]> https://gitweb.dealii.org/ - dealii.git/commitdiff
fix compiler warnings and renaming some classes and functions
authorJoerg Frohne <frohne@mathematik.uni-siegen.de>
Mon, 20 Aug 2012 17:53:21 +0000 (17:53 +0000)
committerJoerg Frohne <frohne@mathematik.uni-siegen.de>
Mon, 20 Aug 2012 17:53:21 +0000 (17:53 +0000)
git-svn-id: https://svn.dealii.org/trunk@26036 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-42/step-42.cc

index 455cfae46a9b63d6a9e6d1c28fca7b225a1c2e74..281ed94ac9bd3af3aaab2441bd2f8be63e99e88c 100644 (file)
 #include <list>
 #include <time.h>
 
-                                // This is new, however: in the previous
-                                // example we got some unwanted output from
-                                // the linear solvers. If we want to suppress
-                                // it, we have to include this file and add a
-                                // single line somewhere to the program (see
-                                // the main() function below for that):
+
 #include <deal.II/base/logstream.h>
 
-                                // The final step, as in previous
-                                // programs, is to import all the
-                                // deal.II class and function names
-                                // into the global namespace:
-using namespace dealii;
+namespace Step42
+{
+  using namespace dealii;
 
-                                 // @sect3{The <code>Step4</code> class template}
+                                   // @sect3{The <code>PlasticityContactProblem</code> class template}
 
-template <int dim> class ConstitutiveLaw;
+  template <int dim> class ConstitutiveLaw;
 
-template <int dim>
-class Step4
-{
-public:
-  Step4 (int _n_refinements_global, int _n_refinements_local);
-  void run ();
-
-private:
-  void make_grid ();
-  void setup_system();
-  void assemble_mass_matrix ();
-  void assemble_nl_system (TrilinosWrappers::MPI::Vector &u);
-  void residual_nl_system (TrilinosWrappers::MPI::Vector &u,
-                          Vector<double>                &sigma_eff_vector);
-  void projection_active_set ();
-  void dirichlet_constraints ();
-  void solve ();
-  void solve_newton ();
-  void output_results (const std::string& title) const;
-  void move_mesh (const TrilinosWrappers::MPI::Vector &_complete_displacement) const;
-  void output_results (TrilinosWrappers::MPI::Vector vector, const std::string& title) const;
-  void output_results (Vector<double> vector, const std::string& title) const;
-
-  MPI_Comm             mpi_communicator;
-
-  parallel::distributed::Triangulation<dim>   triangulation;
-
-  FESystem<dim>        fe;
-  DoFHandler<dim>      dof_handler;
-
-  IndexSet             locally_owned_dofs;
-  IndexSet             locally_relevant_dofs;
-
-  int                  n_refinements_global;
-  int                  n_refinements_local;
-  unsigned int         number_iterations;
-  std::vector<double>  run_time;
-
-  ConstraintMatrix     constraints;
-  ConstraintMatrix     constraints_hanging_nodes;
-  ConstraintMatrix     constraints_dirichlet_hanging_nodes;
-
-  TrilinosWrappers::SparseMatrix system_matrix_newton;
-  TrilinosWrappers::SparseMatrix mass_matrix;
-
-  TrilinosWrappers::MPI::Vector       solution;
-  TrilinosWrappers::MPI::Vector       old_solution;
-  TrilinosWrappers::MPI::Vector       system_rhs_newton;
-  TrilinosWrappers::MPI::Vector       resid_vector;
-  TrilinosWrappers::MPI::Vector       diag_mass_matrix_vector;
-  IndexSet                            active_set;
-
-  ConditionalOStream pcout;
-
-  TrilinosWrappers::PreconditionAMG::AdditionalData additional_data;
-  TrilinosWrappers::PreconditionAMG preconditioner_u;
-  TrilinosWrappers::PreconditionAMG preconditioner_t;
-
-  std::auto_ptr<ConstitutiveLaw<dim> > plast_lin_hard;
-
-  double sigma_0;    // Yield stress
-  double gamma;      // Parameter for the linear isotropic hardening
-  double e_modul;    // E-Modul
-  double nu;         // Poisson ratio
-
-  std_cxx1x::shared_ptr<TrilinosWrappers::PreconditionAMG>  Mp_preconditioner;
-};
-
-template <int dim>
-class ConstitutiveLaw
-{
-public:
-  ConstitutiveLaw (double _E, double _nu, double _sigma_0, double _gamma, MPI_Comm _mpi_communicator, ConditionalOStream _pcout);
-  //     ConstitutiveLaw (double mu, double kappa);
-  void plast_linear_hardening (SymmetricTensor<4,dim>  &stress_strain_tensor,
-                              SymmetricTensor<2,dim>  &strain_tensor,
-                              unsigned int            &elast_points,
-                              unsigned int            &plast_points,
-                              double                  &sigma_eff,
-                              double                  &yield);
-  void linearized_plast_linear_hardening (SymmetricTensor<4,dim>  &stress_strain_tensor_linearized,
-                                         SymmetricTensor<4,dim>  &stress_strain_tensor,
-                                         SymmetricTensor<2,dim>  &strain_tensor);
-  inline SymmetricTensor<2,dim> get_strain (const FEValues<dim> &fe_values,
-                                           const unsigned int  shape_func,
-                                           const unsigned int  q_point) const;
-
-private:
-  SymmetricTensor<4,dim>  stress_strain_tensor_mu;
-  SymmetricTensor<4,dim>  stress_strain_tensor_kappa;
-  double E;
-  double nu;
-  double sigma_0;
-  double gamma;
-  double mu;
-  double kappa;
-  MPI_Comm mpi_communicator;
-  ConditionalOStream pcout;
-};
-
-template <int dim>
-ConstitutiveLaw<dim>::ConstitutiveLaw(double _E, double _nu, double _sigma_0, double _gamma, MPI_Comm _mpi_communicator, ConditionalOStream _pcout)
- :E (_E),
-  nu (_nu),
-  sigma_0 (_sigma_0),
-  gamma (_gamma),
-  mpi_communicator (_mpi_communicator),
-  pcout (_pcout)
-{
-  mu = E/(2*(1+nu));
-  kappa = E/(3*(1-2*nu));
-  pcout<< "-----> mu = " << mu << ", kappa = " << kappa <<std::endl;
-  stress_strain_tensor_kappa = kappa*outer_product(unit_symmetric_tensor<dim>(), unit_symmetric_tensor<dim>());
-  stress_strain_tensor_mu = 2*mu*(identity_tensor<dim>() - outer_product(unit_symmetric_tensor<dim>(), unit_symmetric_tensor<dim>())/3.0);
-}
+  template <int dim>
+  class PlasticityContactProblem
+  {
+  public:
+    PlasticityContactProblem (int _n_refinements_global, int _n_refinements_local);
+    void run ();
 
-template <int dim>
-inline
-SymmetricTensor<2,dim> ConstitutiveLaw<dim>::get_strain (const FEValues<dim> &fe_values,
-                                                    const unsigned int   shape_func,
-                                                    const unsigned int   q_point) const
-{
-  const FEValuesExtractors::Vector displacement (0);
-  SymmetricTensor<2,dim> tmp;
+  private:
+    void make_grid ();
+    void setup_system();
+    void assemble_mass_matrix ();
+    void assemble_nl_system (TrilinosWrappers::MPI::Vector &u);
+    void residual_nl_system (TrilinosWrappers::MPI::Vector &u,
+                             Vector<double>                &sigma_eff_vector);
+    void update_solution_and_constraints ();
+    void dirichlet_constraints ();
+    void solve ();
+    void solve_newton ();
+    void output_results (const std::string& title) const;
+    void move_mesh (const TrilinosWrappers::MPI::Vector &_complete_displacement) const;
+    void output_results (TrilinosWrappers::MPI::Vector vector, const std::string& title) const;
+    void output_results (Vector<double> vector, const std::string& title) const;
 
-  tmp = fe_values[displacement].symmetric_gradient (shape_func,q_point);
+    int                  n_refinements_global;
+    int                  n_refinements_local;
 
-  return tmp;
-}
+    MPI_Comm             mpi_communicator;
 
-template <int dim>
-void ConstitutiveLaw<dim>::plast_linear_hardening (SymmetricTensor<4,dim>  &stress_strain_tensor,
-                                                  SymmetricTensor<2,dim>  &strain_tensor,
-                                                  unsigned int            &elast_points,
-                                                  unsigned int            &plast_points,
-                                                  double                  &sigma_eff,
-                                                  double                  &yield)
-{
-  if (dim == 3)
-  {
-    SymmetricTensor<2,dim> stress_tensor;
-    stress_tensor = (stress_strain_tensor_kappa + stress_strain_tensor_mu)*strain_tensor;
-    double tmp = E/((1+nu)*(1-2*nu));
+    parallel::distributed::Triangulation<dim>   triangulation;
 
-    SymmetricTensor<2,dim> deviator_stress_tensor = deviator(stress_tensor);
+    FESystem<dim>        fe;
+    DoFHandler<dim>      dof_handler;
 
-    double deviator_stress_tensor_norm = deviator_stress_tensor.norm ();
+    IndexSet             locally_owned_dofs;
+    IndexSet             locally_relevant_dofs;
 
-    yield = 0;
-    stress_strain_tensor = stress_strain_tensor_mu;
-    double beta = 1.0;
-    if (deviator_stress_tensor_norm >= sigma_0)
-    {
-      beta = (sigma_0 + gamma)/deviator_stress_tensor_norm;
-      stress_strain_tensor *= beta;
-      yield = 1;
-      plast_points += 1;
-    }
-    else
-      elast_points += 1;
+    unsigned int         number_iterations;
+    std::vector<double>  run_time;
 
-//     std::cout<< beta <<std::endl;
-    stress_strain_tensor += stress_strain_tensor_kappa;
+    ConstraintMatrix     constraints;
+    ConstraintMatrix     constraints_hanging_nodes;
+    ConstraintMatrix     constraints_dirichlet_hanging_nodes;
 
-    sigma_eff = beta * deviator_stress_tensor_norm;
-  }
-}
+    TrilinosWrappers::SparseMatrix system_matrix_newton;
+    TrilinosWrappers::SparseMatrix mass_matrix;
 
-template <int dim>
-void ConstitutiveLaw<dim>::linearized_plast_linear_hardening (SymmetricTensor<4,dim>  &stress_strain_tensor_linearized,
-                                                             SymmetricTensor<4,dim>  &stress_strain_tensor,
-                                                             SymmetricTensor<2,dim>  &strain_tensor)
-{
-  if (dim == 3)
-  {
-    SymmetricTensor<2,dim> stress_tensor;
-    stress_tensor = (stress_strain_tensor_kappa + stress_strain_tensor_mu)*strain_tensor;
-    double tmp = E/((1+nu)*(1-2*nu));
+    TrilinosWrappers::MPI::Vector       solution;
+    TrilinosWrappers::MPI::Vector       old_solution;
+    TrilinosWrappers::MPI::Vector       system_rhs_newton;
+    TrilinosWrappers::MPI::Vector       resid_vector;
+    TrilinosWrappers::MPI::Vector       diag_mass_matrix_vector;
+    IndexSet                            active_set;
 
-    stress_strain_tensor = stress_strain_tensor_mu;
-    stress_strain_tensor_linearized = stress_strain_tensor_mu;
+    ConditionalOStream pcout;
 
-    SymmetricTensor<2,dim> deviator_stress_tensor = deviator(stress_tensor);
+    TrilinosWrappers::PreconditionAMG::AdditionalData additional_data;
+    TrilinosWrappers::PreconditionAMG preconditioner_u;
+    TrilinosWrappers::PreconditionAMG preconditioner_t;
 
-    double deviator_stress_tensor_norm = deviator_stress_tensor.norm ();
+    std::auto_ptr<ConstitutiveLaw<dim> > plast_lin_hard;
 
-    double beta = 1.0;
-    if (deviator_stress_tensor_norm >= sigma_0)
-    {
-      beta = (sigma_0 + gamma)/deviator_stress_tensor_norm;
-      stress_strain_tensor *= beta;
-      stress_strain_tensor_linearized *= beta;
-      deviator_stress_tensor /= deviator_stress_tensor_norm;
-      stress_strain_tensor_linearized -= beta*2*mu*outer_product(deviator_stress_tensor, deviator_stress_tensor);
-    }
+    double sigma_0;    // Yield stress
+    double gamma;      // Parameter for the linear isotropic hardening
+    double e_modul;    // E-Modul
+    double nu;         // Poisson ratio
 
-    stress_strain_tensor += stress_strain_tensor_kappa;
-    stress_strain_tensor_linearized += stress_strain_tensor_kappa;
-  }
-}
+    std_cxx1x::shared_ptr<TrilinosWrappers::PreconditionAMG>  Mp_preconditioner;
+  };
 
