]> https://gitweb.dealii.org/ - dealii.git/commitdiff
More documentation.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Fri, 12 Feb 2010 23:46:54 +0000 (23:46 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Fri, 12 Feb 2010 23:46:54 +0000 (23:46 +0000)
git-svn-id: https://svn.dealii.org/trunk@20581 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-16/step-16.cc

index e0bd18d487ebbbf113375c9159e80b84b68e94c5..5c6f04c54a0a81487eeae4c1937256d608d9e504 100644 (file)
@@ -257,6 +257,13 @@ LaplaceProblem<dim>::LaplaceProblem (const unsigned int degree)
 {}
 
 
+
+                                 // @sect4{LaplaceProblem::setup_system}
+
+                                // The following function extends what the
+                                // corresponding one in step-6 did. The top
+                                // part, apart from the additional output,
+                                // does the same:
 template <int dim>
 void LaplaceProblem<dim>::setup_system ()
 {
@@ -284,6 +291,28 @@ void LaplaceProblem<dim>::setup_system ()
   solution.reinit (mg_dof_handler.n_dofs());
   system_rhs.reinit (mg_dof_handler.n_dofs());
 
+                                  // But it starts to be a wee bit different
+                                  // here, although this still doesn't have
+                                  // anything to do with multigrid
+                                  // methods. step-6 took care of boundary
+                                  // values and hanging nodes in a separate
+                                  // step after assembling the global matrix
+                                  // from local contributions. This works,
+                                  // but the same can be done in a slightly
+                                  // simpler way if we already take care of
+                                  // these constraints at the time of copying
+                                  // local contributions into the global
+                                  // matrix. To this end, we here do not just
+                                  // compute the constraints do to hanging
+                                  // nodes, but also due to zero boundary
+                                  // conditions. Both kinds of constraints
+                                  // can be put into the same object
+                                  // (<code>constraints</code>), and we will
+                                  // use this set of constraints later on to
+                                  // help us copy local contributions
+                                  // correctly into the global linear system
+                                  // right away, without the need for a later
+                                  // clean-up stage:
   constraints.clear ();
   DoFTools::make_hanging_node_constraints (mg_dof_handler, constraints);
   VectorTools::interpolate_boundary_values (mg_dof_handler,
@@ -295,66 +324,81 @@ void LaplaceProblem<dim>::setup_system ()
   sparsity_pattern.compress();
   system_matrix.reinit (sparsity_pattern);
 
-                                  // The multi-level objects are
-                                  // resized to hold matrices for
-                                  // every level. The coarse level is
-                                  // zero (this is mandatory right
-                                  // now but may change in a future
-                                  // revision). Remark, that the
-                                  // finest level is nlevels-1.
-                                  // We first have to resize the
-                                  // container holding the
-                                  // SparseMatrix classes, since they
-                                  // have to release their
-                                  // SparsityPattern before it can be
-                                  // destroyed.
-  const unsigned int nlevels = triangulation.n_levels();
-
-  mg_interface_matrices.resize(0, nlevels-1);
+                                  // Now for the things that concern the
+                                  // multigrid data structures. First, we
+                                  // resize the multi-level objects to hold
+                                  // matrices and sparsity patterns for every
+                                  // level. The coarse level is zero (this is
+                                  // mandatory right now but may change in a
+                                  // future revision). Note that these
+                                  // functions take a complete, inclusive
+                                  // range here (not a starting index and
+                                  // size), so the finest level is
+                                  // <code>n_levels-1</code>.  We first have
+                                  // to resize the container holding the
+                                  // SparseMatrix classes, since they have to
+                                  // release their SparsityPattern before the
+                                  // can be destroyed upon resizing.
+  const unsigned int n_levels = triangulation.n_levels();
+
+  mg_interface_matrices.resize(0, n_levels-1);
   mg_interface_matrices.clear ();
-  mg_matrices.resize(0, nlevels-1);
+  mg_matrices.resize(0, n_levels-1);
   mg_matrices.clear ();
-  mg_sparsity_patterns.resize(0, nlevels-1);
-
-                                  // Now, we have to build a matrix
-                                  // on each level. Technically, we
-                                  // could use the matrix initialized
-                                  // above on the finest
-                                  // level. Beware that this is not
-                                  // true anymore with local
-                                  // refinement!
-  for (unsigned int level=0;level<nlevels;++level)
+  mg_sparsity_patterns.resize(0, n_levels-1);
+
+                                  // Now, we have to provide a matrix on each
+                                  // level. To this end, we first use the
+                                  // MGTools::make_sparsity_pattern function
+                                  // to first generate a preliminary
+                                  // compressed sparsity pattern on each
+                                  // level (see the @ref Sparsity module for
+                                  // more information on this topic) and then
+                                  // copy it over to the one we really
+                                  // want. The next step is to initialize
+                                  // both kinds of level matrices with these
+                                  // sparsity patterns.
+                                  //
+                                  // It may be worth pointing out that the
+                                  // interface matrices only have entries for
+                                  // degrees of freedom that sit at or next
+                                  // to the interface between coarser and
+                                  // finer levels of the mesh. They are
+                                  // therefore even sparser than the matrices
+                                  // on the individual levels of our
+                                  // multigrid hierarchy. If we were more
+                                  // concerned about memory usage (and
+                                  // possibly the speed with which we can
+                                  // multiply with these matrices), we should
+                                  // use separate and different sparsity
+                                  // patterns for these two kinds of
+                                  // matrices.
+  for (unsigned int level=0; level<n_levels; ++level)
     {
-      mg_sparsity_patterns[level]
-       .reinit (mg_dof_handler.n_dofs(level),
-                mg_dof_handler.n_dofs(level),
-                mg_dof_handler.max_couplings_between_dofs());
-      MGTools::make_sparsity_pattern (mg_dof_handler,
-                                     mg_sparsity_patterns[level],
-                                     level);
-      CompressedSparsityPattern ci_sparsity;
-      if(level>0)
-       {
-         ci_sparsity.reinit(mg_dof_handler.n_dofs(level),
-                            mg_dof_handler.n_dofs(level));
-         MGTools::make_sparsity_pattern(mg_dof_handler, ci_sparsity, level);
-       }
-    }
+      CompressedSparsityPattern csp;
+      csp.reinit(mg_dof_handler.n_dofs(level),
+                mg_dof_handler.n_dofs(level));
+      MGTools::make_sparsity_pattern(mg_dof_handler, csp, level);
 
