe,
- const Quadrature<dim-1> &face_quadrature);
- };
-
-
-
- // Regarding the evaluation of
- // the error estimator, we have
- // two driver functions that do
- // this: the first is called to
- // generate the cell-wise
- // estimates, and splits up the
- // task in a number of threads
- // each of which work on a
- // subset of the cells. The
- // first function will run the
- // second for each of these
- // threads:
- void estimate_error (Vector<float> &error_indicators) const;
-
- void estimate_some (const Vector<double> &primal_solution,
- const Vector<double> &dual_weights,
- const unsigned int n_threads,
- const unsigned int this_thread,
- Vector<float> &error_indicators,
- FaceIntegrals &face_integrals) const;
-
- // Then we have functions that
- // do the actual integration of
- // the error representation
- // formula. They will treat the
- // terms on the cell interiors,
- // on those faces that have no
- // hanging nodes, and on those
- // faces with hanging nodes,
- // respectively:
- void
- integrate_over_cell (const active_cell_iterator &cell,
- const unsigned int cell_index,
- const Vector<double> &primal_solution,
- const Vector<double> &dual_weights,
- CellData &cell_data,
- Vector<float> &error_indicators) const;
-
- void
- integrate_over_regular_face (const active_cell_iterator &cell,
- const unsigned int face_no,
- const Vector<double> &primal_solution,
- const Vector<double> &dual_weights,
- FaceData &face_data,
- FaceIntegrals &face_integrals) const;
- void
- integrate_over_irregular_face (const active_cell_iterator &cell,
- const unsigned int face_no,
- const Vector<double> &primal_solution,
- const Vector<double> &dual_weights,
- FaceData &face_data,
- FaceIntegrals &face_integrals) const;
- };
-
-
-
- // In the implementation of this
- // class, we first have the
- // constructors of the ``CellData''
- // and ``FaceData'' member classes,
- // and the ``WeightedResidual''
- // constructor. They only
- // initialize fields to their
- // correct lengths, so we do not
- // have to discuss them to length.
- template <int dim>
- WeightedResidual<dim>::CellData::
- CellData (const FiniteElement<dim> &fe,
- const Quadrature<dim> &quadrature,
- const Function<dim> &right_hand_side)
- :
- mapping (4),
- fe_values (mapping, fe, quadrature,
- update_values |
- update_second_derivatives |
- update_q_points |
- update_JxW_values),
- right_hand_side (&right_hand_side)
- {
- const unsigned int n_q_points
- = quadrature.n_quadrature_points;
-
- cell_residual.resize(n_q_points);
- rhs_values.resize(n_q_points);
- dual_weights.resize(n_q_points);
- cell_grad_grads.resize(n_q_points);
- }
-
-
-
- template <int dim>
- WeightedResidual<dim>::FaceData::
- FaceData (const FiniteElement<dim> &fe,
- const Quadrature<dim-1> &face_quadrature)
- :
- mapping (4),
- fe_face_values_cell (mapping, fe, face_quadrature,
- update_values |
- update_gradients |
- update_JxW_values |
- update_normal_vectors),
- fe_face_values_neighbor (mapping, fe, face_quadrature,
- update_values |
- update_gradients |
- update_JxW_values |
- update_normal_vectors),
- fe_subface_values_cell (mapping, fe, face_quadrature,
- update_gradients)
- {
- const unsigned int n_face_q_points
- = face_quadrature.n_quadrature_points;
-
- jump_residual.resize(n_face_q_points);
- dual_weights.resize(n_face_q_points);
- cell_grads.resize(n_face_q_points);
- neighbor_grads.resize(n_face_q_points);
- }
-
-
-
-
- template <int dim>
- WeightedResidual<dim>::
- WeightedResidual (Triangulation<dim> &coarse_grid,
- const FiniteElement<dim> &primal_fe,
- const FiniteElement<dim> &dual_fe,
- const Quadrature<dim> &quadrature,
- const Quadrature<dim-1> &face_quadrature,
- const Function<dim> &rhs_function,
- const Function<dim> &bv,
- const DualFunctional::DualFunctionalBase<dim> &dual_functional)
- :
- Base<dim> (coarse_grid),
- PrimalSolver<dim> (coarse_grid, primal_fe,
- quadrature, face_quadrature,
- rhs_function, bv),
- DualSolver<dim> (coarse_grid, dual_fe,
- quadrature, face_quadrature,
- dual_functional)
- {}
-
-
- // The next five functions are
- // boring, as they simply relay
- // their work to the base
- // classes. The first calls the
- // primal and dual solvers in
- // parallel, while postprocessing
- // the solution and retrieving the
- // number of degrees of freedom is
- // done by the primal class.
- template <int dim>
- void
- WeightedResidual<dim>::solve_problem ()
- {
- Threads::ThreadGroup<> threads;
- threads += Threads::spawn (*this, &WeightedResidual<dim>::solve_primal_problem)();
- threads += Threads::spawn (*this, &WeightedResidual<dim>::solve_dual_problem)();
- threads.join_all ();
- }
-
-
- template <int dim>
- void
- WeightedResidual<dim>::solve_primal_problem ()
- {
- PrimalSolver<dim>::solve_problem ();
- }
-
- template <int dim>
- void
- WeightedResidual<dim>::solve_dual_problem ()
- {
- DualSolver<dim>::solve_problem ();
- }
-
-
- template <int dim>
- void
- WeightedResidual<dim>::
- postprocess (const Evaluation::EvaluationBase<dim> &postprocessor) const
- {
- PrimalSolver<dim>::postprocess (postprocessor);
- }
-
-
- template <int dim>
- unsigned int
- WeightedResidual<dim>::n_dofs () const
- {
- return PrimalSolver<dim>::n_dofs();
- }
-
-
-
- // Now, it is becoming more
- // interesting: the ``refine_grid''
- // function asks the error
- // estimator to compute the
- // cell-wise error indicators, then
- // uses their absolute values for
- // mesh refinement.
