]> https://gitweb.dealii.org/ - dealii.git/commitdiff
use LocalIntegrators instead of integrating by hand; results are still exactly the...
authorGuido Kanschat <dr.guido.kanschat@gmail.com>
Sun, 14 Nov 2010 21:33:21 +0000 (21:33 +0000)
committerGuido Kanschat <dr.guido.kanschat@gmail.com>
Sun, 14 Nov 2010 21:33:21 +0000 (21:33 +0000)
git-svn-id: https://svn.dealii.org/trunk@22721 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-39/step-39.cc

index e47b9deff3cb1306b6891d2ccf6b0fd511f014a3..e0cce96e4d98436df9d5c2d6ecce5b622fc059bb 100644 (file)
 #include <numerics/mesh_worker_assembler.h>
 #include <numerics/mesh_worker_loop.h>
 
+                                // The include file for local
+                                // integrators associated with the
+                                // Laplacian
+#include <integrators/laplace.h>
+
                                 // Support for multigrid methods
 #include <multigrid/mg_tools.h>
 #include <multigrid/multigrid.h>
@@ -116,47 +121,40 @@ class MatrixIntegrator : public Subscriptor
 
 
                                 // On each cell, we integrate the
-                                // Dirichlet form. All local
-                                // integrations consist of nested
-                                // loops, first over all quadrature
-                                // points and the iner loops over the
-                                // degrees of freedom associated
-                                // with the shape functions.
+                                // Dirichlet form. We use the library
+                                // of ready made integrals in
+                                // LocalIntegrators to avoid writing
+                                // these loops ourselves. Similarly,
+                                // we implement Nitsche boundary
+                                // conditions and the interior
+                                // penalty fluxes between cells.
+                                //
+                                // The boundary und flux terms need a
+                                // penalty parameter, which should be
+                                // adjusted to the cell size and the
+                                // polynomial degree. A safe choice
+                                // of this parameter for constant
+                                // coefficients can be found in
+                                // LocalIntegrators::Laplace::compute_penalty()
+                                // and we use this below.
 template <int dim>
 void MatrixIntegrator<dim>::cell(
   MeshWorker::DoFInfo<dim>& dinfo,
   typename MeshWorker::IntegrationInfo<dim>& info)
 {
-  const FEValuesBase<dim>& fe = info.fe_values();
-  FullMatrix<double>& local_matrix = dinfo.matrix(0,false).matrix;
-  
-  for (unsigned int k=0; k<fe.n_quadrature_points; ++k)
-    for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
-      for (unsigned int j=0; j<fe.dofs_per_cell; ++j)
-       local_matrix(i,j) += (fe.shape_grad(i,k) * fe.shape_grad(j,k))
-                            * fe.JxW(k);
+  LocalIntegrators::Laplace::cell_matrix(dinfo.matrix(0,false).matrix, info.fe_values());
 }
 
-                                // On boundary faces, we use the
-                                // Nitsche boundary condition
+
 template <int dim>
 void MatrixIntegrator<dim>::bdry(
   MeshWorker::DoFInfo<dim>& dinfo,
   typename MeshWorker::IntegrationInfo<dim>& info)
 {
-  const FEValuesBase<dim>& fe = info.fe_values();
-  FullMatrix<double>& local_matrix = dinfo.matrix(0,false).matrix;
-  
-  const unsigned int deg = fe.get_fe().tensor_degree();
-  const double penalty = 2. * deg * (deg+1) * dinfo.face->measure() / dinfo.cell->measure();
-  
-  for (unsigned k=0;k<fe.n_quadrature_points;++k)
-    for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
-      for (unsigned int j=0; j<fe.dofs_per_cell; ++j)
-       local_matrix(i,j) += (fe.shape_value(i,k) * penalty * fe.shape_value(j,k)
-                             - (fe.normal_vector(k) * fe.shape_grad(i,k)) * fe.shape_value(j,k)
-                             - (fe.normal_vector(k) * fe.shape_grad(j,k)) * fe.shape_value(i,k))
-                            * fe.JxW(k);
+  const unsigned int deg = info.fe_values(0).get_fe().tensor_degree();
+  LocalIntegrators::Laplace::nitsche_matrix(
+    dinfo.matrix(0,false).matrix, info.fe_values(0),
+    LocalIntegrators::Laplace::compute_penalty(dinfo, dinfo, deg, deg));
 }
 