-namespace EquationData
-{
   template <int dim>
-  class RightHandSide : public Function<dim>
+  class ConstitutiveLaw
   {
   public:
-    RightHandSide () : Function<dim>(dim) {}
-
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-
-    virtual void vector_value (const Point<dim> &p,
-                              Vector<double>   &values) const;
+    ConstitutiveLaw (double _E, double _nu, double _sigma_0, double _gamma, MPI_Comm _mpi_communicator, ConditionalOStream _pcout);
+    //     ConstitutiveLaw (double mu, double kappa);
+    void plast_linear_hardening (SymmetricTensor<4,dim>  &stress_strain_tensor,
+                                 SymmetricTensor<2,dim>  &strain_tensor,
+                                 unsigned int         &elast_points,
+                                 unsigned int         &plast_points,
+                                 double                  &sigma_eff,
+                                 double                  &yield);
+    void linearized_plast_linear_hardening (SymmetricTensor<4,dim>  &stress_strain_tensor_linearized,
+                                            SymmetricTensor<4,dim>  &stress_strain_tensor,
+                                            SymmetricTensor<2,dim>  &strain_tensor);
+    inline SymmetricTensor<2,dim> get_strain (const FEValues<dim> &fe_values,
+                                              const unsigned int  shape_func,
+                                              const unsigned int  q_point) const;
+
+  private:
+    SymmetricTensor<4,dim>  stress_strain_tensor_mu;
+    SymmetricTensor<4,dim>  stress_strain_tensor_kappa;
+    double E;
+    double nu;
+    double sigma_0;
+    double gamma;
+    double mu;
+    double kappa;
+    MPI_Comm mpi_communicator;
+    ConditionalOStream pcout;
   };
 
   template <int dim>
-  double RightHandSide<dim>::value (const Point<dim> &p,
-                                   const unsigned int component) const
+  ConstitutiveLaw<dim>::ConstitutiveLaw(double _E, double _nu, double _sigma_0, double _gamma, MPI_Comm _mpi_communicator, ConditionalOStream _pcout)
+   :E (_E),
+    nu (_nu),
+    sigma_0 (_sigma_0),
+    gamma (_gamma),
+    mpi_communicator (_mpi_communicator),
+    pcout (_pcout)
   {
-    double return_value = 0.0;
-
-    if (component == 0)
-      return_value = 0.0;
-    if (component == 1)
-      return_value = 0.0;
-    if (component == 2)
-      // if ((p(0)-0.5)*(p(0)-0.5)+(p(1)-0.5)*(p(1)-0.5) < 0.2)
-      //       return_value = -5000;
-      // else
-      return_value = 0.0;
-    // for (unsigned int i=0; i<dim; ++i)
-    //   return_value += 4*std::pow(p(i), 4);
-
-    return return_value;
+    mu = E/(2*(1+nu));
+    kappa = E/(3*(1-2*nu));
+    pcout<< "-----> mu = " << mu << ", kappa = " << kappa <<std::endl;
+    stress_strain_tensor_kappa = kappa*outer_product(unit_symmetric_tensor<dim>(), unit_symmetric_tensor<dim>());
+    stress_strain_tensor_mu = 2*mu*(identity_tensor<dim>() - outer_product(unit_symmetric_tensor<dim>(), unit_symmetric_tensor<dim>())/3.0);
   }
 
   template <int dim>
-  void RightHandSide<dim>::vector_value (const Point<dim> &p,
-                                        Vector<double>   &values) const
+  inline
+  SymmetricTensor<2,dim> ConstitutiveLaw<dim>::get_strain (const FEValues<dim> &fe_values,
+                                                       const unsigned int   shape_func,
+                                                       const unsigned int   q_point) const
   {
-    for (unsigned int c=0; c<this->n_components; ++c)
-      values(c) = RightHandSide<dim>::value (p, c);
-  }
+    const FEValuesExtractors::Vector displacement (0);
+    SymmetricTensor<2,dim> tmp;
+
+    tmp = fe_values[displacement].symmetric_gradient (shape_func,q_point);
 
+    return tmp;
+  }
 
   template <int dim>
-  class BoundaryValues : public Function<dim>
+  void ConstitutiveLaw<dim>::plast_linear_hardening (SymmetricTensor<4,dim>  &stress_strain_tensor,
+                                                     SymmetricTensor<2,dim>  &strain_tensor,
+                                                     unsigned int            &elast_points,
+                                                     unsigned int            &plast_points,
+                                                     double                  &sigma_eff,
+                                                     double                  &yield)
   {
-  public:
-    BoundaryValues () : Function<dim>(dim) {};
+    if (dim == 3)
+    {
+      SymmetricTensor<2,dim> stress_tensor;
+      stress_tensor = (stress_strain_tensor_kappa + stress_strain_tensor_mu)*strain_tensor;
+      double tmp = E/((1+nu)*(1-2*nu));
 
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
+      SymmetricTensor<2,dim> deviator_stress_tensor = deviator(stress_tensor);
 
-    virtual void vector_value (const Point<dim> &p,
-                              Vector<double>   &values) const;
-  };
+      double deviator_stress_tensor_norm = deviator_stress_tensor.norm ();
 
-  template <int dim>
-  double BoundaryValues<dim>::value (const Point<dim> &p,
-                                    const unsigned int component) const
-  {
-    double return_value = 0;
+      yield = 0;
+      stress_strain_tensor = stress_strain_tensor_mu;
+      double beta = 1.0;
+      if (deviator_stress_tensor_norm >= sigma_0)
+      {
+        beta = (sigma_0 + gamma)/deviator_stress_tensor_norm;
+        stress_strain_tensor *= beta;
+        yield = 1;
+        plast_points += 1;
+      }
+      else
+        elast_points += 1;
 
-    if (component == 0)
-      return_value = 0.0;
-    if (component == 1)
-      return_value = 0.0;
-    if (component == 2)
-      return_value = 0.0;
+  //     std::cout<< beta <<std::endl;
+      stress_strain_tensor += stress_strain_tensor_kappa;
 
-    return return_value;
+      sigma_eff = beta * deviator_stress_tensor_norm;
+    }
   }
 
   template <int dim>
-  void BoundaryValues<dim>::vector_value (const Point<dim> &p,
-                                          Vector<double>   &values) const
+  void ConstitutiveLaw<dim>::linearized_plast_linear_hardening (SymmetricTensor<4,dim>  &stress_strain_tensor_linearized,
+                                                                SymmetricTensor<4,dim>  &stress_strain_tensor,
+                                                                SymmetricTensor<2,dim>  &strain_tensor)
   {
-    for (unsigned int c=0; c<this->n_components; ++c)
-      values(c) = BoundaryValues<dim>::value (p, c);
-  }
+    if (dim == 3)
+    {
+      SymmetricTensor<2,dim> stress_tensor;
+      stress_tensor = (stress_strain_tensor_kappa + stress_strain_tensor_mu)*strain_tensor;
+      double tmp = E/((1+nu)*(1-2*nu));
 
+      stress_strain_tensor = stress_strain_tensor_mu;
+      stress_strain_tensor_linearized = stress_strain_tensor_mu;
 
-  template <int dim>
-  class Obstacle : public Function<dim>
-  {
-  public:
-    Obstacle () : Function<dim>(dim) {};
+      SymmetricTensor<2,dim> deviator_stress_tensor = deviator(stress_tensor);
 
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-
-    virtual void vector_value (const Point<dim> &p,
-                              Vector<double>   &values) const;
-  };
+      double deviator_stress_tensor_norm = deviator_stress_tensor.norm ();
 
-  template <int dim>
-  double Obstacle<dim>::value (const Point<dim> &p,
-                              const unsigned int component) const
-  {
-    double R = 0.03;
-    double return_value = 0.0;
-    if (component == 0)
-      return_value = p(0);
-    if (component == 1)
-      return_value = p(1);
-    if (component == 2)
+      double beta = 1.0;
+      if (deviator_stress_tensor_norm >= sigma_0)
       {
-       // double hz = 0.98;
-       // double position_x = 0.5;
-       // double alpha = 12.0;
-       // double s_x = 0.5039649116;
-       // double s_y = hz + 0.00026316298;
-       // if (p(0) > position_x - R && p(0) < s_x)
-       //   {
-       //     return_value = -sqrt(R*R - (p(0)-position_x)*(p(0)-position_x)) + hz + R;
-       //   }
-       // else if (p(0) >= s_x)
-       //   {
-       //     return_value = 12.0/90.0*p(0) + (s_y - alpha/90.0*s_x);
-       //   }
-       // else
-       //   return_value = 1e+10;
-
-       // Hindernis Dortmund
-       double x1 = p(0);
-       double x2 = p(1);
-       if (((x2-0.5)*(x2-0.5)+(x1-0.5)*(x1-0.5)<=0.3*0.3)&&((x2-0.5)*(x2-0.5)+(x1-1.0)*(x1-1.0)>=0.4*0.4)&&((x2-0.5)*(x2-0.5)+x1*x1>=0.4*0.4))
-         return_value = 0.999;
-       else
-         return_value = 1e+10;
-
-       // Hindernis Werkzeug TKSE
-       // double shift_walze_x = 0.0;
-       // double shift_walze_y = 0.0;
-       // return_value = 0.032 + data->dicke - input_copy->mikro_height (p(0) + shift_walze_x, p(1) + shift_walze_y, p(2));
-
-       // Ball with radius R
-       // double R = 0.5;
-       // if (std::pow ((p(0)-1.0/2.0), 2) + std::pow ((p(1)-1.0/2.0), 2) < R*R)
-       //   return_value = 1.0 + R - 0.001 - sqrt (R*R  - std::pow ((p(0)-1.0/2.0), 2)
-       //                                       - std::pow ((p(1)-1.0/2.0), 2));
-       // else
-       //   return_value = 1e+5;
+        beta = (sigma_0 + gamma)/deviator_stress_tensor_norm;
+        stress_strain_tensor *= beta;
+        stress_strain_tensor_linearized *= beta;
+        deviator_stress_tensor /= deviator_stress_tensor_norm;
+        stress_strain_tensor_linearized -= beta*2*mu*outer_product(deviator_stress_tensor, deviator_stress_tensor);
       }
-    return return_value;
 
-    // return 1e+10;//0.98;
+      stress_strain_tensor += stress_strain_tensor_kappa;
+      stress_strain_tensor_linearized += stress_strain_tensor_kappa;
+    }
   }
 
-  template <int dim>
-  void Obstacle<dim>::vector_value (const Point<dim> &p,
-                                   Vector<double> &values) const
+  namespace EquationData
   {
-    for (unsigned int c=0; c<this->n_components; ++c)
-      values(c) = Obstacle<dim>::value (p, c);
-  }
-}
+    template <int dim>
+    class RightHandSide : public Function<dim>
+    {
+    public:
+      RightHandSide () : Function<dim>(dim) {}
 
+      virtual double value (const Point<dim>   &p,
+                            const unsigned int  component = 0) const;
 
-                                 // @sect3{Implementation of the <code>Step4</code> class}
-
-                                 // Next for the implementation of the class
-                                 // template that makes use of the functions
-                                 // above. As before, we will write everything
-
-template <int dim>
-Step4<dim>::Step4 (int _n_refinements_global, int _n_refinements_local)
-  :
-  n_refinements_global (_n_refinements_global),
-  n_refinements_local (_n_refinements_local),
-  mpi_communicator (MPI_COMM_WORLD),
-  triangulation (mpi_communicator),
-  fe (FE_Q<dim>(1), dim),
-  dof_handler (triangulation),
-  pcout (std::cout,
-        (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)),
-  sigma_0 (400),
-  gamma (1.e-2),
-  e_modul (2.0e5),
-  nu (0.3)
-{
-  // double _E, double _nu, double _sigma_0, double _gamma
-  plast_lin_hard.reset (new ConstitutiveLaw<dim> (e_modul, nu, sigma_0, gamma, mpi_communicator, pcout));
-}
+      virtual void vector_value (const Point<dim> &p,
+                                 Vector<double>   &values) const;
+    };
 