- template <int dim>
- void
- WeightedResidual<dim>::refine_grid ()
- {
- // First call the function that
- // computes the cell-wise and
- // global error:
- Vector<float> error_indicators (this->triangulation->n_active_cells());
- estimate_error (error_indicators);
-
- // Then note that marking cells
- // for refinement or coarsening
- // only works if all indicators
- // are positive, to allow their
- // comparison. Thus, drop the
- // signs on all these indicators:
- for (Vector<float>::iterator i=error_indicators.begin();
- i != error_indicators.end(); ++i)
- *i = std::fabs (*i);
-
- // Finally, we can select between
- // different strategies for
- // refinement. The default here
- // is to refine those cells with
- // the largest error indicators
- // that make up for a total of 80
- // per cent of the error, while
- // we coarsen those with the
- // smallest indicators that make
- // up for the bottom 2 per cent
- // of the error.
- GridRefinement::refine_and_coarsen_fixed_fraction (*this->triangulation,
- error_indicators,
- 0.5/std::sqrt(1.+step),
- 0.2/std::sqrt(1.+step));
- this->triangulation->execute_coarsening_and_refinement ();
- }
-
-
- // Since we want to output both the
- // primal and the dual solution, we
- // overload the ``output_solution''
- // function. The only interesting
- // feature of this function is that
- // the primal and dual solutions
- // are defined on different finite
- // element spaces, which is not the
- // format the ``DataOut'' class
- // expects. Thus, we have to
- // transfer them to a common finite
- // element space. Since we want the
- // solutions only to see them
- // qualitatively, we contend
- // ourselves with interpolating the
- // dual solution to the (smaller)
- // primal space. For the
- // interpolation, there is a
- // library function, that takes a
- // ``ConstraintMatrix'' object
- // including the hanging node
- // constraints. The rest is
- // standard.
- //
- // There is, however, one
- // work-around worth mentioning: in
- // this function, as in a couple of
- // following ones, we have to
- // access the ``DoFHandler''
- // objects and solutions of both
- // the primal as well as of the
- // dual solver. Since these are
- // members of the ``Solver'' base
- // class which exists twice in the
- // class hierarchy leading to the
- // present class (once as base
- // class of the ``PrimalSolver''
- // class, once as base class of the
- // ``DualSolver'' class), we have
- // to disambiguate accesses to them
- // by telling the compiler a member
- // of which of these two instances
- // we want to access. The way to do
- // this would be identify the
- // member by pointing a path
- // through the class hierarchy
- // which disambiguates the base
- // class, for example writing
- // ``PrimalSolver::dof_handler'' to
- // denote the member variable
- // ``dof_handler'' from the
- // ``Solver'' base class of the
- // ``PrimalSolver''
- // class. Unfortunately, this
- // confuses gcc's version 2.96 (a
- // version that was intended as a
- // development snapshot, but
- // delivered as system compiler by
- // Red Hat in their 7.x releases)
- // so much that it bails out and
- // refuses to compile the code.
- //
- // Thus, we have to work around
- // this problem. We do this by
- // introducing references to the
- // ``PrimalSolver'' and
- // ``DualSolver'' components of the
- // ``WeightedResidual'' object at
- // the beginning of the
- // function. Since each of these
- // has an unambiguous base class
- // ``Solver'', we can access the
- // member variables we want through
- // these references. However, we
- // are now accessing protected
- // member variables of these
- // classes through a pointer other
- // than the ``this'' pointer (in
- // fact, this is of course the
- // ``this'' pointer, but not
- // explicitly). This finally is the
- // reason why we had to declare the
- // present class a friend of the
- // classes we so access.
- template <int dim>
- void
- WeightedResidual<dim>::output_solution () const
- {
- const PrimalSolver<dim> &primal_solver = *this;
- const DualSolver<dim> &dual_solver = *this;
-
- ConstraintMatrix primal_hanging_node_constraints;
- DoFTools::make_hanging_node_constraints (primal_solver.dof_handler,
- primal_hanging_node_constraints);
- primal_hanging_node_constraints.close();
- Vector<double> dual_solution (primal_solver.dof_handler.n_dofs());
- FETools::interpolate (dual_solver.dof_handler,
- dual_solver.solution,
- primal_solver.dof_handler,
- primal_hanging_node_constraints,
- dual_solution);
-
- // approximate error, gradient,
- // and second derivative
- // information as cell information
- Vector<float> error_indicators (this->triangulation->n_active_cells());
- Vector<float> gradient_indicators (this->triangulation->n_active_cells());
- Vector<float> second_indicators (this->triangulation->n_active_cells());
- {
- MappingQ<dim> mapping(4);
- KellyErrorEstimator<dim>::estimate (mapping, primal_solver.dof_handler,
- QGauss<dim-1>(3),
- typename FunctionMap<dim>::type(),
- primal_solver.solution,
- error_indicators);
-
- DerivativeApproximation::
- approximate_gradient (mapping,
- primal_solver.dof_handler,
- primal_solver.solution,
- gradient_indicators);
-
- DerivativeApproximation::
- approximate_second_derivative (mapping,
- primal_solver.dof_handler,
- primal_solver.solution,
- second_indicators);
-
- }
- // distribute cell to dof vectors
- Vector<double> x_error_indicators (primal_solver.dof_handler.n_dofs());
- Vector<double> x_gradient_indicators (primal_solver.dof_handler.n_dofs());
- Vector<double> x_second_indicators (primal_solver.dof_handler.n_dofs());
- DoFTools::distribute_cell_to_dof_vector (primal_solver.dof_handler,
- error_indicators,
- x_error_indicators);
- DoFTools::distribute_cell_to_dof_vector (primal_solver.dof_handler,
- gradient_indicators,
- x_gradient_indicators);
- DoFTools::distribute_cell_to_dof_vector (primal_solver.dof_handler,
- second_indicators,
- x_second_indicators);
-
-
-
- // we generate too much output in
- // 3d. instead of doing it that
- // way, simply generate a coarser
- // mesh and output from there
- Triangulation<dim> coarser_mesh;
- coarser_mesh.copy_triangulation (*this->triangulation);
- for (typename Triangulation<dim>::active_cell_iterator
