// altogether
Assert(false, ExcNotImplemented());
- const double a = 1./(1+std::sqrt(3)); // equilibrate cell sizes at transition
- // from the inner part to the radial
- // cells
+ const double a = 1./(1+std::sqrt(3.0)); // equilibrate cell sizes at transition
+ // from the inner part to the radial
+ // cells
const unsigned int n_vertices = 16;
const Point<3> vertices[n_vertices]
= {
// first the vertices of the inner
// cell
- p+Point<3>(-1,-1,-1)*(radius/sqrt(3)*a),
- p+Point<3>(+1,-1,-1)*(radius/sqrt(3)*a),
- p+Point<3>(+1,+1,-1)*(radius/sqrt(3)*a),
- p+Point<3>(-1,+1,-1)*(radius/sqrt(3)*a),
- p+Point<3>(-1,-1,+1)*(radius/sqrt(3)*a),
- p+Point<3>(+1,-1,+1)*(radius/sqrt(3)*a),
- p+Point<3>(+1,+1,+1)*(radius/sqrt(3)*a),
- p+Point<3>(-1,+1,+1)*(radius/sqrt(3)*a),
+ p+Point<3>(-1,-1,-1)*(radius/std::sqrt(3.0)*a),
+ p+Point<3>(+1,-1,-1)*(radius/std::sqrt(3.0)*a),
+ p+Point<3>(+1,+1,-1)*(radius/std::sqrt(3.0)*a),
+ p+Point<3>(-1,+1,-1)*(radius/std::sqrt(3.0)*a),
+ p+Point<3>(-1,-1,+1)*(radius/std::sqrt(3.0)*a),
+ p+Point<3>(+1,-1,+1)*(radius/std::sqrt(3.0)*a),
+ p+Point<3>(+1,+1,+1)*(radius/std::sqrt(3.0)*a),
+ p+Point<3>(-1,+1,+1)*(radius/std::sqrt(3.0)*a),
// now the eight vertices at
// the outer sphere
- p+Point<3>(-1,-1,-1)*(radius/sqrt(3)),
- p+Point<3>(+1,-1,-1)*(radius/sqrt(3)),
- p+Point<3>(+1,+1,-1)*(radius/sqrt(3)),
- p+Point<3>(-1,+1,-1)*(radius/sqrt(3)),
- p+Point<3>(-1,-1,+1)*(radius/sqrt(3)),
- p+Point<3>(+1,-1,+1)*(radius/sqrt(3)),
- p+Point<3>(+1,+1,+1)*(radius/sqrt(3)),
- p+Point<3>(-1,+1,+1)*(radius/sqrt(3))
+ p+Point<3>(-1,-1,-1)*(radius/std::sqrt(3.0)),
+ p+Point<3>(+1,-1,-1)*(radius/std::sqrt(3.0)),
+ p+Point<3>(+1,+1,-1)*(radius/std::sqrt(3.0)),
+ p+Point<3>(-1,+1,-1)*(radius/std::sqrt(3.0)),
+ p+Point<3>(-1,-1,+1)*(radius/std::sqrt(3.0)),
+ p+Point<3>(+1,-1,+1)*(radius/std::sqrt(3.0)),
+ p+Point<3>(+1,+1,+1)*(radius/std::sqrt(3.0)),
+ p+Point<3>(-1,+1,+1)*(radius/std::sqrt(3.0))
};
// one needs to draw the seven cubes to