-template <int dim>
-void Step4<dim>::make_grid ()
-{
-  std::vector<unsigned int> repet(3);
-  repet[0] = 1;//20;
-  repet[1] = 1;
-  repet[2] = 1;
-
-  Point<dim> p1 (0,0,0);
-  Point<dim> p2 (1.0, 1.0, 1.0);
-  GridGenerator::subdivided_hyper_rectangle (triangulation, repet, p1, p2);
-
-  Triangulation<3>::active_cell_iterator
-    cell = triangulation.begin_active(),
-    endc = triangulation.end();
-
-  /* boundary_indicators:
-            _______
-           /  9    /|
-          /______ / |
-        8|       | 8|
-         |   8   | /
-         |_______|/
-             6
-   */
-
-  for (; cell!=endc; ++cell)
-    for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
-      {
-       if (cell->face (face)->center ()[2] == p2(2))
-         cell->face (face)->set_boundary_indicator (9);
-       if (cell->face (face)->center ()[0] == p1(0) ||
-           cell->face (face)->center ()[0] == p2(0) ||
-           cell->face (face)->center ()[1] == p1(1) ||
-           cell->face (face)->center ()[1] == p2(1))
-         cell->face (face)->set_boundary_indicator (8);
-       if (cell->face (face)->center ()[2] == p1(2))
-         cell->face (face)->set_boundary_indicator (6);
-      }
+    template <int dim>
+    double RightHandSide<dim>::value (const Point<dim> &p,
+                                      const unsigned int component) const
+    {
+      double return_value = 0.0;
+
+      if (component == 0)
+        return_value = 0.0;
+      if (component == 1)
+        return_value = 0.0;
+      if (component == 2)
+        // if ((p(0)-0.5)*(p(0)-0.5)+(p(1)-0.5)*(p(1)-0.5) < 0.2)
+        //     return_value = -5000;
+        // else
+        return_value = 0.0;
+      // for (unsigned int i=0; i<dim; ++i)
+      //   return_value += 4*std::pow(p(i), 4);
+
+      return return_value;
+    }
+
+    template <int dim>
+    void RightHandSide<dim>::vector_value (const Point<dim> &p,
+                                           Vector<double>   &values) const
+    {
+      for (unsigned int c=0; c<this->n_components; ++c)
+        values(c) = RightHandSide<dim>::value (p, c);
+    }
 
-  triangulation.refine_global (n_refinements_global);
 
-  // Lokale Verfeinerung des Gitters
-  for (int step=0; step<n_refinements_local; ++step)
+    template <int dim>
+    class BoundaryValues : public Function<dim>
     {
-      cell = triangulation.begin_active();  // Iterator ueber alle Zellen
-
-      for (; cell!=endc; ++cell)
-         for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
-         {
-//        if (cell->face (face)->at_boundary()
-//            && cell->face (face)->boundary_indicator () == 9)
-//          {
-//            cell->set_refine_flag ();
-//            break;
-//          }
-//        else if (cell->level () == n_refinements + n_refinements_local - 1)
-//          {
-//            cell->set_refine_flag ();
-//            break;
-//          }
-
-//        if (cell->face (face)->at_boundary()
-//            && cell->face (face)->boundary_indicator () == 9)
-//          {
-//            if (cell->face (face)->vertex (0)(0) <= 0.7 &&
-//                cell->face (face)->vertex (1)(0) >= 0.3 &&
-//                cell->face (face)->vertex (0)(1) <= 0.875 &&
-//                cell->face (face)->vertex (2)(1) >= 0.125)
-//              {
-//                cell->set_refine_flag ();
-//                break;
-//              }
-//          }
-           
-           if (step == 0 &&
-               cell->center ()(2) < n_refinements_local*9.0/64.0)
-            {
-              cell->set_refine_flag ();
-              break;
-            }     
-        };
-      triangulation.execute_coarsening_and_refinement ();
+    public:
+      BoundaryValues () : Function<dim>(dim) {};
+
+      virtual double value (const Point<dim>   &p,
+                            const unsigned int  component = 0) const;
+
+      virtual void vector_value (const Point<dim> &p,
+                                 Vector<double>   &values) const;
     };
-}
 
-template <int dim>
-void Step4<dim>::setup_system ()
-{
-  // setup dofs
-  {
-    dof_handler.distribute_dofs (fe);
+    template <int dim>
+    double BoundaryValues<dim>::value (const Point<dim> &p,
+                                       const unsigned int component) const
+    {
+      double return_value = 0;
 
-    locally_owned_dofs = dof_handler.locally_owned_dofs ();
-    locally_relevant_dofs.clear();
-    DoFTools::extract_locally_relevant_dofs (dof_handler,
-                                            locally_relevant_dofs);
+      if (component == 0)
+        return_value = 0.0;
+      if (component == 1)
+        return_value = 0.0;
+      if (component == 2)
+        return_value = 0.0;
+
+      return return_value;
+    }
+
+    template <int dim>
+    void BoundaryValues<dim>::vector_value (const Point<dim> &p,
+                                             Vector<double>   &values) const
+    {
+      for (unsigned int c=0; c<this->n_components; ++c)
+        values(c) = BoundaryValues<dim>::value (p, c);
+    }
+
+
+    template <int dim>
+    class Obstacle : public Function<dim>
+    {
+    public:
+      Obstacle () : Function<dim>(dim) {};
+
+      virtual double value (const Point<dim>   &p,
+                            const unsigned int  component = 0) const;
+
+      virtual void vector_value (const Point<dim> &p,
+                                 Vector<double>   &values) const;
+    };
+
+    template <int dim>
+    double Obstacle<dim>::value (const Point<dim> &p,
+                                 const unsigned int component) const
+    {
+      double R = 0.03;
+      double return_value = 0.0;
+      if (component == 0)
+        return_value = p(0);
+      if (component == 1)
+        return_value = p(1);
+      if (component == 2)
+        {
+          // double hz = 0.98;
+          // double position_x = 0.5;
+          // double alpha = 12.0;
+          // double s_x = 0.5039649116;
+          // double s_y = hz + 0.00026316298;
+          // if (p(0) > position_x - R && p(0) < s_x)
+          //   {
+          //     return_value = -sqrt(R*R - (p(0)-position_x)*(p(0)-position_x)) + hz + R;
+          //   }
+          // else if (p(0) >= s_x)
+          //   {
+          //     return_value = 12.0/90.0*p(0) + (s_y - alpha/90.0*s_x);
+          //   }
+          // else
+          //   return_value = 1e+10;
+
+          // Hindernis Dortmund
+          double x1 = p(0);
+          double x2 = p(1);
+          if (((x2-0.5)*(x2-0.5)+(x1-0.5)*(x1-0.5)<=0.3*0.3)&&((x2-0.5)*(x2-0.5)+(x1-1.0)*(x1-1.0)>=0.4*0.4)&&((x2-0.5)*(x2-0.5)+x1*x1>=0.4*0.4))
+            return_value = 0.999;
+          else
+            return_value = 1e+10;
+
+          // Hindernis Werkzeug TKSE
+          // double shift_walze_x = 0.0;
+          // double shift_walze_y = 0.0;
+          // return_value = 0.032 + data->dicke - input_copy->mikro_height (p(0) + shift_walze_x, p(1) + shift_walze_y, p(2));
+
+          // Ball with radius R
+          // double R = 0.5;
+          // if (std::pow ((p(0)-1.0/2.0), 2) + std::pow ((p(1)-1.0/2.0), 2) < R*R)
+          //   return_value = 1.0 + R - 0.001 - sqrt (R*R  - std::pow ((p(0)-1.0/2.0), 2)
+          //                                    - std::pow ((p(1)-1.0/2.0), 2));
+          // else
+          //   return_value = 1e+5;
+        }
+      return return_value;
+
+      // return 1e+10;//0.98;
+    }
+
+    template <int dim>
+    void Obstacle<dim>::vector_value (const Point<dim> &p,
+                                      Vector<double> &values) const
+    {
+      for (unsigned int c=0; c<this->n_components; ++c)
+        values(c) = Obstacle<dim>::value (p, c);
+    }
   }
 
-  // setup hanging nodes and dirichlet constraints
+
+                                   // @sect3{Implementation of the <code>PlasticityContactProblem</code> class}
+
+                                   // Next for the implementation of the class
+                                   // template that makes use of the functions
+                                   // above. As before, we will write everything
+
+  template <int dim>
+  PlasticityContactProblem<dim>::PlasticityContactProblem (int _n_refinements_global, int _n_refinements_local)
+    :
+    n_refinements_global (_n_refinements_global),
+    n_refinements_local (_n_refinements_local),
+    mpi_communicator (MPI_COMM_WORLD),
+    triangulation (mpi_communicator),
+    fe (FE_Q<dim>(1), dim),
+    dof_handler (triangulation),
+    pcout (std::cout,
+           (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)),
+    sigma_0 (400),
+    gamma (1.e-2),
+    e_modul (2.0e5),
+    nu (0.3)
   {
-    // constraints_hanging_nodes.clear ();
-    constraints_hanging_nodes.reinit (locally_relevant_dofs);
-    DoFTools::make_hanging_node_constraints (dof_handler,
-                                            constraints_hanging_nodes);
-    constraints_hanging_nodes.close ();
-
-    pcout << "Number of active cells: "
-              << triangulation.n_active_cells()
-              << std::endl
-              << "Total number of cells: "
-              << triangulation.n_cells()
-              << std::endl
-              << "Number of degrees of freedom: "
-              << dof_handler.n_dofs ()
-              << std::endl;
-
-    dirichlet_constraints ();
+    // double _E, double _nu, double _sigma_0, double _gamma
+    plast_lin_hard.reset (new ConstitutiveLaw<dim> (e_modul, nu, sigma_0, gamma, mpi_communicator, pcout));
   }
 
-  // Initialzation for matrices and vectors
+  template <int dim>
+  void PlasticityContactProblem<dim>::make_grid ()
   {
-    solution.reinit (locally_relevant_dofs, mpi_communicator);
-    system_rhs_newton.reinit (locally_owned_dofs, mpi_communicator);
-    old_solution.reinit (system_rhs_newton);
-    resid_vector.reinit (system_rhs_newton);
-    diag_mass_matrix_vector.reinit (system_rhs_newton);
-    active_set.set_size (locally_relevant_dofs.size ());
+    std::vector<unsigned int> repet(3);
+    repet[0] = 1;//20;
+    repet[1] = 1;
+    repet[2] = 1;
+
+    Point<dim> p1 (0,0,0);
+    Point<dim> p2 (1.0, 1.0, 1.0);
+    GridGenerator::subdivided_hyper_rectangle (triangulation, repet, p1, p2);
+
+    Triangulation<3>::active_cell_iterator
+      cell = triangulation.begin_active(),
+      endc = triangulation.end();
+
+    /* boundary_indicators:
+              _______
+             /  9    /|
+            /______ / |
+          8|       | 8|
+           |   8   | /
+           |_______|/
+               6
+     */
+
+    for (; cell!=endc; ++cell)
+      for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+        {
+          if (cell->face (face)->center ()[2] == p2(2))
+            cell->face (face)->set_boundary_indicator (9);
+          if (cell->face (face)->center ()[0] == p1(0) ||
+              cell->face (face)->center ()[0] == p2(0) ||
+              cell->face (face)->center ()[1] == p1(1) ||
+              cell->face (face)->center ()[1] == p2(1))
+            cell->face (face)->set_boundary_indicator (8);
+          if (cell->face (face)->center ()[2] == p1(2))
+            cell->face (face)->set_boundary_indicator (6);
+        }
+
+    triangulation.refine_global (n_refinements_global);
+
+    // Lokale Verfeinerung des Gitters
+    for (int step=0; step<n_refinements_local; ++step)
+      {
+        cell = triangulation.begin_active();  // Iterator ueber alle Zellen
+
+        for (; cell!=endc; ++cell)
+           for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+           {
+  //      if (cell->face (face)->at_boundary()
+  //          && cell->face (face)->boundary_indicator () == 9)
+  //        {
+  //          cell->set_refine_flag ();
+  //          break;
+  //        }
+  //      else if (cell->level () == n_refinements + n_refinements_local - 1)
+  //        {
+  //          cell->set_refine_flag ();
+  //          break;
+  //        }
+
+  //      if (cell->face (face)->at_boundary()
+  //          && cell->face (face)->boundary_indicator () == 9)
+  //        {
+  //          if (cell->face (face)->vertex (0)(0) <= 0.7 &&
+  //              cell->face (face)->vertex (1)(0) >= 0.3 &&
+  //              cell->face (face)->vertex (0)(1) <= 0.875 &&
+  //              cell->face (face)->vertex (2)(1) >= 0.125)
+  //            {
+  //              cell->set_refine_flag ();
+  //              break;
+  //            }
+  //        }
+
+              if (step == 0 &&
+                  cell->center ()(2) < n_refinements_local*9.0/64.0)
+               {
+                 cell->set_refine_flag ();
+                 break;
+               }
+          };
+        triangulation.execute_coarsening_and_refinement ();
+      };
   }
 
-  // setup sparsity pattern
+  template <int dim>
+  void PlasticityContactProblem<dim>::setup_system ()
   {
-    TrilinosWrappers::SparsityPattern sp (locally_owned_dofs,
-                                         mpi_communicator);
+    // setup dofs
+    {
+      dof_handler.distribute_dofs (fe);
 