- cell = coarser_mesh.begin_active();
- cell != coarser_mesh.end(); ++cell)
- cell->set_coarsen_flag();
- coarser_mesh.execute_coarsening_and_refinement ();
-
- // next generate a DoF handler on
- // that mesh and a map fron one
- // to the other mesh
- DoFHandler<dim> coarser_dof_handler (coarser_mesh);
- coarser_dof_handler.distribute_dofs (primal_solver.dof_handler.get_fe());
- InterGridMap<DoFHandler<dim> > coarse_to_fine_map;
- coarse_to_fine_map.make_mapping (coarser_dof_handler,
- primal_solver.dof_handler);
-
- // finally we have to transfer
- // the data vectors
- Vector<double> coarse_primal_solution (coarser_dof_handler.n_dofs());
- Vector<double> coarse_dual_solution (coarser_dof_handler.n_dofs());
- Vector<double> coarse_error_indicators (coarser_dof_handler.n_dofs());
- Vector<double> coarse_gradient_indicators (coarser_dof_handler.n_dofs());
- Vector<double> coarse_second_indicators (coarser_dof_handler.n_dofs());
-
- Vector<double> tmp (coarser_dof_handler.get_fe().dofs_per_cell);
- for (typename DoFHandler<dim>::active_cell_iterator
- cell = coarser_dof_handler.begin_active();
- cell != coarser_dof_handler.end(); ++cell)
- {
- coarse_to_fine_map[cell]->get_interpolated_dof_values (primal_solver.solution,tmp);
- cell->set_dof_values (tmp, coarse_primal_solution);
-
- coarse_to_fine_map[cell]->get_interpolated_dof_values (dual_solution,tmp);
- cell->set_dof_values (tmp, coarse_dual_solution);
-
- coarse_to_fine_map[cell]->get_interpolated_dof_values (x_error_indicators,tmp);
- cell->set_dof_values (tmp, coarse_error_indicators);
-
- coarse_to_fine_map[cell]->get_interpolated_dof_values (x_gradient_indicators,tmp);
- cell->set_dof_values (tmp, coarse_gradient_indicators);
-
- coarse_to_fine_map[cell]->get_interpolated_dof_values (x_second_indicators,tmp);
- cell->set_dof_values (tmp, coarse_second_indicators);
- }
-
- {
- DataOut<dim> data_out;
- data_out.attach_dof_handler (coarser_dof_handler);
- data_out.add_data_vector (coarse_primal_solution, "primal_solution");
- data_out.add_data_vector (coarse_dual_solution, "dual_solution");
- data_out.add_data_vector (coarse_error_indicators, "errors");
- data_out.add_data_vector (coarse_gradient_indicators, "gradient");
- data_out.add_data_vector (coarse_second_indicators, "second_derivatives");
- data_out.build_patches ();
-
-#ifdef HAVE_STD_STRINGSTREAM
- std::ostringstream filename;
-#else
- std::ostrstream filename;
-#endif
- filename << "spec2006-447.dealII/"
- << "solution-"
- << this->refinement_cycle
- << ".gmv"
- << std::ends;
-#ifdef HAVE_STD_STRINGSTREAM
- std::ofstream out (filename.str().c_str());
-#else
- std::ofstream out (filename.str());
-#endif
-
- data_out.write_gmv (out);
- }
-
- }
-
-
- // @sect3{Estimating errors}
-
- // @sect4{Error estimation driver functions}
- //
- // As for the actual computation of
- // error estimates, let's start
- // with the function that drives
- // all this, i.e. calls those
- // functions that actually do the
- // work, and finally collects the
- // results.
-
- template <int dim>
- void
- WeightedResidual<dim>::
- estimate_error (Vector<float> &error_indicators) const
- {
- const PrimalSolver<dim> &primal_solver = *this;
- const DualSolver<dim> &dual_solver = *this;
-
- // The first task in computing
- // the error is to set up vectors
- // that denote the primal
- // solution, and the weights
- // (z-z_h)=(z-I_hz), both in the
- // finite element space for which
- // we have computed the dual
- // solution. For this, we have to
- // interpolate the primal
- // solution to the dual finite
- // element space, and to subtract
- // the interpolation of the
- // computed dual solution to the
- // primal finite element
- // space. Fortunately, the
- // library provides functions for
- // the interpolation into larger
- // or smaller finite element
- // spaces, so this is mostly
- // obvious.
- //
- // First, let's do that for the
- // primal solution: it is
- // cell-wise interpolated into
- // the finite element space in
- // which we have solved the dual
- // problem: But, again as in the
- // ``WeightedResidual::output_solution''
- // function we first need to
- // create a ConstraintMatrix
- // including the hanging node
- // constraints, but this time of
- // the dual finite element space.
- ConstraintMatrix dual_hanging_node_constraints;
- DoFTools::make_hanging_node_constraints (dual_solver.dof_handler,
- dual_hanging_node_constraints);
- dual_hanging_node_constraints.close();
- Vector<double> primal_solution (dual_solver.dof_handler.n_dofs());
- FETools::interpolate (primal_solver.dof_handler,
- primal_solver.solution,
- dual_solver.dof_handler,
- dual_hanging_node_constraints,
- primal_solution);
-
- // Then for computing the
- // interpolation of the
- // numerically approximated dual
- // solution z into the finite
- // element space of the primal
- // solution and subtracting it
- // from z: use the
- // ``interpolate_difference''
- // function, that gives (z-I_hz)
- // in the element space of the
- // dual solution.
- ConstraintMatrix primal_hanging_node_constraints;
- DoFTools::make_hanging_node_constraints (primal_solver.dof_handler,
- primal_hanging_node_constraints);
- primal_hanging_node_constraints.close();
- Vector<double> dual_weights (dual_solver.dof_handler.n_dofs());
- FETools::interpolation_difference (dual_solver.dof_handler,
- dual_hanging_node_constraints,
- dual_solver.solution,
- primal_solver.dof_handler,
- primal_hanging_node_constraints,
- dual_weights);
-
- // Note that this could probably
- // have been more efficient since
- // those constraints have been
- // used previously when
- // assembling matrix and right
- // hand side for the primal
- // problem and writing out the
- // dual solution. We leave the
- // optimization of the program in
- // this respect as an exercise.
-
- // Having computed the dual
- // weights we now proceed with
- // computing the cell and face
- // residuals of the primal
- // solution. First we set up a
- // map between face iterators and
- // their jump term contributions
- // of faces to the error
- // estimator. The reason is that
- // we compute the jump terms only
- // once, from one side of the
- // face, and want to collect them
- // only afterwards when looping
- // over all cells a second time.
