+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"
+ "http://www.w3.org/TR/REC-html40/strict.dtd">
<html>
-<head>
-<title>Abstract</title>
-<body>
-<h1>Abstract</h1>
+ <head>
+ <link href="../../screen.css" rel="StyleSheet" title="deal.II Homepage" media="screen">
+ <link href="../../print.css" rel="StyleSheet" title="deal.II Homepage" media="print">
+ <title>The deal.II Homepage</title>
+ <meta name="author" content="Wolfgang Bangerth <deal@iwr.uni-heidelberg.de>">
+ <meta name="keywords" content="Publications on and with deal.II"></head>
+ <body>
+
+<h3>Abstract</h3>
+
+<dir>
In this paper, we present a super-convergence result for the Local
Discontinuous Galerkin method for a model elliptic problem on
Cartesian grids. We identify a <em>special</em> numerical flux for
of <em>k</em> and <em>k+1/2</em>, respectively. We present a series
of numerical examples which establish the sharpness of our theoretical
results.
+</dir>
+
</body>
</html>