-    DoFTools::make_sparsity_pattern (dof_handler, sp, constraints_dirichlet_hanging_nodes, false,
-                                    Utilities::MPI::this_mpi_process(mpi_communicator));
+      locally_owned_dofs = dof_handler.locally_owned_dofs ();
+      locally_relevant_dofs.clear();
+      DoFTools::extract_locally_relevant_dofs (dof_handler,
+                                               locally_relevant_dofs);
+    }
 
-    sp.compress();
+    // setup hanging nodes and dirichlet constraints
+    {
+      // constraints_hanging_nodes.clear ();
+      constraints_hanging_nodes.reinit (locally_relevant_dofs);
+      DoFTools::make_hanging_node_constraints (dof_handler,
+                                               constraints_hanging_nodes);
+      constraints_hanging_nodes.close ();
+
+      pcout << "Number of active cells: "
+                 << triangulation.n_active_cells()
+                 << std::endl
+                 << "Total number of cells: "
+                 << triangulation.n_cells()
+                 << std::endl
+                 << "Number of degrees of freedom: "
+                 << dof_handler.n_dofs ()
+                 << std::endl;
+
+      dirichlet_constraints ();
+    }
 
-    system_matrix_newton.reinit (sp);
+    // Initialzation for matrices and vectors
+    {
+      solution.reinit (locally_relevant_dofs, mpi_communicator);
+      system_rhs_newton.reinit (locally_owned_dofs, mpi_communicator);
+      old_solution.reinit (system_rhs_newton);
+      resid_vector.reinit (system_rhs_newton);
+      diag_mass_matrix_vector.reinit (system_rhs_newton);
+      active_set.set_size (locally_relevant_dofs.size ());
+    }
 
-    mass_matrix.reinit (sp);
-  }    
+    // setup sparsity pattern
+    {
+      TrilinosWrappers::SparsityPattern sp (locally_owned_dofs,
+                                            mpi_communicator);
 
-  assemble_mass_matrix ();
-  const unsigned int
-    start = (system_rhs_newton.local_range().first),
-    end   = (system_rhs_newton.local_range().second);
-  for (unsigned int j=start; j<end; j++)
-    diag_mass_matrix_vector (j) = mass_matrix.diag_element (j);
-  number_iterations = 0;
-  
-  diag_mass_matrix_vector.compress ();
-}
+      DoFTools::make_sparsity_pattern (dof_handler, sp, constraints_dirichlet_hanging_nodes, false,
+                                       Utilities::MPI::this_mpi_process(mpi_communicator));
 
-template <int dim>
-void Step4<dim>::assemble_mass_matrix ()
-{
-  QTrapez<dim-1>  face_quadrature_formula;
+      sp.compress();
+
+      system_matrix_newton.reinit (sp);
 
-  FEFaceValues<dim> fe_values_face (fe, face_quadrature_formula,
-                                     update_values   | update_quadrature_points | update_JxW_values);
+      mass_matrix.reinit (sp);
+    }
 
-  const unsigned int   dofs_per_cell      = fe.dofs_per_cell;
-  const unsigned int   dofs_per_face      = fe.dofs_per_face;
-  const unsigned int   n_face_q_points    = face_quadrature_formula.size();
+    assemble_mass_matrix ();
+    const unsigned int
+      start = (system_rhs_newton.local_range().first),
+      end   = (system_rhs_newton.local_range().second);
+    for (unsigned int j=start; j<end; j++)
+      diag_mass_matrix_vector (j) = mass_matrix.diag_element (j);
+    number_iterations = 0;
 
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
+    diag_mass_matrix_vector.compress ();
+  }
 
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+  template <int dim>
+  void PlasticityContactProblem<dim>::assemble_mass_matrix ()
+  {
+    QTrapez<dim-1>  face_quadrature_formula;
 
-  const FEValuesExtractors::Vector displacement (0);
+    FEFaceValues<dim> fe_values_face (fe, face_quadrature_formula,
+                                        update_values   | update_quadrature_points | update_JxW_values);
 
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
+    const unsigned int   dofs_per_cell      = fe.dofs_per_cell;
+    const unsigned int   dofs_per_face      = fe.dofs_per_face;
+    const unsigned int   n_face_q_points    = face_quadrature_formula.size();
 
-  for (; cell!=endc; ++cell)
-    if (cell->is_locally_owned())
-      for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
-       if (cell->face (face)->at_boundary()
-           && cell->face (face)->boundary_indicator () == 9)
-         {
-           fe_values_face.reinit (cell, face);
-           cell_matrix = 0;
-
-           for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
-             for (unsigned int i=0; i<dofs_per_cell; ++i)
-               cell_matrix(i,i) += (fe_values_face[displacement].value (i, q_point) *
-                                    fe_values_face[displacement].value (i, q_point) *
-                                    fe_values_face.JxW (q_point));
-
-           cell->get_dof_indices (local_dof_indices);
-
-           constraints_dirichlet_hanging_nodes.distribute_local_to_global (cell_matrix,
-                                                                           local_dof_indices,
-                                                                           mass_matrix);
-         }
-
-  mass_matrix.compress ();
-}
+    FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
 
-template <int dim>
-void Step4<dim>::assemble_nl_system (TrilinosWrappers::MPI::Vector &u)
-{
-  QGauss<dim>  quadrature_formula(2);
-  QGauss<dim-1>  face_quadrature_formula(2);
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
-  FEValues<dim> fe_values (fe, quadrature_formula,
-                          UpdateFlags(update_values    |
-                                      update_gradients |
-                                      update_q_points  |
-                                      update_JxW_values));
+    const FEValuesExtractors::Vector displacement (0);
 
-  FEFaceValues<dim> fe_values_face (fe, face_quadrature_formula,
-                                   update_values   | update_quadrature_points |
-                                   update_JxW_values);
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
 
-  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int   n_q_points    = quadrature_formula.size ();
-  const unsigned int   n_face_q_points = face_quadrature_formula.size();
+    for (; cell!=endc; ++cell)
+      if (cell->is_locally_owned())
+        for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+          if (cell->face (face)->at_boundary()
+              && cell->face (face)->boundary_indicator () == 9)
+            {
+              fe_values_face.reinit (cell, face);
+              cell_matrix = 0;
 
-  const EquationData::RightHandSide<dim> right_hand_side;
-  std::vector<Vector<double> > right_hand_side_values (n_q_points,
-                                                       Vector<double>(dim));
-  std::vector<Vector<double> > right_hand_side_values_face (n_face_q_points,
-                                                           Vector<double>(dim));
+              for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
+                for (unsigned int i=0; i<dofs_per_cell; ++i)
+                  cell_matrix(i,i) += (fe_values_face[displacement].value (i, q_point) *
+                                       fe_values_face[displacement].value (i, q_point) *
+                                       fe_values_face.JxW (q_point));
 
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       cell_rhs (dofs_per_cell);
+              cell->get_dof_indices (local_dof_indices);
 
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+              constraints_dirichlet_hanging_nodes.distribute_local_to_global (cell_matrix,
+                                                                              local_dof_indices,
+                                                                              mass_matrix);
+            }
 
-  typename DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
-                                                endc = dof_handler.end();
+    mass_matrix.compress ();
+  }
 
-  const FEValuesExtractors::Vector displacement (0);
+  template <int dim>
+  void PlasticityContactProblem<dim>::assemble_nl_system (TrilinosWrappers::MPI::Vector &u)
+  {
+    QGauss<dim>  quadrature_formula(2);
+    QGauss<dim-1>  face_quadrature_formula(2);
+
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                             UpdateFlags(update_values    |
+                                         update_gradients |
+                                         update_q_points  |
+                                         update_JxW_values));
+
+    FEFaceValues<dim> fe_values_face (fe, face_quadrature_formula,
+                                      update_values   | update_quadrature_points |
+                                      update_JxW_values);
+
+    const unsigned int   dofs_per_cell = fe.dofs_per_cell;
+    const unsigned int   n_q_points    = quadrature_formula.size ();
+    const unsigned int   n_face_q_points = face_quadrature_formula.size();
+
+    const EquationData::RightHandSide<dim> right_hand_side;
+    std::vector<Vector<double> > right_hand_side_values (n_q_points,
+                                                         Vector<double>(dim));
+    std::vector<Vector<double> > right_hand_side_values_face (n_face_q_points,
+                                                              Vector<double>(dim));
+
+    FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
+    Vector<double>       cell_rhs (dofs_per_cell);
+
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+    typename DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
+                                                   endc = dof_handler.end();
+
+    const FEValuesExtractors::Vector displacement (0);
+
+    TrilinosWrappers::MPI::Vector   test_rhs(solution);
+    const double kappa = 1.0;
+    for (; cell!=endc; ++cell)
+      if (cell->is_locally_owned())
+        {
+          fe_values.reinit (cell);
+          cell_matrix = 0;
+          cell_rhs = 0;
+
+          right_hand_side.vector_value_list (fe_values.get_quadrature_points(),
+                                             right_hand_side_values);
+
+          std::vector<SymmetricTensor<2,dim> > strain_tensor (n_q_points);
+          fe_values[displacement].get_function_symmetric_gradients (u, strain_tensor);
+
+          for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+            {
+              SymmetricTensor<4,dim> stress_strain_tensor_linearized;
+              SymmetricTensor<4,dim> stress_strain_tensor;
+              SymmetricTensor<2,dim> stress_tensor;
+
+              plast_lin_hard->linearized_plast_linear_hardening (stress_strain_tensor_linearized,
+                                                                 stress_strain_tensor,
+                                                                 strain_tensor[q_point]);
+
+              //       if (q_point == 0)
+              //       std::cout<< stress_strain_tensor_linearized <<std::endl;
+              //       std::cout<< stress_strain_tensor <<std::endl;
+              for (unsigned int i=0; i<dofs_per_cell; ++i)
+                {
+                  stress_tensor = stress_strain_tensor_linearized * plast_lin_hard->get_strain(fe_values, i, q_point);
+
+                  for (unsigned int j=0; j<dofs_per_cell; ++j)
+                    {
+                      cell_matrix(i,j) += (stress_tensor *
+                                           plast_lin_hard->get_strain(fe_values, j, q_point) *
+                                           fe_values.JxW (q_point));
+                    }
+
+                  // the linearized part a(v^i;v^i,v) of the rhs
+                  cell_rhs(i) += (stress_tensor *
+                                  strain_tensor[q_point] *
+                                  fe_values.JxW (q_point));
+
+                  // the residual part a(v^i;v) of the rhs
+                  cell_rhs(i) -= (strain_tensor[q_point] * stress_strain_tensor *
+                                  plast_lin_hard->get_strain(fe_values, i, q_point) *
+                                  fe_values.JxW (q_point));
+
+                  // the residual part F(v) of the rhs
+                  Tensor<1,dim> rhs_values;
+                  rhs_values = 0;
+                  cell_rhs(i) += (fe_values[displacement].value (i, q_point) *
+                                  rhs_values *
+                                  fe_values.JxW (q_point));
+                }
+            }
+
+          for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+            {
+              if (cell->face (face)->at_boundary()
+                  && cell->face (face)->boundary_indicator () == 9)
+                {
+                  fe_values_face.reinit (cell, face);
+
+                  right_hand_side.vector_value_list (fe_values_face.get_quadrature_points(),
+                                                     right_hand_side_values_face);
+
+                  for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
+                    {
+                      Tensor<1,dim> rhs_values;
+                      rhs_values = 0;
+                      for (unsigned int i=0; i<dofs_per_cell; ++i)
+                        cell_rhs(i) += (fe_values_face[displacement].value (i, q_point) *
+                                        rhs_values *
+                                        fe_values_face.JxW (q_point));
+                    }
+                }
+            }
+
+          cell->get_dof_indices (local_dof_indices);
+          constraints.distribute_local_to_global (cell_matrix, cell_rhs,
+                                                  local_dof_indices,
+                                                  system_matrix_newton, system_rhs_newton, true);
+        };
 