- //
- // We initialize this map already
- // with a value of -1e20 for all
- // faces, since this value will
- // strike in the results if
- // something should go wrong and
- // we fail to compute the value
- // for a face for some
- // reason. Secondly, we
- // initialize the map once before
- // we branch to different threads
- // since this way the map's
- // structure is no more modified
- // by the individual threads,
- // only existing entries are set
- // to new values. This relieves
- // us from the necessity to
- // synchronise the threads
- // through a mutex each time they
- // write to (and modify the
- // structure of) this map.
- FaceIntegrals face_integrals;
- for (active_cell_iterator cell=dual_solver.dof_handler.begin_active();
- cell!=dual_solver.dof_handler.end();
- ++cell)
- for (unsigned int face_no=0;
- face_no<GeometryInfo<dim>::faces_per_cell;
- ++face_no)
- face_integrals[cell->face(face_no)] = -1e20;
-
- // Then set up a vector with
- // error indicators. Reserve one
- // slot for each cell and set it
- // to zero.
- error_indicators.reinit (dual_solver.dof_handler
- .get_tria().n_active_cells());
-
- // Now start a number of threads
- // which compute the error
- // formula on parts of all the
- // cells, and once they are all
- // started wait until they have
- // all finished:
- const unsigned int n_threads = multithread_info.n_default_threads;
- Threads::ThreadGroup<> threads;
- for (unsigned int i=0; i<n_threads; ++i)
- threads += Threads::spawn (*this, &WeightedResidual<dim>::estimate_some)
- (primal_solution,
- dual_weights,
- n_threads, i,
- error_indicators,
- face_integrals);
- threads.join_all();
-
- // Once the error contributions
- // are computed, sum them up. For
- // this, note that the cell terms
- // are already set, and that only
- // the edge terms need to be
- // collected. Thus, loop over all
- // cells and their faces, make
- // sure that the contributions of
- // each of the faces are there,
- // and add them up. Only take
- // minus one half of the jump
- // term, since the other half
- // will be taken by the
- // neighboring cell.
- unsigned int present_cell=0;
- for (active_cell_iterator cell=dual_solver.dof_handler.begin_active();
- cell!=dual_solver.dof_handler.end();
- ++cell, ++present_cell)
- for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell;
- ++face_no)
- {
- Assert(face_integrals.find(cell->face(face_no)) !=
- face_integrals.end(),
- ExcInternalError());
- error_indicators(present_cell)
- -= 0.5*face_integrals[cell->face(face_no)];
- };
- std::cout << " Estimated error="
- << std::accumulate (error_indicators.begin(),
- error_indicators.end(), 0.)
- << std::endl;
- }
-
-
- // @sect4{Estimating on a subset of cells}
-
- // Next we have the function that
- // is called to estimate the error
- // on a subset of cells. The
- // function may be called multiply
- // if the library was configured to
- // use multi-threading. Here it
- // goes:
- template <int dim>
- void
- WeightedResidual<dim>::
- estimate_some (const Vector<double> &primal_solution,
- const Vector<double> &dual_weights,
- const unsigned int n_threads,
- const unsigned int this_thread,
- Vector<float> &error_indicators,
- FaceIntegrals &face_integrals) const
- {
- const PrimalSolver<dim> &primal_solver = *this;
- const DualSolver<dim> &dual_solver = *this;
-
- // At the beginning, we
- // initialize two variables for
- // each thread which may be
- // running this function. The
- // reason for these functions was
- // discussed above, when the
- // respective classes were
- // discussed, so we here only
- // point out that since they are
- // local to the function that is
- // spawned when running more than
- // one thread, the data of these
- // objects exists actually once
- // per thread, so we don't have
- // to take care about
- // synchronising access to them.
- CellData cell_data (*dual_solver.fe,
- *dual_solver.quadrature,
- *primal_solver.rhs_function);
- FaceData face_data (*dual_solver.fe,
- *dual_solver.face_quadrature);
-
- // Then calculate the start cell
- // for this thread. We let the
- // different threads run on
- // interleaved cells, i.e. for
- // example if we have 4 threads,
- // then the first thread treates
- // cells 0, 4, 8, etc, while the
- // second threads works on cells 1,
- // 5, 9, and so on. The reason is
- // that it takes vastly more time
- // to work on cells with hanging
- // nodes than on regular cells, but
- // such cells are not evenly
- // distributed across the range of
- // cell iterators, so in order to
- // have the different threads do
- // approximately the same amount of
- // work, we have to let them work
- // interleaved to the effect of a
- // pseudorandom distribution of the
- // `hard' cells to the different
- // threads.
- active_cell_iterator cell=dual_solver.dof_handler.begin_active();
- for (unsigned int t=0;
- (t<this_thread) && (cell!=dual_solver.dof_handler.end());
- ++t, ++cell);
-
- // If there are no cells for this
- // thread (for example if there
- // are a total of less cells than
- // there are threads), then go
- // back right now
- if (cell == dual_solver.dof_handler.end())
- return;
-
- // Next loop over all cells. The
- // check for loop end is done at
- // the end of the loop, along
- // with incrementing the loop
- // index.
- for (unsigned int cell_index=this_thread; true; )
- {
- // First task on each cell is
- // to compute the cell
- // residual contributions of
- // this cell, and put them
- // into the
- // ``error_indicators''
- // variable:
- integrate_over_cell (cell, cell_index,
- primal_solution,
- dual_weights,
- cell_data,
- error_indicators);
-
- // After computing the cell
- // terms, turn to the face
- // terms. For this, loop over
- // all faces of the present
- // cell, and see whether
- // something needs to be
- // computed on it:
- for (unsigned int face_no=0;
- face_no<GeometryInfo<dim>::faces_per_cell;
- ++face_no)
- {
- // First, if this face is
- // part of the boundary,
- // then there is nothing
- // to do. However, to
- // make things easier
- // when summing up the
- // contributions of the
- // faces of cells, we
- // enter this face into
- // the list of faces with
- // a zero contribution to
- // the error.
