]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Fix a number of copy-paste documentation errors where someone seems to have left...
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Tue, 28 May 2002 06:57:24 +0000 (06:57 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Tue, 28 May 2002 06:57:24 +0000 (06:57 +0000)
git-svn-id: https://svn.dealii.org/trunk@5888 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/base/include/base/polynomial.h
deal.II/base/include/base/polynomial_space.h
deal.II/base/include/base/tensor_product_polynomials.h
deal.II/base/source/legendre.cc
deal.II/base/source/polynomial.cc
deal.II/base/source/polynomial_space.cc
deal.II/doc/news/2002/c-3-3.html
tests/base/polynomial1d.cc
tests/base/polynomial_test.cc

index ef5fda22206dcab21763ed8bd0ece5b16afb423d..f15e4a2c26ca1e3560dee41d757aafc450585728 100644 (file)
@@ -51,11 +51,6 @@ class Polynomial : public Subscriptor
                                      * minus one.
                                      */
     Polynomial (const typename std::vector<number> &coefficients);
-
-                                     /**
-                                     * Default-Constructor.
-                                     */
-    Polynomial ();
     
                                     /**
                                      * Return the value of this
@@ -116,6 +111,10 @@ class Polynomial : public Subscriptor
                                      * of this class and may be
                                      * passed down by derived
                                      * classes.
+                                     *
+                                     * This vector cannot be constant
+                                     * since we want to allow copying
+                                     * of polynomials.
                                      */
     typename std::vector<number> coefficients;
 };
@@ -123,16 +122,18 @@ class Polynomial : public Subscriptor
 
 
 /**
- * Lagrange polynomials with equidistant interpolation
- * points in [0,1]. The polynomial of degree @p{n} has got @p{n+1} interpolation
+ * Lagrange polynomials with equidistant interpolation points in
+ * [0,1]. The polynomial of degree @p{n} has got @p{n+1} interpolation
  * points. The interpolation points are sorted in ascending
  * order. This order gives an index to each interpolation point.  A
- * Lagrangian polynomial equals to 1 at its `support point',
- * and 0 at all other interpolation
- * points. For example, if the degree is 3, and the support point is 1,
- * then the polynomial represented by this object is cubic and its
- * value is 1 at the point @p{x=1/3}, and zero at the point @p{x=0},
- * @p{x=2/3}, and @p{x=1}.
+ * Lagrangian polynomial equals to 1 at its `support point', and 0 at
+ * all other interpolation points. For example, if the degree is 3,
+ * and the support point is 1, then the polynomial represented by this
+ * object is cubic and its value is 1 at the point @p{x=1/3}, and zero
+ * at the point @p{x=0}, @p{x=2/3}, and @p{x=1}. All the polynomials
+ * have polynomial order equal to @p{degree}, but together they span
+ * the entire space of polynomials of degree less than or equal
+ * @p{degree}.
  *
  * The Lagrange polynomials are implemented up to degree 10.
  *
@@ -153,11 +154,26 @@ class LagrangeEquidistant: public Polynomial<double>
     LagrangeEquidistant (const unsigned int n,
                         const unsigned int support_point);
 
-                                     /**
-                                     * Default-constructor.
+                                    /**
+                                     * Return a vector of polynomial
+                                     * objects of order @p{degree},
+                                     * which then spans the full
+                                     * space of polynomials up to the
+                                     * given degree. The polynomials
+                                     * are generated by calling the
+                                     * destructor of this class with
+                                     * the same degree but support
+                                     * point running from zero to
+                                     * @p{degree}. This function may
+                                     * be used to initialize the
+                                     * @ref{TensorProductPolynomials}
+                                     * and @ref{PolynomialSpace}
+                                     * classes.
                                      */
-    LagrangeEquidistant ();    
-
+    static
+    std::vector<Polynomial<double> >
+    generate_complete_basis (const unsigned int degree);
+    
   private:
 
                                     /**
@@ -195,6 +211,22 @@ class Legendre : public Polynomial<number>
                                      */
     Legendre (const unsigned int k);
 