-  TrilinosWrappers::MPI::Vector   test_rhs(solution);
-  const double kappa = 1.0;
-  for (; cell!=endc; ++cell)
-    if (cell->is_locally_owned())
-      {
-       fe_values.reinit (cell);
-       cell_matrix = 0;
-       cell_rhs = 0;
-
-       right_hand_side.vector_value_list (fe_values.get_quadrature_points(),
-                                          right_hand_side_values);
-
-       std::vector<SymmetricTensor<2,dim> > strain_tensor (n_q_points);
-       fe_values[displacement].get_function_symmetric_gradients (u, strain_tensor);
-
-       for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-         {
-           SymmetricTensor<4,dim> stress_strain_tensor_linearized;
-           SymmetricTensor<4,dim> stress_strain_tensor;
-           SymmetricTensor<2,dim> stress_tensor;
-
-           plast_lin_hard->linearized_plast_linear_hardening (stress_strain_tensor_linearized,
-                                                              stress_strain_tensor,
-                                                              strain_tensor[q_point]);
-
-           //          if (q_point == 0)
-           //          std::cout<< stress_strain_tensor_linearized <<std::endl;
-           //          std::cout<< stress_strain_tensor <<std::endl;
-           for (unsigned int i=0; i<dofs_per_cell; ++i)
-             {
-               stress_tensor = stress_strain_tensor_linearized * plast_lin_hard->get_strain(fe_values, i, q_point);
-
-               for (unsigned int j=0; j<dofs_per_cell; ++j)
-                 {
-                   cell_matrix(i,j) += (stress_tensor *
-                                        plast_lin_hard->get_strain(fe_values, j, q_point) *
-                                        fe_values.JxW (q_point));
-                 }
-
-               // the linearized part a(v^i;v^i,v) of the rhs
-               cell_rhs(i) += (stress_tensor *
-                               strain_tensor[q_point] *
-                               fe_values.JxW (q_point));
-
-               // the residual part a(v^i;v) of the rhs
-               cell_rhs(i) -= (strain_tensor[q_point] * stress_strain_tensor *
-                               plast_lin_hard->get_strain(fe_values, i, q_point) *
-                               fe_values.JxW (q_point));
-
-               // the residual part F(v) of the rhs
-               Tensor<1,dim> rhs_values;
-               rhs_values = 0;
-               cell_rhs(i) += (fe_values[displacement].value (i, q_point) *
-                               rhs_values *
-                               fe_values.JxW (q_point));
-             }
-         }
-
-       for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
-         {
-           if (cell->face (face)->at_boundary()
-               && cell->face (face)->boundary_indicator () == 9)
-             {
-               fe_values_face.reinit (cell, face);
-
-               right_hand_side.vector_value_list (fe_values_face.get_quadrature_points(),
-                                                  right_hand_side_values_face);
-
-               for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
-                 {
-                   Tensor<1,dim> rhs_values;
-                   rhs_values = 0;
-                   for (unsigned int i=0; i<dofs_per_cell; ++i)
-                     cell_rhs(i) += (fe_values_face[displacement].value (i, q_point) *
-                                     rhs_values *
-                                     fe_values_face.JxW (q_point));
-                 }
-             }
-         }
-
-       cell->get_dof_indices (local_dof_indices);
-       constraints.distribute_local_to_global (cell_matrix, cell_rhs,
-                                               local_dof_indices,
-                                               system_matrix_newton, system_rhs_newton, true);
-      };
+    system_matrix_newton.compress ();
+    system_rhs_newton.compress (Add);
+  }
 
-  system_matrix_newton.compress ();
-  system_rhs_newton.compress (Add);
-}
+  template <int dim>
+  void PlasticityContactProblem<dim>::residual_nl_system (TrilinosWrappers::MPI::Vector &u,
+                                       Vector<double>                &sigma_eff_vector)
+  {
+    QGauss<dim>  quadrature_formula(2);
+    QGauss<dim-1> face_quadrature_formula(2);
+
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                             UpdateFlags(update_values    |
+                                         update_gradients |
+                                         update_q_points  |
+                                         update_JxW_values));
+
+    FEFaceValues<dim> fe_values_face (fe, face_quadrature_formula,
+                                      update_values   | update_quadrature_points |
+                                      update_JxW_values);
+
+    const unsigned int   dofs_per_cell = fe.dofs_per_cell;
+    const unsigned int   n_q_points    = quadrature_formula.size ();
+    const unsigned int   n_face_q_points = face_quadrature_formula.size();
+
+    const EquationData::RightHandSide<dim> right_hand_side;
+    std::vector<Vector<double> > right_hand_side_values (n_q_points,
+                                                         Vector<double>(dim));
+    std::vector<Vector<double> > right_hand_side_values_face (n_face_q_points,
+                                                              Vector<double>(dim));
+
+    Vector<double>       cell_rhs (dofs_per_cell);
+    Vector<double>       cell_sigma_eff (dofs_per_cell);
+
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+    const FEValuesExtractors::Vector displacement (0);
+
+    typename DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
+                                                   endc = dof_handler.end();
+
+    unsigned int elast_points = 0;
+    unsigned int plast_points = 0;
+    double       sigma_eff = 0;
+    double       yield = 0;
+    unsigned int cell_number = 0;
+    for (; cell!=endc; ++cell)
+      if (cell->is_locally_owned())
+        {
+          fe_values.reinit (cell);
+          cell_rhs = 0;
+
+          right_hand_side.vector_value_list (fe_values.get_quadrature_points(),
+                                             right_hand_side_values);
+
+          std::vector<SymmetricTensor<2,dim> > strain_tensor (n_q_points);
+          fe_values[displacement].get_function_symmetric_gradients (u, strain_tensor);
+
+          for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+            {
+              SymmetricTensor<4,dim> stress_strain_tensor;
+              SymmetricTensor<2,dim> stress_tensor;
+
+              plast_lin_hard->plast_linear_hardening (stress_strain_tensor, strain_tensor[q_point],
+                                                      elast_points, plast_points, sigma_eff, yield);
+
+              // sigma_eff_vector (cell_number) += sigma_eff;
+              sigma_eff_vector (cell_number) += yield;
+
+              /*       if (q_point == 0)
+                  std::cout<< stress_strain_tensor <<std::endl;*/
+              for (unsigned int i=0; i<dofs_per_cell; ++i)
+                {
+                  cell_rhs(i) -= (strain_tensor[q_point] * stress_strain_tensor * //(stress_tensor) *
+                                  plast_lin_hard->get_strain(fe_values, i, q_point) *
+                                  fe_values.JxW (q_point));
+
+                  Tensor<1,dim> rhs_values;
+                  rhs_values = 0;
+                  cell_rhs(i) += ((fe_values[displacement].value (i, q_point) *
+                                   rhs_values) *
+                                  fe_values.JxW (q_point));
+                };
+            };
+
+          for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+            {
+              if (cell->face (face)->at_boundary()
+                  && cell->face (face)->boundary_indicator () == 9)
+                {
+                  fe_values_face.reinit (cell, face);
+
+                  right_hand_side.vector_value_list (fe_values_face.get_quadrature_points(),
+                                                     right_hand_side_values_face);
+
+                  for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
+                    {
+                      Tensor<1,dim> rhs_values;
+                      rhs_values = 0;
+                      for (unsigned int i=0; i<dofs_per_cell; ++i)
+                        cell_rhs(i) += (fe_values_face[displacement].value (i, q_point) *
+                                        rhs_values *
+                                        fe_values_face.JxW (q_point));
+                    }
+                }
+            }
+
+          cell->get_dof_indices (local_dof_indices);
+          constraints_dirichlet_hanging_nodes.distribute_local_to_global (cell_rhs,
+                                                                          local_dof_indices,
+                                                                          system_rhs_newton);
+
+          sigma_eff_vector(cell_number) /= n_q_points;
+          cell_number += 1;
+        };
 
-template <int dim>
-void Step4<dim>::residual_nl_system (TrilinosWrappers::MPI::Vector &u,
-                                    Vector<double>                &sigma_eff_vector)
-{
-  QGauss<dim>  quadrature_formula(2);
-  QGauss<dim-1> face_quadrature_formula(2);
-
-  FEValues<dim> fe_values (fe, quadrature_formula,
-                          UpdateFlags(update_values    |
-                                      update_gradients |
-                                      update_q_points  |
-                                      update_JxW_values));
-
-  FEFaceValues<dim> fe_values_face (fe, face_quadrature_formula,
-                                   update_values   | update_quadrature_points |
-                                   update_JxW_values);
-
-  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int   n_q_points    = quadrature_formula.size ();
-  const unsigned int   n_face_q_points = face_quadrature_formula.size();
-
-  const EquationData::RightHandSide<dim> right_hand_side;
-  std::vector<Vector<double> > right_hand_side_values (n_q_points,
-                                                       Vector<double>(dim));
-  std::vector<Vector<double> > right_hand_side_values_face (n_face_q_points,
-                                                           Vector<double>(dim));
-
-  Vector<double>       cell_rhs (dofs_per_cell);
-  Vector<double>       cell_sigma_eff (dofs_per_cell);
-
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-  const FEValuesExtractors::Vector displacement (0);
-
-  typename DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
-                                                endc = dof_handler.end();
-
-  unsigned int elast_points = 0;
-  unsigned int plast_points = 0;
-  double       sigma_eff = 0;
-  double       yield = 0;
-  unsigned int cell_number = 0;
-  for (; cell!=endc; ++cell)
-    if (cell->is_locally_owned())
-      {
-       fe_values.reinit (cell);
-       cell_rhs = 0;
-
-       right_hand_side.vector_value_list (fe_values.get_quadrature_points(),
-                                          right_hand_side_values);
-
-       std::vector<SymmetricTensor<2,dim> > strain_tensor (n_q_points);
-       fe_values[displacement].get_function_symmetric_gradients (u, strain_tensor);
-
-       for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-         {
-           SymmetricTensor<4,dim> stress_strain_tensor;
-           SymmetricTensor<2,dim> stress_tensor;
-
-           plast_lin_hard->plast_linear_hardening (stress_strain_tensor, strain_tensor[q_point],
-                                                   elast_points, plast_points, sigma_eff, yield);
-
-           // sigma_eff_vector (cell_number) += sigma_eff;
-           sigma_eff_vector (cell_number) += yield;
-
-           /*  if (q_point == 0)
-               std::cout<< stress_strain_tensor <<std::endl;*/
-           for (unsigned int i=0; i<dofs_per_cell; ++i)
-             {
-               cell_rhs(i) -= (strain_tensor[q_point] * stress_strain_tensor * //(stress_tensor) *
-                               plast_lin_hard->get_strain(fe_values, i, q_point) *
-                               fe_values.JxW (q_point));
-
-               Tensor<1,dim> rhs_values;
-               rhs_values = 0;
-               cell_rhs(i) += ((fe_values[displacement].value (i, q_point) *
-                                rhs_values) *
-                               fe_values.JxW (q_point));
-             };
-         };
-
-       for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
-         {
-           if (cell->face (face)->at_boundary()
-               && cell->face (face)->boundary_indicator () == 9)
-             {
-               fe_values_face.reinit (cell, face);
-
-               right_hand_side.vector_value_list (fe_values_face.get_quadrature_points(),
-                                                  right_hand_side_values_face);
-
-               for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
-                 {
-                   Tensor<1,dim> rhs_values;
-                   rhs_values = 0;
-                   for (unsigned int i=0; i<dofs_per_cell; ++i)
-                     cell_rhs(i) += (fe_values_face[displacement].value (i, q_point) *
-                                     rhs_values *
-                                     fe_values_face.JxW (q_point));
-                 }
-             }
-         }
-
-       cell->get_dof_indices (local_dof_indices);
-       constraints_dirichlet_hanging_nodes.distribute_local_to_global (cell_rhs,
-                                                                       local_dof_indices,
-                                                                       system_rhs_newton);
-
-       sigma_eff_vector(cell_number) /= n_q_points;
-       cell_number += 1;
-      };
+    system_rhs_newton.compress ();
 
-  system_rhs_newton.compress ();
+    unsigned int sum_elast_points = Utilities::MPI::sum(elast_points, mpi_communicator);
+    unsigned int sum_plast_points = Utilities::MPI::sum(plast_points, mpi_communicator);
+    pcout<< "Elast-Points = " << sum_elast_points <<std::endl;
+    pcout<< "Plast-Points = " << sum_plast_points <<std::endl;
+  }
 
-  unsigned int sum_elast_points = Utilities::MPI::sum(elast_points, mpi_communicator);
-  unsigned int sum_plast_points = Utilities::MPI::sum(plast_points, mpi_communicator);
-  pcout<< "Elast-Points = " << sum_elast_points <<std::endl;
-  pcout<< "Plast-Points = " << sum_plast_points <<std::endl;
-}
+                                   // @sect4{PlasticityContactProblem::update_solution_and_constraints}
 
-                                 // @sect4{Step4::projection_active_set}
+                                   // Projection and updating of the active set
+                                   // for the dofs which penetrates the obstacle.
+  template <int dim>
+  void PlasticityContactProblem<dim>::update_solution_and_constraints ()
+  {
+    clock_t                        start_proj, end_proj;
 