- if (cell->face(face_no)->at_boundary())
- {
- face_integrals[cell->face(face_no)] = 0;
- continue;
- };
-
- // Next, note that since
- // we want to compute the
- // jump terms on each
- // face only once
- // although we access it
- // twice (if it is not at
- // the boundary), we have
- // to define some rules
- // who is responsible for
- // computing on a face:
- //
- // First, if the
- // neighboring cell is on
- // the same level as this
- // one, i.e. neither
- // further refined not
- // coarser, then the one
- // with the lower index
- // within this level does
- // the work. In other
- // words: if the other
- // one has a lower index,
- // then skip work on this
- // face:
- if ((cell->neighbor(face_no)->has_children() == false) &&
- (cell->neighbor(face_no)->level() == cell->level()) &&
- (cell->neighbor(face_no)->index() < cell->index()))
- continue;
-
- // Likewise, we always
- // work from the coarser
- // cell if this and its
- // neighbor differ in
- // refinement. Thus, if
- // the neighboring cell
- // is less refined than
- // the present one, then
- // do nothing since we
- // integrate over the
- // subfaces when we visit
- // the coarse cell.
- if (cell->at_boundary(face_no) == false)
- if (cell->neighbor(face_no)->level() < cell->level())
- continue;
-
-
- // Now we know that we
- // are in charge here, so
- // actually compute the
- // face jump terms. If
- // the face is a regular
- // one, i.e. the other
- // side's cell is neither
- // coarser not finer than
- // this cell, then call
- // one function, and if
- // the cell on the other
- // side is further
- // refined, then use
- // another function. Note
- // that the case that the
- // cell on the other side
- // is coarser cannot
- // happen since we have
- // decided above that we
- // handle this case when
- // we pass over that
- // other cell.
- if (cell->face(face_no)->has_children() == false)
- integrate_over_regular_face (cell, face_no,
- primal_solution,
- dual_weights,
- face_data,
- face_integrals);
- else
- integrate_over_irregular_face (cell, face_no,
- primal_solution,
- dual_weights,
- face_data,
- face_integrals);
- };
-
- // After computing the cell
- // contributions and looping
- // over the faces, go to the
- // next cell for this
- // thread. Note again that
- // the cells for each of the
- // threads are interleaved.
- // If we are at the end of
- // our workload, jump out
- // of the loop.
- for (unsigned int t=0;
- ((t<n_threads) && (cell!=dual_solver.dof_handler.end()));
- ++t, ++cell, ++cell_index);
- if (cell == dual_solver.dof_handler.end())
- break;
- };
- }
-
-
- // @sect4{Computing cell term error contributions}
-
- // As for the actual computation of
- // the error contributions, first
- // turn to the cell terms:
- template <int dim>
- void WeightedResidual<dim>::
- integrate_over_cell (const active_cell_iterator &cell,
- const unsigned int cell_index,
- const Vector<double> &primal_solution,
- const Vector<double> &dual_weights,
- CellData &cell_data,
- Vector<float> &error_indicators) const
- {
- // The tasks to be done are what
- // appears natural from looking
- // at the error estimation
- // formula: first compute the the
- // right hand side and the
- // Laplacian of the numerical
- // solution at the quadrature
- // points for the cell residual,
- cell_data.fe_values.reinit (cell);
- cell_data.right_hand_side
- ->value_list (cell_data.fe_values.get_quadrature_points(),
- cell_data.rhs_values);
- cell_data.fe_values.get_function_2nd_derivatives (primal_solution,
- cell_data.cell_grad_grads);
-
- // ...then get the dual weights...
- cell_data.fe_values.get_function_values (dual_weights,
- cell_data.dual_weights);
-
- // ...and finally build the sum
- // over all quadrature points and
- // store it with the present
- // cell:
- double sum = 0;
- for (unsigned int p=0; p<cell_data.fe_values.n_quadrature_points; ++p)
- sum += ((cell_data.rhs_values[p]+trace(cell_data.cell_grad_grads[p])) *
- cell_data.dual_weights[p] *
- cell_data.fe_values.JxW (p));
- error_indicators(cell_index) += sum;
- }
-
-
- // @sect4{Computing edge term error contributions - 1}
-
- // On the other hand, computation
- // of the edge terms for the error
- // estimate is not so
- // simple. First, we have to
- // distinguish between faces with
- // and without hanging
- // nodes. Because it is the simple
- // case, we first consider the case
- // without hanging nodes on a face
- // (let's call this the `regular'
- // case):
- template <int dim>
- void WeightedResidual<dim>::
- integrate_over_regular_face (const active_cell_iterator &cell,
- const unsigned int face_no,
- const Vector<double> &primal_solution,
- const Vector<double> &dual_weights,
- FaceData &face_data,
- FaceIntegrals &face_integrals) const
- {
- const unsigned int
- n_q_points = face_data.fe_face_values_cell.n_quadrature_points;
-
- // The first step is to get the
- // values of the gradients at the
- // quadrature points of the
- // finite element field on the
- // present cell. For this,
- // initialize the
- // ``FEFaceValues'' object
- // corresponding to this side of
- // the face, and extract the
- // gradients using that
- // object.
- face_data.fe_face_values_cell.reinit (cell, face_no);
- face_data.fe_face_values_cell.get_function_grads (primal_solution,
- face_data.cell_grads);
-
- // The second step is then to
- // extract the gradients of the
- // finite element solution at the
- // quadrature points on the other
- // side of the face, i.e. from
- // the neighboring cell.
- //
- // For this, do a sanity check
- // before: make sure that the
- // neigbor actually exists (yes,
- // we should not have come here
- // if the neighbor did not exist,
- // but in complicated software
- // there are bugs, so better
- // check this), and if this is
- // not the case throw an error.