+                                    /**
+                                     * Return a vector of Legendre
+                                     * polynomial objects of orders
+                                     * zero through @p{degree}, which
+                                     * then spans the full space of
+                                     * polynomials up to the given
+                                     * degree. This function may be
+                                     * used to initialize the
+                                     * @ref{TensorProductPolynomials}
+                                     * and @ref{PolynomialSpace}
+                                     * classes.
+                                     */
+    static
+    std::vector<Polynomial<number> >
+    generate_complete_basis (const unsigned int degree);
+    
   private:
                                     /**
                                      * Vector with already computed
@@ -225,6 +257,8 @@ class Legendre : public Polynomial<number>
 };
 
 
+/* -------------------------- inline functions --------------------- */
+
 template <typename number>
 inline
 unsigned int
index 6fd8423abe9f161f115e3164f3a60f8e1cb821d3..2cd7a37a1f56a1cd5ab8e39ca4dfe276ca66ddb2 100644 (file)
 
 
 /**
- * Polynomial space of degree at most n in higher dimensions.
+ * Representation of the space of polynomials of degree at most n in
+ * higher dimensions.
  *
  * Given a vector of @{n} one-dimensional polynomials @{P0} to @{Pn},
  * where @{Pi} has degree @p{i}, this class generates all polynomials
- * the form @p{ Pijk(x,y,z) = Pi(x)Pj(y)Pk(z)}, where the sum of
- * @p{i}, @p{j} and @p{k} is below/equal @p{n}.
+ * of the form @p{ Pijk(x,y,z) = Pi(x)Pj(y)Pk(z)}, where the sum of
+ * @p{i}, @p{j} and @p{k} is less than or equal @p{n}.
  *
  * @author Guido Kanschat, 2002
  */
@@ -43,7 +44,15 @@ class PolynomialSpace
                                      * vector of pointers to
                                      * one-dimensional polynomials
                                      * and will be copied into the
-                                     * member variable @p{polynomials}.
+                                     * member variable
+                                     * @p{polynomials}.  The static
+                                     * type of the template argument
+                                     * @p{pols} needs to be
+                                     * convertible to
+                                     * @p{Polynomial<double>},
+                                     * i.e. should usually be a
+                                     * derived class of
+                                     * @p{Polynomial<double>}.
                                      */
     template <class Pol>
     PolynomialSpace(const typename std::vector<Pol> &pols);
@@ -70,10 +79,10 @@ class PolynomialSpace
                                      * functions, see below, in a
                                      * loop over all polynomials.
                                      */
-    void compute(const Point<dim>                     &unit_point,
-                std::vector<double>                  &values,
-                typename std::vector<Tensor<1,dim> > &grads,
-                typename std::vector<Tensor<2,dim> > &grad_grads) const;
+    void compute (const Point<dim>                     &unit_point,
+                 std::vector<double>                  &values,
+                 typename std::vector<Tensor<1,dim> > &grads,
+                 typename std::vector<Tensor<2,dim> > &grad_grads) const;
     
                                     /**
                                      * Computes the value of the
@@ -107,9 +116,16 @@ class PolynomialSpace
                                    const Point<dim> &p) const;
 
                                     /**
-                                     * Returns the number of tensor
-                                     * product polynomials. For $n$
-                                     * 1d polynomials this is $n^dim$.
+                                     * Return the number of
+                                     * polynomials spanning the space
+                                     * represented by this
+                                     * class. Here, if @p{N} is the
+                                     * number of one-dimensional
+                                     * polynomials given, then the
+                                     * result of this function is
+                                     * @p{N} in 1d, @p{N(N+1)/2} in
+                                     * 2d, and @p{N(N+1)(N+2)/6 in
+                                     * 3d.
                                      */
     unsigned int n() const;
 
@@ -127,42 +143,33 @@ class PolynomialSpace
                                      * polynomials given to the
                                      * constructor.
                                      */
-    std::vector<Polynomial<double> > polynomials;
+    const std::vector<Polynomial<double> > polynomials;
 
                                     /**
-                                     * Number of tensor product
-                                     * polynomials. For $n$ 1d
-                                     * polynomials this is $n^dim$.
+                                     * Store the precomputed value
+                                     * which the @p{n()} function
+                                     * returns.
                                      */
-    unsigned int n_pols;
-    
+    const unsigned int n_pols;
+
                                     /**
-                                     * Computes @p{x} to the power of
-                                     * @p{y} for unsigned int @p{x}
-                                     * and @p{y}. It is a private
-                                     * function as it is only used in
-                                     * this class.
+                                     * Static function used in the
+                                     * constructor to compute the
+                                     * number of polynomials.
                                      */
-    static unsigned int power(const unsigned int x, const unsigned int y);
+    static unsigned int compute_n_pols (const unsigned int n);
 };
 