-                                // Projection and updating of the active set
-                                 // for the dofs which penetrates the obstacle.
-template <int dim>
-void Step4<dim>::projection_active_set ()
-{
-  clock_t                        start_proj, end_proj;
-  
-  const EquationData::Obstacle<dim>     obstacle;
-  std::vector<bool>                     vertex_touched (dof_handler.n_dofs (), false);
-  
-  typename DoFHandler<dim>::active_cell_iterator
-  cell = dof_handler.begin_active(),
-  endc = dof_handler.end();
-
-  TrilinosWrappers::MPI::Vector         distributed_solution (system_rhs_newton);
-  distributed_solution = solution;
-  TrilinosWrappers::MPI::Vector         lambda (solution);
-  lambda = resid_vector;
-  TrilinosWrappers::MPI::Vector         diag_mass_matrix_vector_relevant (solution);
-  diag_mass_matrix_vector_relevant = diag_mass_matrix_vector;
-    
-  constraints.reinit(locally_relevant_dofs);
-  active_set.clear ();
-  IndexSet     active_set_locally_owned;
-  active_set_locally_owned.set_size (locally_owned_dofs.size ());
-  const double c = 100.0*e_modul;
-
-  for (; cell!=endc; ++cell)
-    if (cell->is_locally_owned())
-      for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
-       if (cell->face (face)->at_boundary()
-           && cell->face (face)->boundary_indicator () == 9)
-         for (unsigned int v=0; v<GeometryInfo<dim-1>::vertices_per_cell; ++v)
-           {
-             unsigned int index_z = cell->face (face)->vertex_dof_index (v,2);
-
-             if (vertex_touched[cell->face (face)->vertex_index(v)] == false)
-               vertex_touched[cell->face (face)->vertex_index(v)] = true;
-             else
-               continue;
-
-             // the local row where
-             Point<dim> point (cell->face (face)->vertex (v)[0],/* + solution (index_x),*/
-                               cell->face (face)->vertex (v)[1],
-                               cell->face (face)->vertex (v)[2]);
-
-             double obstacle_value = obstacle.value (point, 2);
-             double solution_index_z = solution (index_z);
-             double gap = obstacle_value - point (2);
-
-             if (lambda (index_z) +
-                 c*diag_mass_matrix_vector_relevant (index_z)*(solution_index_z - gap) > 0)
-               {
-                 constraints.add_line (index_z);
-                 constraints.set_inhomogeneity (index_z, gap);
-
-                 distributed_solution (index_z) = gap;
-
-                 if (locally_relevant_dofs.is_element (index_z))
-                   active_set.add_index (index_z);
-
-                 if (locally_owned_dofs.is_element (index_z))
-                   active_set_locally_owned.add_index (index_z);
-
-                 // std::cout<< index_z << ", "
-                 //       << "Error: " << lambda (index_z) +
-                 //   diag_mass_matrix_vector_relevant (index_z)*c*(solution_index_z - gap)
-                 //       << ", " << lambda (index_z)
-                 //       << ", " << diag_mass_matrix_vector_relevant (index_z)
-                 //       << ", " << obstacle_value
-                 //       << ", " << solution_index_z
-                 //       <<std::endl;
-               }
-           }
-  distributed_solution.compress(Insert);
-
-  unsigned int sum_contact_constraints = Utilities::MPI::sum(active_set_locally_owned.n_elements (),
-                                                            mpi_communicator);
-  pcout << "Number of Contact-Constaints: " << sum_contact_constraints <<std::endl;
-
-  solution = distributed_solution;
-
-  constraints.close ();
-
-  const ConstraintMatrix::MergeConflictBehavior
-    merge_conflict_behavior = ConstraintMatrix::left_object_wins;
-  constraints.merge (constraints_dirichlet_hanging_nodes, merge_conflict_behavior);
-}
+    const EquationData::Obstacle<dim>     obstacle;
+    std::vector<bool>                     vertex_touched (dof_handler.n_dofs (), false);
 
-template <int dim>
-void Step4<dim>::dirichlet_constraints ()
-{
-  /* boundary_indicators:
-            _______
-           /  9    /|
-          /______ / |
-        8|       | 8|
-         |   8   | /
-         |_______|/
-             6
-   */
-
-  constraints_dirichlet_hanging_nodes.reinit (locally_relevant_dofs);
-  constraints_dirichlet_hanging_nodes.merge (constraints_hanging_nodes);
-
-  std::vector<bool> component_mask (dim, true);
-  component_mask[0] = true;
-  component_mask[1] = true;
-  component_mask[2] = true;
-  VectorTools::interpolate_boundary_values (dof_handler,
-                                           6,
-                                           EquationData::BoundaryValues<dim>(),
-                                           constraints_dirichlet_hanging_nodes,
-                                           component_mask);
-
-  component_mask[0] = true;
-  component_mask[1] = true;
-  component_mask[2] = false;
-  VectorTools::interpolate_boundary_values (dof_handler,
-                                           8,
-                                           EquationData::BoundaryValues<dim>(),
-                                           constraints_dirichlet_hanging_nodes,
-                                           component_mask);
-  constraints_dirichlet_hanging_nodes.close ();
-}
+    typename DoFHandler<dim>::active_cell_iterator
+    cell = dof_handler.begin_active(),
+    endc = dof_handler.end();
 
-template <int dim>
-void Step4<dim>::solve ()
-{
-  pcout << "Solving ..." << std::endl;
-  Timer t;
+    TrilinosWrappers::MPI::Vector         distributed_solution (system_rhs_newton);
+    distributed_solution = solution;
+    TrilinosWrappers::MPI::Vector         lambda (solution);
+    lambda = resid_vector;
+    TrilinosWrappers::MPI::Vector         diag_mass_matrix_vector_relevant (solution);
+    diag_mass_matrix_vector_relevant = diag_mass_matrix_vector;
+
+    constraints.reinit(locally_relevant_dofs);
+    active_set.clear ();
+    IndexSet     active_set_locally_owned;
+    active_set_locally_owned.set_size (locally_owned_dofs.size ());
+    const double c = 100.0*e_modul;
+
+    for (; cell!=endc; ++cell)
+      if (cell->is_locally_owned())
+        for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+          if (cell->face (face)->at_boundary()
+              && cell->face (face)->boundary_indicator () == 9)
+            for (unsigned int v=0; v<GeometryInfo<dim-1>::vertices_per_cell; ++v)
+              {
+                unsigned int index_z = cell->face (face)->vertex_dof_index (v,2);
+
+                if (vertex_touched[cell->face (face)->vertex_index(v)] == false)
+                  vertex_touched[cell->face (face)->vertex_index(v)] = true;
+                else
+                  continue;
+
+                // the local row where
+                Point<dim> point (cell->face (face)->vertex (v)[0],/* + solution (index_x),*/
+                                  cell->face (face)->vertex (v)[1],
+                                  cell->face (face)->vertex (v)[2]);
+
+                double obstacle_value = obstacle.value (point, 2);
+                double solution_index_z = solution (index_z);
+                double gap = obstacle_value - point (2);
+
+                if (lambda (index_z) +
+                    c *
+                    diag_mass_matrix_vector_relevant (index_z) *
+                    (solution_index_z - gap)
+                    > 0)
+                  {
+                    constraints.add_line (index_z);
+                    constraints.set_inhomogeneity (index_z, gap);
+
+                    distributed_solution (index_z) = gap;
+
+                    if (locally_relevant_dofs.is_element (index_z))
+                      active_set.add_index (index_z);
+
+                    if (locally_owned_dofs.is_element (index_z))
+                      active_set_locally_owned.add_index (index_z);
+
+                    // std::cout<< index_z << ", "
+                    //            << "Error: " << lambda (index_z) +
+                    //   diag_mass_matrix_vector_relevant (index_z)*c*(solution_index_z - gap)
+                    //            << ", " << lambda (index_z)
+                    //            << ", " << diag_mass_matrix_vector_relevant (index_z)
+                    //            << ", " << obstacle_value
+                    //            << ", " << solution_index_z
+                    //            <<std::endl;
+                  }
+              }
+    distributed_solution.compress(Insert);
+
+    unsigned int sum_contact_constraints = Utilities::MPI::sum(active_set_locally_owned.n_elements (),
+                                                               mpi_communicator);
+    pcout << "Number of Contact-Constaints: " << sum_contact_constraints <<std::endl;
+
+    solution = distributed_solution;
+
+    constraints.close ();
+
+    const ConstraintMatrix::MergeConflictBehavior
+      merge_conflict_behavior = ConstraintMatrix::left_object_wins;
+    constraints.merge (constraints_dirichlet_hanging_nodes, merge_conflict_behavior);
+  }
 
-  TrilinosWrappers::MPI::Vector    distributed_solution (system_rhs_newton);
-  distributed_solution = solution;
-  
-  constraints_hanging_nodes.set_zero (distributed_solution);
+  template <int dim>
+  void PlasticityContactProblem<dim>::dirichlet_constraints ()
+  {
+    /* boundary_indicators:
+              _______
+             /  9    /|
+            /______ / |
+          8|       | 8|
+           |   8   | /
+           |_______|/
+               6
+     */
+
+    constraints_dirichlet_hanging_nodes.reinit (locally_relevant_dofs);
+    constraints_dirichlet_hanging_nodes.merge (constraints_hanging_nodes);
+
+    std::vector<bool> component_mask (dim, true);
+    component_mask[0] = true;
+    component_mask[1] = true;
+    component_mask[2] = true;
+    VectorTools::interpolate_boundary_values (dof_handler,
+                                              6,
+                                              EquationData::BoundaryValues<dim>(),
+                                              constraints_dirichlet_hanging_nodes,
+                                              component_mask);
+
+    component_mask[0] = true;
+    component_mask[1] = true;
+    component_mask[2] = false;
+    VectorTools::interpolate_boundary_values (dof_handler,
+                                              8,
+                                              EquationData::BoundaryValues<dim>(),
+                                              constraints_dirichlet_hanging_nodes,
+                                              component_mask);
+    constraints_dirichlet_hanging_nodes.close ();
+  }
 
-  // Solving iterative
+  template <int dim>
+  void PlasticityContactProblem<dim>::solve ()
+  {
+    pcout << "Solving ..." << std::endl;
+    Timer t;
 
-  MPI_Barrier (mpi_communicator);
-  t.restart();
+    TrilinosWrappers::MPI::Vector    distributed_solution (system_rhs_newton);
+    distributed_solution = solution;
 
-  preconditioner_u.initialize (system_matrix_newton, additional_data);
-  
-  MPI_Barrier (mpi_communicator);
-  t.stop();
-  if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
-  run_time[6] += t.wall_time();
-  
-  MPI_Barrier (mpi_communicator);
-  t.restart();
-
-//   ReductionControl                 reduction_control (10000, 1e-15, 1e-4);
-//   SolverCG<TrilinosWrappers::MPI::Vector>
-//     solver (reduction_control, mpi_communicator);
-//   solver.solve (system_matrix_newton, distributed_solution, system_rhs_newton, preconditioner_u);
-
-  PrimitiveVectorMemory<TrilinosWrappers::MPI::Vector> mem;
-  TrilinosWrappers::MPI::Vector    tmp (system_rhs_newton);
-  const double solver_tolerance = 1e-4 *
-       system_matrix_newton.residual (tmp, distributed_solution, system_rhs_newton);
-  SolverControl solver_control (system_matrix_newton.m(), solver_tolerance);
-  SolverFGMRES<TrilinosWrappers::MPI::Vector>
-     solver(solver_control, mem,
-     SolverFGMRES<TrilinosWrappers::MPI::Vector>::
-     AdditionalData(30, true));
-  solver.solve(system_matrix_newton, distributed_solution, system_rhs_newton, preconditioner_u);           
-
-  pcout << "Initial error: " << solver_control.initial_value() <<std::endl;
-  pcout << "   " << solver_control.last_step()
-           << " CG iterations needed to obtain convergence with an error: "
-           <<  solver_control.last_value()
-           << std::endl;
-
-  MPI_Barrier (mpi_communicator);
-  t.stop();
-  if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
-  run_time[7] += t.wall_time();
-
-  number_iterations += solver_control.last_step();
-
-  constraints.distribute (distributed_solution);
-
-  solution = distributed_solution;
-}
+    constraints_hanging_nodes.set_zero (distributed_solution);
 
