]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Small updates.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Wed, 22 Dec 1999 22:47:06 +0000 (22:47 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Wed, 22 Dec 1999 22:47:06 +0000 (22:47 +0000)
git-svn-id: https://svn.dealii.org/trunk@2115 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/Attic/examples/step-by-step/step-4/step-4.cc
deal.II/examples/step-4/step-4.cc

index 901bfa6e10cc2702fcb016799131fbfdd2cde2e4..1e09267f8ebf11b02c74414b971d09379854e221 100644 (file)
 
 
 
-
-
-       
-
-
-
+                                // This is again the same
+                                // LaplaceProblem class as in the
+                                // previous example. The only
+                                // difference is that we have now
+                                // declared it as a class with a
+                                // template parameter, and the
+                                // template parameter is of course
+                                // the spatial dimension in which we
+                                // would like to solve the Laplace
+                                // equation. Of course, several of
+                                // the member variables depend on
+                                // this dimension as well, in
+                                // particular the Triangulation
+                                // class, which has to represent
+                                // quadrilaterals or hexahedra,
+                                // respectively. Apart from this,
+                                // everything is as before.
 template <int dim>
 class LaplaceProblem 
 {
@@ -91,6 +102,27 @@ class LaplaceProblem
                                 // parameters and shall return the
                                 // value at that point as a `double'
                                 // variable.
+                                //
+                                // The `value' function takes a
+                                // second argument, which we have
+                                // here named `component': This is
+                                // only meant for vector valued
+                                // functions, where you may want to
+                                // access a certain component of the
+                                // vector at the point `p'. However,
+                                // our functions are scalar, so we
+                                // need not worry about this
+                                // parameter and we will not use it
+                                // in the implementation of the
+                                // functions. Note that in the base
+                                // class (Function), the declaration
+                                // of the `value' function has a
+                                // default value of zero for the
+                                // component, so we will access the
+                                // `value' function of the right hand
+                                // side with only one parameter,
+                                // namely the point where we want to
+                                // evaluate the function.
 template <int dim>
 class RightHandSide : public Function<dim> 
 {
@@ -131,8 +163,9 @@ class BoundaryValues : public Function<dim>
                                 // right away.
                                 //
                                 // Note that the different
-                                // coordinates of the point are
-                                // accessed using the () operator.
+                                // coordinates (i.e. `x', `y', ...)
+                                // of the point are accessed using
+                                // the () operator.
 template <int dim>
 double RightHandSide<dim>::value (const Point<dim> &p,
                                  const unsigned int) const 
@@ -468,8 +501,18 @@ void LaplaceProblem<dim>::output_results ()
 
                                   // Only difference to the previous
                                   // example: write output in GMV
-                                  // format, rather than for gnuplot.
-  ofstream output ("solution.gmv");
+                                  // format, rather than for
+                                  // gnuplot. We use the dimension in
+                                  // the filename to generate
+                                  // distinct filenames for each run
+                                  // (in a better program, one would
+                                  // check whether `dim' can have
+                                  // other values than 2 or 3, but we
+                                  // neglect this here for the sake
+                                  // of brevity).
+  ofstream output ((dim == 2 ?
+                   "solution-2d.gmv" :
+                   "solution-3d.gmv");
   data_out.write_gmv (output);
 };
 
index 901bfa6e10cc2702fcb016799131fbfdd2cde2e4..1e09267f8ebf11b02c74414b971d09379854e221 100644 (file)
 
 
 
-
-
-       
-
-
-
+                                // This is again the same
+                                // LaplaceProblem class as in the
+                                // previous example. The only
+                                // difference is that we have now
+                                // declared it as a class with a
+                                // template parameter, and the
+                                // template parameter is of course
+                                // the spatial dimension in which we
+                                // would like to solve the Laplace
+                                // equation. Of course, several of
+                                // the member variables depend on
+                                // this dimension as well, in
+                                // particular the Triangulation
+                                // class, which has to represent
+                                // quadrilaterals or hexahedra,
+                                // respectively. Apart from this,
+                                // everything is as before.
 template <int dim>
 class LaplaceProblem 
 {
@@ -91,6 +102,27 @@ class LaplaceProblem
                                 // parameters and shall return the
                                 // value at that point as a `double'
                                 // variable.
+                                //
+                                // The `value' function takes a
+                                // second argument, which we have
+                                // here named `component': This is
+                                // only meant for vector valued
+                                // functions, where you may want to
+                                // access a certain component of the
+                                // vector at the point `p'. However,
+                                // our functions are scalar, so we
+                                // need not worry about this
+                                // parameter and we will not use it
+                                // in the implementation of the
+                                // functions. Note that in the base
+                                // class (Function), the declaration
+                                // of the `value' function has a
+                                // default value of zero for the
+                                // component, so we will access the
+                                // `value' function of the right hand
+                                // side with only one parameter,
+                                // namely the point where we want to
+                                // evaluate the function.
 template <int dim>
 class RightHandSide : public Function<dim> 
 {
@@ -131,8 +163,9 @@ class BoundaryValues : public Function<dim>
                                 // right away.
                                 //
                                 // Note that the different
-                                // coordinates of the point are
-                                // accessed using the () operator.
+                                // coordinates (i.e. `x', `y', ...)
+                                // of the point are accessed using
+                                // the () operator.
 template <int dim>
 double RightHandSide<dim>::value (const Point<dim> &p,
                                  const unsigned int) const 
@@ -468,8 +501,18 @@ void LaplaceProblem<dim>::output_results ()
 
                                   // Only difference to the previous
                                   // example: write output in GMV
-                                  // format, rather than for gnuplot.
-  ofstream output ("solution.gmv");
+                                  // format, rather than for
+                                  // gnuplot. We use the dimension in
+                                  // the filename to generate
+                                  // distinct filenames for each run
+                                  // (in a better program, one would
+                                  // check whether `dim' can have
+                                  // other values than 2 or 3, but we
+                                  // neglect this here for the sake
+                                  // of brevity).
+  ofstream output ((dim == 2 ?
+                   "solution-2d.gmv" :
+                   "solution-3d.gmv");
   data_out.write_gmv (output);
 };
 

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.