                                 // Interior faces use the interior
@@ -168,46 +166,12 @@ void MatrixIntegrator<dim>::face(
   typename MeshWorker::IntegrationInfo<dim>& info1,
   typename MeshWorker::IntegrationInfo<dim>& info2)
 {
-  const FEValuesBase<dim>& fe1 = info1.fe_values();
-  const FEValuesBase<dim>& fe2 = info2.fe_values();
-  FullMatrix<double>& matrix_v1u1 = dinfo1.matrix(0,false).matrix;
-  FullMatrix<double>& matrix_v1u2 = dinfo1.matrix(0,true).matrix;
-  FullMatrix<double>& matrix_v2u1 = dinfo2.matrix(0,true).matrix;
-  FullMatrix<double>& matrix_v2u2 = dinfo2.matrix(0,false).matrix;
-  
-  const unsigned int deg = fe1.get_fe().tensor_degree();
-  double penalty1 = deg * (deg+1) * dinfo1.face->measure() / dinfo1.cell->measure();
-  double penalty2 = deg * (deg+1) * dinfo2.face->measure() / dinfo2.cell->measure();
-  if (dinfo1.cell->has_children() ^ dinfo2.cell->has_children())
-    {
-      Assert (dinfo1.face == dinfo2.face, ExcInternalError());
-      Assert (dinfo1.face->has_children(), ExcInternalError());
-//      Assert (dinfo1.cell->has_children(), ExcInternalError());
-      penalty1 *= 2;
-    }
-const double penalty = penalty1 + penalty2;
-  
-  for (unsigned k=0;k<fe1.n_quadrature_points;++k)
-    for (unsigned int i=0; i<fe1.dofs_per_cell; ++i)
-      for (unsigned int j=0; j<fe1.dofs_per_cell; ++j)
-       {
-         matrix_v1u1(i,j) += (fe1.shape_value(i,k) * penalty * fe1.shape_value(j,k)
-                              - (fe1.normal_vector(k) * fe1.shape_grad(i,k)) * fe1.shape_value(j,k)
-                              - (fe1.normal_vector(k) * fe1.shape_grad(j,k)) * fe1.shape_value(i,k)
-         ) * .5 * fe1.JxW(k);
-         matrix_v1u2(i,j) += (-fe1.shape_value(i,k) * penalty * fe2.shape_value(j,k)
-                              + (fe1.normal_vector(k) * fe1.shape_grad(i,k)) * fe2.shape_value(j,k)
-                              - (fe1.normal_vector(k) * fe2.shape_grad(j,k)) * fe1.shape_value(i,k)
-         ) * .5 * fe1.JxW(k);
-         matrix_v2u1(i,j) += (-fe2.shape_value(i,k) * penalty * fe1.shape_value(j,k)
-                              - (fe1.normal_vector(k) * fe2.shape_grad(i,k)) * fe1.shape_value(j,k)
-                              + (fe1.normal_vector(k) * fe1.shape_grad(j,k)) * fe2.shape_value(i,k)
-         ) * .5 * fe1.JxW(k);
-         matrix_v2u2(i,j) += (fe2.shape_value(i,k) * penalty * fe2.shape_value(j,k)
-                              + (fe1.normal_vector(k) * fe2.shape_grad(i,k)) * fe2.shape_value(j,k)
-                              + (fe1.normal_vector(k) * fe2.shape_grad(j,k)) * fe2.shape_value(i,k)
-         ) * .5 * fe1.JxW(k);
-       }
+  const unsigned int deg = info1.fe_values(0).get_fe().tensor_degree();
+  LocalIntegrators::Laplace::ip_matrix(
+    dinfo1.matrix(0,false).matrix, dinfo1.matrix(0,true).matrix, 
+    dinfo2.matrix(0,true).matrix, dinfo2.matrix(0,false).matrix,
+    info1.fe_values(0), info2.fe_values(0),
+    LocalIntegrators::Laplace::compute_penalty(dinfo1, dinfo2, deg, deg));
 }
 
                                 // The second local integrator builds

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.