- Assert (cell->neighbor(face_no).state() == IteratorState::valid,
- ExcInternalError());
- // If we have that, then we need
- // to find out with which face of
- // the neighboring cell we have
- // to work, i.e. the
- // ``home-many''the neighbor the
- // present cell is of the cell
- // behind the present face. For
- // this, there is a function, and
- // we put the result into a
- // variable with the name
- // ``neighbor_neighbor'':
- const unsigned int
- neighbor_neighbor = cell->neighbor_of_neighbor (face_no);
- // Then define an abbreviation
- // for the neigbor cell,
- // initialize the
- // ``FEFaceValues'' object on
- // that cell, and extract the
- // gradients on that cell:
- const active_cell_iterator neighbor = cell->neighbor(face_no);
- face_data.fe_face_values_neighbor.reinit (neighbor, neighbor_neighbor);
- face_data.fe_face_values_neighbor.get_function_grads (primal_solution,
- face_data.neighbor_grads);
-
- // Now that we have the gradients
- // on this and the neighboring
- // cell, compute the jump
- // residual by multiplying the
- // jump in the gradient with the
- // normal vector:
- for (unsigned int p=0; p<n_q_points; ++p)
- face_data.jump_residual[p]
- = ((face_data.cell_grads[p] - face_data.neighbor_grads[p]) *
- face_data.fe_face_values_cell.normal_vector(p));
-
- // Next get the dual weights for
- // this face:
- face_data.fe_face_values_cell.get_function_values (dual_weights,
- face_data.dual_weights);
-
- // Finally, we have to compute
- // the sum over jump residuals,
- // dual weights, and quadrature
- // weights, to get the result for
- // this face:
- double face_integral = 0;
- for (unsigned int p=0; p<n_q_points; ++p)
- face_integral += (face_data.jump_residual[p] *
- face_data.dual_weights[p] *
- face_data.fe_face_values_cell.JxW(p));
-
- // Double check that the element
- // already exists and that it was
- // not already written to...
- Assert (face_integrals.find (cell->face(face_no)) != face_integrals.end(),
- ExcInternalError());
- Assert (face_integrals[cell->face(face_no)] == -1e20,
- ExcInternalError());
-
- // ...then store computed value
- // at assigned location. Note
- // that the stored value does not
- // contain the factor 1/2 that
- // appears in the error
- // representation. The reason is
- // that the term actually does
- // not have this factor if we
- // loop over all faces in the
- // triangulation, but only
- // appears if we write it as a
- // sum over all cells and all
- // faces of each cell; we thus
- // visit the same face twice. We
- // take account of this by using
- // this factor -1/2 later, when we
- // sum up the contributions for
- // each cell individually.
- face_integrals[cell->face(face_no)] = face_integral;
- }
-
-
- // @sect4{Computing edge term error contributions - 2}
-
- // We are still missing the case of
- // faces with hanging nodes. This
- // is what is covered in this
- // function:
- template <int dim>
- void WeightedResidual<dim>::
- integrate_over_irregular_face (const active_cell_iterator &cell,
- const unsigned int face_no,
- const Vector<double> &primal_solution,
- const Vector<double> &dual_weights,
- FaceData &face_data,
- FaceIntegrals &face_integrals) const
- {
- // First again two abbreviations,
- // and some consistency checks
- // whether the function is called
- // only on faces for which it is
- // supposed to be called:
- const unsigned int
- n_q_points = face_data.fe_face_values_cell.n_quadrature_points;
-
- const typename DoFHandler<dim>::cell_iterator
- neighbor = cell->neighbor(face_no);
- Assert (neighbor.state() == IteratorState::valid,
- ExcInternalError());
- Assert (neighbor->has_children(),
- ExcInternalError());
-
- // Then find out which neighbor
- // the present cell is of the
- // adjacent cell. Note that we
- // will operator on the children
- // of this adjacent cell, but
- // that their orientation is the
- // same as that of their mother,
- // i.e. the neigbor direction is
- // the same.
- const unsigned int
- neighbor_neighbor = cell->neighbor_of_neighbor (face_no);
-
- // Then simply do everything we
- // did in the previous function
- // for one face for all the
- // sub-faces now:
- for (unsigned int subface_no=0;
- subface_no<GeometryInfo<dim>::subfaces_per_face;
- ++subface_no)
- {
- const active_cell_iterator neighbor_child
- = cell->neighbor_child_on_subface (face_no, subface_no);
-
- // Now start the work by
- // again getting the gradient
- // of the solution first at
- // this side of the
- // interface,
- face_data.fe_subface_values_cell.reinit (cell, face_no, subface_no);
- face_data.fe_subface_values_cell.get_function_grads (primal_solution,
- face_data.cell_grads);
- // then at the other side,
- face_data.fe_face_values_neighbor.reinit (neighbor_child,
- neighbor_neighbor);
- face_data.fe_face_values_neighbor.get_function_grads (primal_solution,
- face_data.neighbor_grads);
-
- // and finally building the
- // jump residuals. Since we
- // take the normal vector
- // from the other cell this
- // time, revert the sign of
- // the first term compared to
- // the other function:
- for (unsigned int p=0; p<n_q_points; ++p)
- face_data.jump_residual[p]
- = ((face_data.neighbor_grads[p] - face_data.cell_grads[p]) *
- face_data.fe_face_values_neighbor.normal_vector(p));
-
- // Then get dual weights:
- face_data.fe_face_values_neighbor.get_function_values (dual_weights,
- face_data.dual_weights);
-
- // At last, sum up the
- // contribution of this
- // sub-face, and set it in
- // the global map:
- double face_integral = 0;
- for (unsigned int p=0; p<n_q_points; ++p)
- face_integral += (face_data.jump_residual[p] *
- face_data.dual_weights[p] *
- face_data.fe_face_values_neighbor.JxW(p));
- face_integrals[neighbor_child->face(neighbor_neighbor)]
- = face_integral;
- };
-
- // Once the contributions of all
- // sub-faces are computed, loop
- // over all sub-faces to collect
- // and store them with the mother
- // face for simple use when later
- // collecting the error terms of
- // cells. Again make safety
- // checks that the entries for
- // the sub-faces have been
- // computed and do not carry an
- // invalid value.
- double sum = 0;
- typename DoFHandler<dim>::face_iterator face = cell->face(face_no);
- for (unsigned int subface_no=0;
- subface_no<GeometryInfo<dim>::subfaces_per_face;
- ++subface_no)
- {
- Assert (face_integrals.find(face->child(subface_no)) !=
- face_integrals.end(),
- ExcInternalError());
- Assert (face_integrals[face->child(subface_no)] != -1e20,
- ExcInternalError());
-
- sum += face_integrals[face->child(subface_no)];
- };
- // Finally store the value with
- // the parent face.
- face_integrals[face] = sum;
- }
-
-}
-
-
- // @sect3{A simulation framework}
-
- // In the previous example program,
- // we have had two functions that
- // were used to drive the process of
- // solving on subsequently finer
- // grids. We extend this here to
- // allow for a number of parameters
- // to be passed to these functions,
- // and put all of that into framework
- // class.