 
 
 template <int dim>
 template <class Pol>
-PolynomialSpace<dim>::PolynomialSpace(
-  const typename std::vector<Pol> &pols):
-               polynomials (pols.begin(), pols.end())
-{
-  const unsigned int n=polynomials.size();
-
-  n_pols = n;
-  for (unsigned int i=1;i<dim;++i)
-    {
-      n_pols *= (n+i);
-      n_pols /= (i+1);
-    }
-}
+PolynomialSpace<dim>::
+PolynomialSpace (const typename std::vector<Pol> &pols)
+               :
+               polynomials (pols.begin(), pols.end()),
+               n_pols (compute_n_pols(polynomials.size()))
+{}
 
 
 
index e56e1a2c1cbd516610ac147e69cb3a11e3646cf8..32e140eea2ec83615e06e2fb92de820a49a1c54f 100644 (file)
@@ -182,7 +182,7 @@ class TensorProductPolynomials
                                      * polynomials given to the
                                      * constructor.
                                      */
-    std::vector<Polynomial<double> > polynomials;
+    const std::vector<Polynomial<double> > polynomials;
 
                                     /**
                                      * Number of tensor product
@@ -213,11 +213,12 @@ class TensorProductPolynomials
 
 template <int dim>
 template <class Pol>
-TensorProductPolynomials<dim>::TensorProductPolynomials(
-  const typename std::vector<Pol> &pols):
+TensorProductPolynomials<dim>::
+TensorProductPolynomials(const typename std::vector<Pol> &pols)
+               :
                polynomials (pols.begin(), pols.end()),
                n_tensor_pols(power(pols.size(), dim)),
-               n_pols_to(dim+1)
+               n_pols_to(dim+1, 0)
 {
   const unsigned int n_pols=polynomials.size();
 
index 230dcc9a5cc38ead6f2ab4092117f0df224414b0..2344a45f0fd4a0d0c92e0b37df681ec68487fc69 100644 (file)
@@ -165,5 +165,18 @@ Legendre<number>::Legendre (const unsigned int k)
 
 
 
+template <typename number>
+std::vector<Polynomial<number> >
+Legendre<number>::generate_complete_basis (const unsigned int degree)
+{
+  std::vector<Polynomial<double> > v;
+  v.reserve(degree+1);
+  for (unsigned int i=0; i<=degree; ++i)
+    v.push_back (Legendre<double>(i));
+  return v;
+};
+
+
+
 // explicit instantiations
 template class Legendre<double>;
index 8952b6ecfb765b13bc6eef2a1448757f3db89fab..71b42690303fb48cfdfc73b11129ccb4eb5e33c2 100644 (file)
@@ -21,14 +21,6 @@ Polynomial<number>::Polynomial (const typename std::vector<number> &a):
 
 
 
-template <typename number>
-Polynomial<number>::Polynomial ()
-  :
-  coefficients(0)
-{}
-
-
-
 template <typename number>
 number
 Polynomial<number>::value (const number x) const
@@ -110,11 +102,6 @@ LagrangeEquidistant::LagrangeEquidistant (const unsigned int n,
 
 
 
-LagrangeEquidistant::LagrangeEquidistant ()
-{}
-
-
-
 std::vector<double> 
 LagrangeEquidistant::compute_coefficients (const unsigned int n,
                                           const unsigned int support_point)
@@ -336,6 +323,28 @@ LagrangeEquidistant::compute_coefficients (const unsigned int n,
   return a;
 }
 
+
+std::vector<Polynomial<double> >
+LagrangeEquidistant::
+generate_complete_basis (const unsigned int degree)
+{
+  if (degree==0)
+                                    // create constant polynomial
+    return std::vector<Polynomial<double> >
+      (1, Polynomial<double> (std::vector<double> (1,1.)));
+  else
+    {
+                                      // create array of Lagrange
+                                      // polynomials
+      std::vector<Polynomial<double> > v;
+      for (unsigned int i=0; i<=degree; ++i)
+       v.push_back(LagrangeEquidistant(degree,i));
+      return v;
+    };
+};
+
+
+
 template class Polynomial<float>;
 template class Polynomial<double>;
 template class Polynomial<long double>;
index 15b1000abefe12e3710a24ea33b2f8806216bb14..460a9f9d9da19200fbbe97aaa0eb5dbf724b3fcf 100644 (file)
 #include <base/polynomial_space.h>
 