-//And the same for the mg matrices
-//for the interface. Note that there
-//is no such interface on the coarsest level
-  for(unsigned int level=0; level<nlevels; ++level)
-    {
-      mg_sparsity_patterns[level].compress();
+      mg_sparsity_patterns[level].copy_from (csp);
+      
       mg_matrices[level].reinit(mg_sparsity_patterns[level]);
       mg_interface_matrices[level].reinit(mg_sparsity_patterns[level]);
     }
 }
 
-                                // This is the standard assemble function
-                                // for the Poisson equation you have seen a
-                                // lot of times before.
+
+                                 // @sect4{LaplaceProblem::assemble_system}
+
+                                // The following function assembles the
+                                // linear system on the finesh level of the
+                                // mesh. It is almost exactly the same as in
+                                // step-6, with the exception that we don't
+                                // eliminate hanging nodes and boundary
+                                // values after assembling, but while copying
+                                // local contributions into the global
+                                // matrix. This is not only simpler but also
+                                // more efficient for large problems.
 template <int dim>
 void LaplaceProblem<dim>::assemble_system ()
 {
@@ -410,19 +454,23 @@ void LaplaceProblem<dim>::assemble_system ()
 }
 
 
-                                // Here is another assemble
-                                // function. The integration core is
-                                // the same as above. Only the loop
-                                // goes over all existing cells now
-                                // and the results must be entered
-                                // into the correct matrix. Here comes
-                                 // the difference to global refinement
-                                 // into play. We have to fill the interface
-                                 // matrices correctly.
+                                 // @sect4{LaplaceProblem::assemble_multigrid}
 
-                                // Since we only do multi-level
-                                // preconditioning, no right-hand
-                                // side is assembled here.
+                                // The next function is the one that builds
+                                // the linear operators (matrices) that
+                                // define the multigrid method on each level
+                                // of the mesh. The integration core is the
+                                // same as above, but the loop below will go
+                                // over all existing cells instead of just
+                                // the active ones, and the results must be
+                                // entered into the correct matrix. Note also
+                                // that since we only do multi-level
+                                // preconditioning, no right-hand side needs
+                                // to be assembled here.
+                                //
+                                // Before we go there, however, we have to
+                                // take care of a significant amount of book
+                                // keeping:
 template <int dim>
 void LaplaceProblem<dim>::assemble_multigrid ()
 {
@@ -439,13 +487,20 @@ void LaplaceProblem<dim>::assemble_multigrid ()
 
   std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
+                                  // Next a few things that are specific to
+                                  // building the multigrid data structures
+                                  // (since we only need them in the current
+                                  // function, rather than also elsewhere, we
+                                  // build them here instead of the
+                                  // <code>setup_system</code> function). 
   std::vector<std::vector<bool> > interface_dofs;
   std::vector<std::vector<bool> > boundary_interface_dofs;
   for (unsigned int level = 0; level<triangulation.n_levels(); ++level)
     {
-      std::vector<bool> tmp (mg_dof_handler.n_dofs(level));
-      interface_dofs.push_back (tmp);
-      boundary_interface_dofs.push_back (tmp);
+      interface_dofs.push_back (std::vector<bool>
+                               (mg_dof_handler.n_dofs(level)));
+      boundary_interface_dofs.push_back (std::vector<bool>
+                                        (mg_dof_handler.n_dofs(level)));
     }
   MGTools::extract_inner_interface_dofs (mg_dof_handler,
                                         interface_dofs,

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.