- //
- // You will have noted that this
- // program is built up of a number of
- // small parts (evaluation functions,
- // solver classes implementing
- // various refinement methods,
- // different dual functionals,
- // different problem and data
- // descriptions), which makes the
- // program relatively simple to
- // extend, but also allows to solve a
- // large number of different problems
- // by replacing one part by
- // another. We reflect this
- // flexibility by declaring a
- // structure in the following
- // framework class that holds a
- // number of parameters that may be
- // set to test various combinations
- // of the parts of this program, and
- // which can be used to test it at
- // various problems and
- // discretizations in a simple way.
-template <int dim>
-struct Framework
-{
- public:
- // First, we declare two
- // abbreviations for simple use
- // of the respective data types:
- typedef Evaluation::EvaluationBase<dim> Evaluator;
- typedef std::list<Evaluator*> EvaluatorList;
-
-
- // Then we have the structure
- // which declares all the
- // parameters that may be set. In
- // the default constructor of the
- // structure, these values are
- // all set to default values, for
- // simple use.
- struct ProblemDescription
- {
- // First allow for the
- // degrees of the piecewise
- // polynomials by which the
- // primal and dual problems
- // will be discretized. They
- // default to (bi-,
- // tri-)linear ansatz
- // functions for the primal,
- // and (bi-, tri-)quadratic
- // ones for the dual
- // problem. If a refinement
- // criterion is chosen that
- // does not need the solution
- // of a dual problem, the
- // value of the dual finite
- // element degree is of
- // course ignored.
- unsigned int primal_fe_degree;
- unsigned int dual_fe_degree;
-
- // Then have an object that
- // describes the problem
- // type, i.e. right hand
- // side, domain, boundary
- // values, etc. The pointer
- // needed here defaults to
- // the Null pointer, i.e. you
- // will have to set it in
- // actual instances of this
- // object to make it useful.
- SmartPointer<const Data::SetUpBase<dim> > data;
-
- // Since we allow to use
- // different refinement
- // criteria (global
- // refinement, refinement by
- // the Kelly error indicator,
- // possibly with a weight,
- // and using the dual
- // estimator), define a
- // number of enumeration
- // values, and subsequently a
- // variable of that type. It
- // will default to
- // ``dual_weighted_error_estimator''.
- enum RefinementCriterion {
- dual_weighted_error_estimator,
- global_refinement,
- kelly_indicator,
- weighted_kelly_indicator
- };
-
- RefinementCriterion refinement_criterion;
-
- // Next, an object that
- // describes the dual
- // functional. It is only
- // needed if the dual
- // weighted residual
- // refinement is chosen, and
- // also defaults to a Null
- // pointer.
- SmartPointer<const DualFunctional::DualFunctionalBase<dim> > dual_functional;
-
- // Then a list of evaluation
- // objects. Its default value
- // is empty, i.e. no
- // evaluation objects.
- EvaluatorList evaluator_list;
-
- // Next to last, a function
- // that is used as a weight
- // to the
- // ``RefinementWeightedKelly''
- // class. The default value
- // of this pointer is zero,
- // but you have to set it to
- // some other value if you
- // want to use the
- // ``weighted_kelly_indicator''
- // refinement criterion.
- SmartPointer<const Function<dim> > kelly_weight;
-
- // Finally, we have a
- // variable that denotes the
- // maximum number of degrees
- // of freedom we allow for
- // the (primal)
- // discretization. If it is
- // exceeded, we stop the
- // process of solving and
- // intermittend mesh
- // refinement. Its default
- // value is 20,000.
- unsigned int max_degrees_of_freedom;
-
- // Finally the default
- // constructor of this class:
- ProblemDescription ();
- };
-
- // The driver framework class
- // only has one method which
- // calls solver and mesh
- // refinement intermittently, and
- // does some other small tasks in
- // between. Since it does not
- // need data besides the
- // parameters given to it, we
- // make it static:
- static void run (const ProblemDescription &descriptor);
-};
-
-
- // As for the implementation, first
- // the constructor of the parameter
- // object, setting all values to
- // their defaults:
-template <int dim>
-Framework<dim>::ProblemDescription::ProblemDescription ()
- :
- primal_fe_degree (1),
- dual_fe_degree (2),
- refinement_criterion (dual_weighted_error_estimator),
- max_degrees_of_freedom (1000)
-{}
-
-
-
- // Then the function which drives the
- // whole process:
-template <int dim>
-void Framework<dim>::run (const ProblemDescription &descriptor)
-{
- // First create a triangulation
- // from the given data object,
- Triangulation<dim>
- triangulation (Triangulation<dim>::smoothing_on_refinement);
- descriptor.data->create_coarse_grid (triangulation);
-
- // then a set of finite elements
- // and appropriate quadrature
- // formula:
- const FE_Q<dim> primal_fe(descriptor.primal_fe_degree);
- const FE_Q<dim> dual_fe(descriptor.dual_fe_degree);
- const QGauss<dim> quadrature(descriptor.dual_fe_degree+1);
- const QGauss<dim-1> face_quadrature(descriptor.dual_fe_degree+1);
-
- // Next, select one of the classes
- // implementing different
- // refinement criteria.
- LaplaceSolver::Base<dim> * solver = 0;
- switch (descriptor.refinement_criterion)
- {
- case ProblemDescription::dual_weighted_error_estimator:
- {
- solver
- = new LaplaceSolver::WeightedResidual<dim> (triangulation,
- primal_fe,
- dual_fe,
- quadrature,
- face_quadrature,
- descriptor.data->get_right_hand_side(),
- descriptor.data->get_boundary_values(),
- *descriptor.dual_functional);
- break;
- };
-
- case ProblemDescription::global_refinement:
- {
- solver
- = new LaplaceSolver::RefinementGlobal<dim> (triangulation,
- primal_fe,
- quadrature,
- face_quadrature,
- descriptor.data->get_right_hand_side(),
- descriptor.data->get_boundary_values());
- break;
- };
-
- case ProblemDescription::kelly_indicator:
- {
- solver
- = new LaplaceSolver::RefinementKelly<dim> (triangulation,
- primal_fe,
- quadrature,
- face_quadrature,
- descriptor.data->get_right_hand_side(),
- descriptor.data->get_boundary_values());
- break;
- };
-
- case ProblemDescription::weighted_kelly_indicator:
- {
- solver
- = new LaplaceSolver::RefinementWeightedKelly<dim> (triangulation,
- primal_fe,
- quadrature,
- face_quadrature,
- descriptor.data->get_right_hand_side(),
- descriptor.data->get_boundary_values(),
- *descriptor.kelly_weight);
- break;
- };
-
- default:
- AssertThrow (false, ExcInternalError());
- };
-
- // Now that all objects are in
- // place, run the main loop. The
- // stopping criterion is
- // implemented at the bottom of the
- // loop.