-template <int dim>
-void Step4<dim>::solve_newton ()
-{
-  double                         resid=0;
-  double                         resid_old=100000;
-  TrilinosWrappers::MPI::Vector  res (system_rhs_newton);
-  TrilinosWrappers::MPI::Vector  tmp_vector (system_rhs_newton);
-  Timer                          t;
-
-  std::vector<std::vector<bool> > constant_modes;
-  std::vector<bool>  components (dim,true);
-  components[dim] = false;
-  DoFTools::extract_constant_modes (dof_handler, components,
-                                   constant_modes);
-
-  additional_data.elliptic = true;
-  additional_data.n_cycles = 1;
-  additional_data.w_cycle = false;
-  additional_data.output_details = false;
-  additional_data.smoother_sweeps = 2;
-  additional_data.aggregation_threshold = 1e-2;
-
-  IndexSet                            active_set_old (active_set);
-  Vector<double>                      sigma_eff_vector;
-  sigma_eff_vector.reinit (triangulation.n_active_cells());  
-  unsigned int j = 0;
-  unsigned int number_assemble_system = 0;
-  for (; j<=100;j++)
-    {
-      pcout<< " " <<std::endl;
-      pcout<< j << ". Iteration of the inexact Newton-method." <<std::endl;
-      pcout<< "Update of active set" <<std::endl;
-      
-      MPI_Barrier (mpi_communicator);
-      t.restart(); 
-      
-      projection_active_set ();
-      
-      MPI_Barrier (mpi_communicator);
-      t.stop();
-      if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
-        run_time[5] += t.wall_time();
-      
-      pcout<< "Assembling ... " <<std::endl;
-      MPI_Barrier (mpi_communicator);
-      t.restart(); 
-      system_matrix_newton = 0;
-      system_rhs_newton = 0;
-      assemble_nl_system (solution);  //compute Newton-Matrix
-      MPI_Barrier (mpi_communicator);
-      t.stop();
-      if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
-        run_time[1] += t.wall_time();
-
-      number_assemble_system += 1;
-
-      MPI_Barrier (mpi_communicator);
-      t.restart();
-      solve ();
-      MPI_Barrier (mpi_communicator);
-      t.stop();
-      if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
-        run_time[2] += t.wall_time();
-       
-      TrilinosWrappers::MPI::Vector    distributed_solution (system_rhs_newton);
-      distributed_solution = solution;
-
-      int damped = 0;
-      tmp_vector = old_solution;
-      double a = 0;
-      for (unsigned int i=0; (i<10)&&(!damped); i++)
-       {
-         a=pow(0.5, static_cast<double>(i));
-         old_solution = tmp_vector;
-         old_solution.sadd(1-a,a, distributed_solution);
-
-         MPI_Barrier (mpi_communicator);
-          t.restart();
-         system_rhs_newton = 0;
-         sigma_eff_vector = 0;
-         solution = old_solution;
-         residual_nl_system (solution, sigma_eff_vector);
-         res = system_rhs_newton;
-
-         const unsigned int
-           start_res     = (res.local_range().first),
-           end_res       = (res.local_range().second);
-         for (unsigned int n=start_res; n<end_res; ++n)
-           if (constraints.is_inhomogeneously_constrained (n))
-             {
-               // pcout<< i << ". " << constraints.get_inhomogeneity (n)
-               //       << ". " << res (n)
-               //       << ", start = " << start_res
-               //       << ", end = " << end_res
-               //       <<std::endl;
-               res(n) = 0;
-             }
-
-         resid = res.l2_norm ();
-         pcout<< "Residual: " << resid <<std::endl;
-
-         if (resid<resid_old)
-           {
-             pcout<< "Newton-damping parameter alpha = " << a <<std::endl;
-             damped=1;
-           }
-         MPI_Barrier (mpi_communicator);
-          t.stop();
-          if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
-            run_time[3] += t.wall_time();
-       }
-
-      if (resid<1e-8)
-       {
-         pcout<< "Inexact Newton-method stopped with residual = " << resid <<std::endl;
-         pcout<< "Number of Assembling systems = " << number_assemble_system <<std::endl;
-         break;
-       }
-      resid_old=resid;
-
-      resid_vector = system_rhs_newton;
-
-      if (active_set == active_set_old && resid < 1e-10)
-       break;
-      active_set_old = active_set;
-    } // End of active-set-loop
+    // Solving iterative
 
-  
-  pcout<< "Creating output." <<std::endl;
-  MPI_Barrier (mpi_communicator);
-  t.restart();
-  std::ostringstream filename_solution;
-  filename_solution << "solution";
-  // filename_solution << "solution_";
-  // filename_solution << k;
-  output_results (filename_solution.str ());
-  // output_results (sigma_eff_vector, "sigma_eff");
-  MPI_Barrier (mpi_communicator);
-  t.stop();
-  if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
-    run_time[4] += t.wall_time();
-
-  pcout<< "Number of Solver-Iterations = " << number_iterations <<std::endl;
-
-  pcout<< "%%%%%% Rechenzeit make grid and setup = " << run_time[0] <<std::endl;
-  pcout<< "%%%%%% Rechenzeit projection active set = " << run_time[5] <<std::endl;
-  pcout<< "%%%%%% Rechenzeit assemble system = " << run_time[1] <<std::endl;
-  pcout<< "%%%%%% Rechenzeit solve system = " << run_time[2] <<std::endl;
-  pcout<< "%%%%%% Rechenzeit preconditioner = " << run_time[6] <<std::endl;
-  pcout<< "%%%%%% Rechenzeit solve with CG = " << run_time[7] <<std::endl;
-  pcout<< "%%%%%% Rechenzeit error and lambda = " << run_time[3] <<std::endl;
-  pcout<< "%%%%%% Rechenzeit output = " << run_time[4] <<std::endl;
-}
+    MPI_Barrier (mpi_communicator);
+    t.restart();
 
-template <int dim>
-void Step4<dim>::output_results (const std::string& title) const
-{
-  move_mesh (solution);
+    preconditioner_u.initialize (system_matrix_newton, additional_data);
 
-  TrilinosWrappers::MPI::Vector         lambda (solution);
-  lambda = resid_vector;
+    MPI_Barrier (mpi_communicator);
+    t.stop();
+    if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
+    run_time[6] += t.wall_time();
 
-  DataOut<dim> data_out;
+    MPI_Barrier (mpi_communicator);
+    t.restart();
 
-  data_out.attach_dof_handler (dof_handler);
+  //   ReductionControl                 reduction_control (10000, 1e-15, 1e-4);
+  //   SolverCG<TrilinosWrappers::MPI::Vector>
+  //     solver (reduction_control, mpi_communicator);
+  //   solver.solve (system_matrix_newton, distributed_solution, system_rhs_newton, preconditioner_u);
 
-  const std::vector<DataComponentInterpretation::DataComponentInterpretation>
-    data_component_interpretation
-    (dim, DataComponentInterpretation::component_is_part_of_vector);
-  data_out.add_data_vector (solution, std::vector<std::string>(dim, "Displacement"),
-                           DataOut<dim>::type_dof_data,
-                           data_component_interpretation);
-  data_out.add_data_vector (lambda, std::vector<std::string>(dim, "Residual"),
-                           DataOut<dim>::type_dof_data,
-                           data_component_interpretation);
-  data_out.add_data_vector (active_set, std::vector<std::string>(dim, "ActiveSet"),
-                           DataOut<dim>::type_dof_data,
-                           data_component_interpretation);
+    PrimitiveVectorMemory<TrilinosWrappers::MPI::Vector> mem;
+    TrilinosWrappers::MPI::Vector    tmp (system_rhs_newton);
+    const double solver_tolerance = 1e-4 *
+          system_matrix_newton.residual (tmp, distributed_solution, system_rhs_newton);
+    SolverControl solver_control (system_matrix_newton.m(), solver_tolerance);
+    SolverFGMRES<TrilinosWrappers::MPI::Vector>
+       solver(solver_control, mem,
+       SolverFGMRES<TrilinosWrappers::MPI::Vector>::
+       AdditionalData(30, true));
+    solver.solve(system_matrix_newton, distributed_solution, system_rhs_newton, preconditioner_u);
 
-  Vector<float> subdomain (triangulation.n_active_cells());
-  for (unsigned int i=0; i<subdomain.size(); ++i)
-    subdomain(i) = triangulation.locally_owned_subdomain();
-  data_out.add_data_vector (subdomain, "subdomain");
+    pcout << "Initial error: " << solver_control.initial_value() <<std::endl;
+    pcout << "   " << solver_control.last_step()
+              << " CG iterations needed to obtain convergence with an error: "
+              <<  solver_control.last_value()
+              << std::endl;
 
-  data_out.build_patches ();
+    MPI_Barrier (mpi_communicator);
+    t.stop();
+    if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
+    run_time[7] += t.wall_time();
 
-  const std::string filename = (title + "-" +
-                               Utilities::int_to_string
-                               (triangulation.locally_owned_subdomain(), 4));
+    number_iterations += solver_control.last_step();
 
-  std::ofstream output_vtu ((filename + ".vtu").c_str ());
-  data_out.write_vtu (output_vtu);
+    constraints.distribute (distributed_solution);
 
-  if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
-    {
-      std::vector<std::string> filenames;
-      for (unsigned int i=0;
-          i<Utilities::MPI::n_mpi_processes(mpi_communicator);
-          ++i)
-       filenames.push_back ("solution-" +
-                            Utilities::int_to_string (i, 4) +
-                            ".vtu");
-
-      std::ofstream master_output ((filename + ".pvtu").c_str());
-      data_out.write_pvtu_record (master_output, filenames);
-    }
+    solution = distributed_solution;
+  }
 
-  TrilinosWrappers::MPI::Vector  tmp (solution);
-  tmp *= -1;
-  move_mesh (tmp);
-}
+  template <int dim>
+  void PlasticityContactProblem<dim>::solve_newton ()
+  {
+    double                         resid=0;
+    double                         resid_old=100000;
+    TrilinosWrappers::MPI::Vector  res (system_rhs_newton);
+    TrilinosWrappers::MPI::Vector  tmp_vector (system_rhs_newton);
+    Timer                          t;
+
+    std::vector<std::vector<bool> > constant_modes;
+    std::vector<bool>  components (dim,true);
+    components[dim] = false;
+    DoFTools::extract_constant_modes (dof_handler, components,
+                                      constant_modes);
+
+    additional_data.elliptic = true;
+    additional_data.n_cycles = 1;
+    additional_data.w_cycle = false;
+    additional_data.output_details = false;
+    additional_data.smoother_sweeps = 2;
+    additional_data.aggregation_threshold = 1e-2;
+
+    IndexSet                            active_set_old (active_set);
+    Vector<double>                      sigma_eff_vector;
+    sigma_eff_vector.reinit (triangulation.n_active_cells());
+    unsigned int j = 0;
+    unsigned int number_assemble_system = 0;
+    for (; j<=100;j++)
+      {
+        pcout<< " " <<std::endl;
+        pcout<< j << ". Iteration of the inexact Newton-method." <<std::endl;
+        pcout<< "Update of active set" <<std::endl;
+
+        MPI_Barrier (mpi_communicator);
+        t.restart();
+
+        update_solution_and_constraints ();
+
+        MPI_Barrier (mpi_communicator);
+        t.stop();
+        if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
+          run_time[5] += t.wall_time();
+
+        pcout<< "Assembling ... " <<std::endl;
+        MPI_Barrier (mpi_communicator);
+        t.restart();
+        system_matrix_newton = 0;
+        system_rhs_newton = 0;
+        assemble_nl_system (solution);  //compute Newton-Matrix
+        MPI_Barrier (mpi_communicator);
+        t.stop();
+        if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
+          run_time[1] += t.wall_time();
+
+        number_assemble_system += 1;
+
+        MPI_Barrier (mpi_communicator);
+        t.restart();
+        solve ();
+        MPI_Barrier (mpi_communicator);
+        t.stop();
+        if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
+          run_time[2] += t.wall_time();
+
+        TrilinosWrappers::MPI::Vector    distributed_solution (system_rhs_newton);
+        distributed_solution = solution;
+
+        int damped = 0;
+        tmp_vector = old_solution;
+        double a = 0;
+        for (unsigned int i=0; (i<10)&&(!damped); i++)
+          {
+            a=pow(0.5, static_cast<double>(i));
+            old_solution = tmp_vector;
+            old_solution.sadd(1-a,a, distributed_solution);
+
+            MPI_Barrier (mpi_communicator);
+            t.restart();
+            system_rhs_newton = 0;
+            sigma_eff_vector = 0;
+            solution = old_solution;
+            residual_nl_system (solution, sigma_eff_vector);
+            res = system_rhs_newton;
+
+            const unsigned int
+              start_res     = (res.local_range().first),
+              end_res       = (res.local_range().second);
+            for (unsigned int n=start_res; n<end_res; ++n)
+              if (constraints.is_inhomogeneously_constrained (n))
+                {
+                  // pcout<< i << ". " << constraints.get_inhomogeneity (n)
+                  //    << ". " << res (n)
+                  //    << ", start = " << start_res
+                  //    << ", end = " << end_res
+                  //    <<std::endl;
+                  res(n) = 0;
+                }
+
+            resid = res.l2_norm ();
+            pcout<< "Residual: " << resid <<std::endl;
+
+            if (resid<resid_old)
+              {
+                pcout<< "Newton-damping parameter alpha = " << a <<std::endl;
+                damped=1;
+              }
+            MPI_Barrier (mpi_communicator);
+            t.stop();
+            if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
+              run_time[3] += t.wall_time();
+          }
+
+        if (resid<1e-8)
+          {
+            pcout<< "Inexact Newton-method stopped with residual = " << resid <<std::endl;
+            pcout<< "Number of Assembling systems = " << number_assemble_system <<std::endl;
+            break;
+          }
+        resid_old=resid;
+
+        resid_vector = system_rhs_newton;
+
+        if (active_set == active_set_old && resid < 1e-10)
+          break;
+        active_set_old = active_set;
+      } // End of active-set-loop
+
+
+    pcout<< "Creating output." <<std::endl;
+    MPI_Barrier (mpi_communicator);
+    t.restart();
+    std::ostringstream filename_solution;
+    filename_solution << "solution";
+    // filename_solution << "solution_";
+    // filename_solution << k;
+    output_results (filename_solution.str ());
+    // output_results (sigma_eff_vector, "sigma_eff");
+    MPI_Barrier (mpi_communicator);
+    t.stop();
+    if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
+      run_time[4] += t.wall_time();
+
+    pcout<< "Number of Solver-Iterations = " << number_iterations <<std::endl;
+
+    pcout<< "%%%%%% Rechenzeit make grid and setup = " << run_time[0] <<std::endl;
+    pcout<< "%%%%%% Rechenzeit projection active set = " << run_time[5] <<std::endl;
+    pcout<< "%%%%%% Rechenzeit assemble system = " << run_time[1] <<std::endl;
+    pcout<< "%%%%%% Rechenzeit solve system = " << run_time[2] <<std::endl;
+    pcout<< "%%%%%% Rechenzeit preconditioner = " << run_time[6] <<std::endl;
+    pcout<< "%%%%%% Rechenzeit solve with CG = " << run_time[7] <<std::endl;
+    pcout<< "%%%%%% Rechenzeit error and lambda = " << run_time[3] <<std::endl;
+    pcout<< "%%%%%% Rechenzeit output = " << run_time[4] <<std::endl;
+  }
 
