// check solution for periodicity. The used test case is based on step-22.
// We consider a 2D quarter hyper shell and require periodicity with respect to
// the left and lower boundary.
-// We refine two times adaptively using the Kelly error estimator.
+// We refine two times adaptively using the Kelly error estimator. Note that
//
#define PERIODIC
estimated_error_per_cell,
fe.component_mask(pressure));
+ // Note: this test does
parallel::distributed::GridRefinement::
refine_and_coarsen_fixed_number (triangulation,
estimated_error_per_cell,
- 0.3, 0.0);
+ 0.32, 0.0);
triangulation.execute_coarsening_and_refinement ();
}
0.00000 0.691406 -1.44635 0.00000
0.00000 0.753906 -1.32644 0.00000
0.00000 0.816406 -1.22489 0.00000
-0.00000 0.878906 -1.13782 0.00000
-0.00000 0.941406 -1.06222 0.00000
+0.00000 0.878906 -1.13779 0.00000
+0.00000 0.941406 -1.06225 0.00000
Refinement cycle 2
Assembling...
Computing preconditioner...
Solving...
0.00000 0.533203 -1.87547 0.00000
-0.00000 0.564453 -1.77163 0.00000
-0.00000 0.595703 -1.67869 0.00000
+0.00000 0.564453 -1.77166 0.00000
+0.00000 0.595703 -1.67867 0.00000
0.00000 0.626953 -1.59504 0.00000
0.00000 0.658203 -1.51928 0.00000
0.00000 0.689453 -1.45044 0.00000
0.00000 0.783203 -1.27680 0.00000
0.00000 0.814453 -1.22782 0.00000
0.00000 0.845703 -1.18244 0.00000
-0.00000 0.876953 -1.14033 0.00000
-0.00000 0.908203 -1.10120 0.00000
-0.00000 0.939453 -1.06444 0.00000
-0.00000 0.970703 -1.03006 0.00000
+0.00000 0.876953 -1.14032 0.00000
+0.00000 0.908203 -1.10107 0.00000
+0.00000 0.939453 -1.06445 0.00000
+0.00000 0.970703 -1.03018 0.00000
0.00000 0.691406 -1.44635 0.00000
0.00000 0.753906 -1.32644 0.00000
0.00000 0.816406 -1.22489 0.00000
-0.00000 0.878906 -1.13782 0.00000
-0.00000 0.941406 -1.06222 0.00000
+0.00000 0.878906 -1.13779 0.00000
+0.00000 0.941406 -1.06225 0.00000
Refinement cycle 2
Assembling...
Computing preconditioner...
Solving...
0.00000 0.533203 -1.87547 0.00000
-0.00000 0.564453 -1.77163 0.00000
-0.00000 0.595703 -1.67869 0.00000
+0.00000 0.564453 -1.77166 0.00000
+0.00000 0.595703 -1.67867 0.00000
0.00000 0.626953 -1.59504 0.00000
0.00000 0.658203 -1.51928 0.00000
0.00000 0.689453 -1.45044 0.00000
0.00000 0.783203 -1.27680 0.00000
0.00000 0.814453 -1.22782 0.00000
0.00000 0.845703 -1.18244 0.00000
-0.00000 0.876953 -1.14033 0.00000
-0.00000 0.908203 -1.10120 0.00000
-0.00000 0.939453 -1.06444 0.00000
-0.00000 0.970703 -1.03006 0.00000
+0.00000 0.876953 -1.14032 0.00000
+0.00000 0.908203 -1.10107 0.00000
+0.00000 0.939453 -1.06445 0.00000
+0.00000 0.970703 -1.03018 0.00000
0.00000 0.691406 -1.44635 0.00000
0.00000 0.753906 -1.32644 0.00000
0.00000 0.816406 -1.22489 0.00000
-0.00000 0.878906 -1.13782 0.00000
-0.00000 0.941406 -1.06222 0.00000
+0.00000 0.878906 -1.13779 0.00000
+0.00000 0.941406 -1.06225 0.00000
Refinement cycle 2
Assembling...
Computing preconditioner...
Solving...
0.00000 0.533203 -1.87547 0.00000
-0.00000 0.564453 -1.77163 0.00000
-0.00000 0.595703 -1.67869 0.00000
+0.00000 0.564453 -1.77166 0.00000
+0.00000 0.595703 -1.67867 0.00000
0.00000 0.626953 -1.59504 0.00000
0.00000 0.658203 -1.51928 0.00000
0.00000 0.689453 -1.45044 0.00000
0.00000 0.783203 -1.27680 0.00000
0.00000 0.814453 -1.22782 0.00000
0.00000 0.845703 -1.18244 0.00000
-0.00000 0.876953 -1.14033 0.00000
-0.00000 0.908203 -1.10120 0.00000
-0.00000 0.939453 -1.06444 0.00000
-0.00000 0.970703 -1.03006 0.00000
+0.00000 0.876953 -1.14032 0.00000
+0.00000 0.908203 -1.10107 0.00000
+0.00000 0.939453 -1.06445 0.00000
+0.00000 0.970703 -1.03018 0.00000