- //
- // In the loop, first set the new
- // cycle number, then solve the
- // problem, output its solution(s),
- // apply the evaluation objects to
- // it, then decide whether we want
- // to refine the mesh further and
- // solve again on this mesh, or
- // jump out of the loop.
- for (step=0; step<=n_steps; ++step)
- {
- std::cout << "Refinement cycle: " << step
- << std::endl;
-
- solver->set_refinement_cycle (step);
- solver->solve_problem ();
- solver->output_solution ();
-
- std::cout << " Number of degrees of freedom="
- << solver->n_dofs() << std::endl;
-
- for (typename EvaluatorList::const_iterator
- e = descriptor.evaluator_list.begin();
- e != descriptor.evaluator_list.end(); ++e)
- {
- (*e)->set_refinement_cycle (step);
- solver->postprocess (**e);
- };
-
-
- if (solver->n_dofs() < descriptor.max_degrees_of_freedom)
- solver->refine_grid ();
- else
- break;
- };
-
- // After the loop has run, clean up
- // the screen, and delete objects
- // no more needed:
- std::cout << std::endl;
- delete solver;
- solver = 0;
-}
-
-
-
-
- // @sect3{The main function}
-
- // Here finally comes the main
- // function. It drives the whole
- // process by specifying a set of
- // parameters to be used for the
- // simulation (polynomial degrees,
- // evaluation and dual functionals,
- // etc), and passes them packed into
- // a structure to the frame work
- // class above.
-int main (int argc, char **argv)
-{
- // if no argument is given, then do 18
- // iterations
- if (argc == 1)
- n_steps = 18;
- else
- if (argc == 2)
- {
- n_steps = atoi(argv[1]);
- if ((n_steps==0) || (n_steps>100))
- {
- std::cout << "Please call this program with an argument in the range 1..100"
- << std::endl;
- exit (1);
- }
- }
- else
- {
- std::cout << "Please call this program with a single argument in the range 1..100"
- << std::endl;
- exit (1);
- }
-
-
-
-
- deallog.depth_console (0);
- try
- {
- // Describe the problem we want
- // to solve here by passing a
- // descriptor object to the
- // function doing the rest of
- // the work:
- const unsigned int dim = 3;
- Framework<dim>::ProblemDescription descriptor;
-
- // First set the refinement
- // criterion we wish to use:
- descriptor.refinement_criterion
- = Framework<dim>::ProblemDescription::dual_weighted_error_estimator;
- // Here, we could as well have
- // used ``global_refinement''
- // or
- // ``weighted_kelly_indicator''. Note
- // that the information given
- // about dual finite elements,
- // dual functional, etc is only
- // important for the given
- // choice of refinement
- // criterion, and is ignored
- // otherwise.
-
- // Then set the polynomial
- // degrees of primal and dual
- // problem. We choose here
- // bi-linear and bi-quadratic
- // ones:
- descriptor.primal_fe_degree = 1;
- descriptor.dual_fe_degree = 2;
-
- // Then set the description of
- // the test case, i.e. domain,
- // boundary values, and right
- // hand side. These are
- // prepackaged in classes. We
- // take here the description of
- // ``Exercise_2_3'', but you
- // can also use
- // ``CurvedRidges<dim>'':
- descriptor.data = new Data::SetUp<Data::Exercise_2_3<dim>,dim> ();
-
- // Next set first a dual
- // functional, then a list of
- // evaluation objects. We
- // choose as default the
- // evaluation of the
- // value at an
- // evaluation point,
- // represented by the classes
- // ``PointValueEvaluation''
- // in the namespaces of
- // evaluation and dual
- // functional classes. You can
- // also set the
- // ``PointXDerivativeEvaluation''
- // classes for the x-derivative
- // instead of the value
- // at the evaluation point.
- //
- // Note that dual functional
- // and evaluation objects
- // should match. However, you
- // can give as many evaluation
- // functionals as you want, so
- // you can have both point
- // value and derivative
- // evaluated after each step.
- // One such additional
- // evaluation is to output the
- // grid in each step.
- const Point<dim> evaluation_point (0., 0., 0.);
- descriptor.dual_functional
- = new DualFunctional::PointValueEvaluation<dim> (evaluation_point);
-
- Evaluation::PointValueEvaluation<dim>
- postprocessor1 (evaluation_point);
- Evaluation::GridOutput<dim>
- postprocessor2 ("grid");
-
- descriptor.evaluator_list.push_back (&postprocessor1);
- descriptor.evaluator_list.push_back (&postprocessor2);
-
- // Set the maximal number of
- // degrees of freedom after
- // which we want the program to
- // stop refining the mesh
- // further:
-#if defined(SPEC_CPU)
- // raise from 20000 to 30000. (jfk p6f)
- descriptor.max_degrees_of_freedom = 30000;
-#else
- descriptor.max_degrees_of_freedom = 20000;
-#endif
-
- // Finally pass the descriptor
- // object to a function that
- // runs the entire solution
- // with it:
- Framework<dim>::run (descriptor);
- }
-
- // Catch exceptions to give
- // information about things that
- // failed:
- catch (std::exception &exc)
- {
- std::cerr << std::endl << std::endl
- << "----------------------------------------------------"
- << std::endl;
- std::cerr << "Exception on processing: " << std::endl
- << exc.what() << std::endl
- << "Aborting!" << std::endl
- << "----------------------------------------------------"
- << std::endl;
- return 1;
- }
- catch (...)
- {
- std::cerr << std::endl << std::endl
- << "----------------------------------------------------"
- << std::endl;
- std::cerr << "Unknown exception!" << std::endl
- << "Aborting!" << std::endl
- << "----------------------------------------------------"
- << std::endl;
- return 1;
- };
-
- return 0;
-}