 
-
 template <int dim>
-unsigned int PolynomialSpace<dim>::power(const unsigned int x,
-                                    const unsigned int y)
+unsigned int
+PolynomialSpace<dim>::compute_n_pols (const unsigned int n)
 {
-  unsigned int value=1;
-  for (unsigned int i=0; i<y; ++i)
-    value*=x;
-  return value;
-}
+  unsigned int n_pols = n;
+  for (unsigned int i=1;i<dim;++i)
+    {
+      n_pols *= (n+i);
+      n_pols /= (i+1);
+    }
+  return n_pols;
+};
 
 
 
index dd9b890a137c718aeada64d357aef4dc7ab4c953..102e1016b85a0e66d63e012391cc8767378944d2 100644 (file)
@@ -150,6 +150,27 @@ contributor's names are abbreviated by WB (Wolfgang Bangerth), GK
 <h3>base</h3>
 
 <ol>
+  <li> <p> 
+       New: The <code class="class">Legendre</code> and
+       <code class="class">LagrangeEquidistant</code> classes now have
+       static member functions <code
+       class="member">generate_complete_basis<code> which returns an
+       array of polynomial objects spanning the complete space up to a
+       specified order in 1d. This may be used to generate the
+       respective polynomial spaces in higher space dimensions.
+       <br>
+       (WB 2002/05/27)
+       </p>
+
+  <li> <p> 
+       Changed: The <code class="class">Polynomial</code> and
+       <code class="class">LagrangeEquidistant</code> classes have lost
+       their default constructor, as that did not make much sense
+       anyway.
+       <br>
+       (WB 2002/05/27)
+       </p>
+
   <li> <p> 
        Fixed: When forward declaring the <code
        class="class">Tensor</code> class, we now also forward declare
index 1e9636d5f398948c6d809152e98199ad3299de2a..6e00b697c25dbb44871d750675b337c48337fd81 100644 (file)
@@ -2,7 +2,7 @@
 //    $Id$
 //    Version: $Name$
 //
-//    Copyright (C) 2000, 2001 by the deal.II authors
+//    Copyright (C) 2000, 2001, 2002 by the deal.II authors
 //
 //    This file is subject to QPL and may not be  distributed
 //    without copyright and license information. Please refer
@@ -44,12 +44,12 @@ int main ()
   deallog.attach(logfile);
   deallog.depth_console(0);
 
-  std::vector<Polynomial<double> > p (15);
+  std::vector<Polynomial<double> > p;
 
   deallog << "Legendre" << endl;
   
-  for (unsigned int i=0;i<p.size();++i)
-    p[i] = Legendre<double>(i);
+  for (unsigned int i=0;i<15;++i)
+    p.push_back (Legendre<double>(i));
   
   for (unsigned int i=0;i<p.size();++i)
     for (unsigned int j=0;j<=i;++j)
@@ -59,9 +59,9 @@ int main ()
 
   deallog << "LagrangeEquidistant" << endl;
   
-  p.resize(6);
-  for (unsigned int i=0;i<p.size();++i)
-    p[i] = LagrangeEquidistant(p.size(), i);
+  p.clear();
+  for (unsigned int i=0;i<6;++i)
+    p.push_back(LagrangeEquidistant(6, i));
 
                                   // We add 1.0001 bacuse of bugs in
                                   // the ostream classes
index 39be33e76e60b668fa69236da7c8644ca7911efd..ca89fec27d503720635cef5a8e4a4582759cd4a8 100644 (file)
@@ -104,14 +104,15 @@ int main()
   deallog.attach(logfile);
   deallog.depth_console(0);
 
-  vector<Polynomial<double> > p(3);
-  for (unsigned int i=0;i<p.size();++i)
-    p[i] = LagrangeEquidistant(p.size(), i);
+  vector<Polynomial<double> > p;
+  for (unsigned int i=0;i<3;++i)
+    p.push_back (LagrangeEquidistant(3, i));
 
   check_dimensions(p);
 
-  for (unsigned int i=0;i<p.size();++i)
-    p[i] = Legendre<double>(i);
+  p.clear ();
+  for (unsigned int i=0;i<3;++i)
+    p.push_back (Legendre<double>(i));
 
   check_dimensions(p);
 }

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.