-template <int dim>
-void Step4<dim>::move_mesh (const TrilinosWrappers::MPI::Vector &_complete_displacement) const
-{
-  pcout<< "Moving mesh." <<std::endl;
-
-  std::vector<bool> vertex_touched (triangulation.n_vertices(),
-                                   false);
-
-  for (typename DoFHandler<dim>::active_cell_iterator
-        cell = dof_handler.begin_active ();
-       cell != dof_handler.end(); ++cell)
-    if (cell->is_locally_owned())
-      for (unsigned int v=0; v<GeometryInfo<dim>::vertices_per_cell; ++v)
-       {
-         if (vertex_touched[cell->vertex_index(v)] == false)
-           {
-             vertex_touched[cell->vertex_index(v)] = true;
-
-             Point<dim> vertex_displacement;
-             for (unsigned int d=0; d<dim; ++d)
-               {
-                 if (_complete_displacement(cell->vertex_dof_index(v,d)) != 0)
-                   vertex_displacement[d]
-                     = _complete_displacement(cell->vertex_dof_index(v,d));
-               }
-
-             cell->vertex(v) += vertex_displacement;
-           }
-       }
-}
+  template <int dim>
+  void PlasticityContactProblem<dim>::output_results (const std::string& title) const
+  {
+    move_mesh (solution);
 
-template <int dim>
-void Step4<dim>::output_results (TrilinosWrappers::MPI::Vector vector,
-                                const std::string& title) const
-{
-  DataOut<dim> data_out;
+    TrilinosWrappers::MPI::Vector         lambda (solution);
+    lambda = resid_vector;
 
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (vector, "vector_to_plot");
+    DataOut<dim> data_out;
 
-  data_out.build_patches ();
+    data_out.attach_dof_handler (dof_handler);
 
-  std::ofstream output_vtk (dim == 2 ?
-                           (title + ".vtk").c_str () :
-                           (title + ".vtk").c_str ());
-  data_out.write_vtk (output_vtk);
-}
+    const std::vector<DataComponentInterpretation::DataComponentInterpretation>
+      data_component_interpretation
+      (dim, DataComponentInterpretation::component_is_part_of_vector);
+    data_out.add_data_vector (solution, std::vector<std::string>(dim, "Displacement"),
+                              DataOut<dim>::type_dof_data,
+                              data_component_interpretation);
+    data_out.add_data_vector (lambda, std::vector<std::string>(dim, "Residual"),
+                              DataOut<dim>::type_dof_data,
+                              data_component_interpretation);
+    data_out.add_data_vector (active_set, std::vector<std::string>(dim, "ActiveSet"),
+                              DataOut<dim>::type_dof_data,
+                              data_component_interpretation);
 
-template <int dim>
-void Step4<dim>::output_results (Vector<double> vector, const std::string& title) const
-{
-  DataOut<dim> data_out;
+    Vector<float> subdomain (triangulation.n_active_cells());
+    for (unsigned int i=0; i<subdomain.size(); ++i)
+      subdomain(i) = triangulation.locally_owned_subdomain();
+    data_out.add_data_vector (subdomain, "subdomain");
 
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (vector, "vector_to_plot");
+    data_out.build_patches ();
 
-  data_out.build_patches ();
+    const std::string filename = (title + "-" +
+                                  Utilities::int_to_string
+                                  (triangulation.locally_owned_subdomain(), 4));
 
-  std::ofstream output_vtk (dim == 2 ?
-                           (title + ".vtk").c_str () :
-                           (title + ".vtk").c_str ());
-  data_out.write_vtk (output_vtk);
-}
+    std::ofstream output_vtu ((filename + ".vtu").c_str ());
+    data_out.write_vtu (output_vtu);
 
-template <int dim>
-void Step4<dim>::run ()
-{
-  pcout << "Solving problem in " << dim << " space dimensions." << std::endl;
+    if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
+      {
+        std::vector<std::string> filenames;
+        for (unsigned int i=0;
+             i<Utilities::MPI::n_mpi_processes(mpi_communicator);
+             ++i)
+          filenames.push_back ("solution-" +
+                               Utilities::int_to_string (i, 4) +
+                               ".vtu");
+
+        std::ofstream master_output ((filename + ".pvtu").c_str());
+        data_out.write_pvtu_record (master_output, filenames);
+      }
 
-  run_time.resize (8);
+    TrilinosWrappers::MPI::Vector  tmp (solution);
+    tmp *= -1;
+    move_mesh (tmp);
+  }
 
-  clock_t     start, end;
+  template <int dim>
+  void PlasticityContactProblem<dim>::move_mesh (const TrilinosWrappers::MPI::Vector &_complete_displacement) const
+  {
+    pcout<< "Moving mesh." <<std::endl;
+
+    std::vector<bool> vertex_touched (triangulation.n_vertices(),
+                                      false);
+
+    for (typename DoFHandler<dim>::active_cell_iterator
+           cell = dof_handler.begin_active ();
+         cell != dof_handler.end(); ++cell)
+      if (cell->is_locally_owned())
+        for (unsigned int v=0; v<GeometryInfo<dim>::vertices_per_cell; ++v)
+          {
+            if (vertex_touched[cell->vertex_index(v)] == false)
+              {
+                vertex_touched[cell->vertex_index(v)] = true;
+
+                Point<dim> vertex_displacement;
+                for (unsigned int d=0; d<dim; ++d)
+                  {
+                    if (_complete_displacement(cell->vertex_dof_index(v,d)) != 0)
+                      vertex_displacement[d]
+                        = _complete_displacement(cell->vertex_dof_index(v,d));
+                  }
+
+                cell->vertex(v) += vertex_displacement;
+              }
+          }
+  }
 
-  start = clock();
-  make_grid();
-  //  mesh_surface ();
+  template <int dim>
+  void PlasticityContactProblem<dim>::output_results (TrilinosWrappers::MPI::Vector vector,
+                                   const std::string& title) const
+  {
+    DataOut<dim> data_out;
+
+    data_out.attach_dof_handler (dof_handler);
+    data_out.add_data_vector (vector, "vector_to_plot");
+
+    data_out.build_patches ();
+
+    std::ofstream output_vtk (dim == 2 ?
+                              (title + ".vtk").c_str () :
+                              (title + ".vtk").c_str ());
+    data_out.write_vtk (output_vtk);
+  }
+
+  template <int dim>
+  void PlasticityContactProblem<dim>::output_results (Vector<double> vector, const std::string& title) const
+  {
+    DataOut<dim> data_out;
+
+    data_out.attach_dof_handler (dof_handler);
+    data_out.add_data_vector (vector, "vector_to_plot");
+
+    data_out.build_patches ();
+
+    std::ofstream output_vtk (dim == 2 ?
+                              (title + ".vtk").c_str () :
+                              (title + ".vtk").c_str ());
+    data_out.write_vtk (output_vtk);
+  }
+
+  template <int dim>
+  void PlasticityContactProblem<dim>::run ()
+  {
+    pcout << "Solving problem in " << dim << " space dimensions." << std::endl;
   
-  setup_system (); 
+    run_time.resize (8);
   
-  end = clock();
-  run_time[0] = (double)(end-start)/CLOCKS_PER_SEC;
+    clock_t     start, end;
+  
+    start = clock();
+    make_grid();
+    //  mesh_surface ();
 
-  solve_newton ();
-}
+    setup_system ();
+    
+    end = clock();
+    run_time[0] = (double)(end-start)/CLOCKS_PER_SEC;
 
+    solve_newton ();
+  }
+}
 
                                  // @sect3{The <code>main</code> function}
 
-                                // And this is the main function. It also
-                                // looks mostly like in step-3, but if you
-                                // look at the code below, note how we first
-                                // create a variable of type
-                                // <code>Step4@<2@></code> (forcing
-                                // the compiler to compile the class template
-                                // with <code>dim</code> replaced by
-                                // <code>2</code>) and run a 2d simulation,
-                                // and then we do the whole thing over in 3d.
-                                //
-                                // In practice, this is probably not what you
-                                // would do very frequently (you probably
-                                // either want to solve a 2d problem, or one
-                                // in 3d, but not both at the same
-                                // time). However, it demonstrates the
-                                // mechanism by which we can simply change
-                                // which dimension we want in a single place,
-                                // and thereby force the compiler to
-                                // recompile the dimension independent class
-                                // templates for the dimension we
-                                // request. The emphasis here lies on the
-                                // fact that we only need to change a single
-                                // place. This makes it rather trivial to
-                                // debug the program in 2d where computations
-                                // are fast, and then switch a single place
-                                // to a 3 to run the much more computing
-                                // intensive program in 3d for `real'
-                                // computations.
-                                //
-                                // Each of the two blocks is enclosed in
-                                // braces to make sure that the
-                                // <code>laplace_problem_2d</code> variable
-                                // goes out of scope (and releases the memory
-                                // it holds) before we move on to allocate
-                                // memory for the 3d case. Without the
-                                // additional braces, the
-                                // <code>laplace_problem_2d</code> variable
-                                // would only be destroyed at the end of the
-                                // function, i.e. after running the 3d
-                                // problem, and would needlessly hog memory
-                                // while the 3d run could actually use it.
+                                 // And this is the main function. It also
+                                 // looks mostly like in step-3, but if you
+                                 // look at the code below, note how we first
+                                 // create a variable of type
+                                 // <code>PlasticityContactProblem@<2@></code> (forcing
+                                 // the compiler to compile the class template
+                                 // with <code>dim</code> replaced by
+                                 // <code>2</code>) and run a 2d simulation,
+                                 // and then we do the whole thing over in 3d.
+                                 //
+                                 // In practice, this is probably not what you
+                                 // would do very frequently (you probably
+                                 // either want to solve a 2d problem, or one
+                                 // in 3d, but not both at the same
+                                 // time). However, it demonstrates the
+                                 // mechanism by which we can simply change
+                                 // which dimension we want in a single place,
+                                 // and thereby force the compiler to
+                                 // recompile the dimension independent class
+                                 // templates for the dimension we
+                                 // request. The emphasis here lies on the
+                                 // fact that we only need to change a single
+                                 // place. This makes it rather trivial to
+                                 // debug the program in 2d where computations
+                                 // are fast, and then switch a single place
+                                 // to a 3 to run the much more computing
+                                 // intensive program in 3d for `real'
+                                 // computations.
+                                 //
+                                 // Each of the two blocks is enclosed in
+                                 // braces to make sure that the
+                                 // <code>laplace_problem_2d</code> variable
+                                 // goes out of scope (and releases the memory
+                                 // it holds) before we move on to allocate
+                                 // memory for the 3d case. Without the
+                                 // additional braces, the
+                                 // <code>laplace_problem_2d</code> variable
+                                 // would only be destroyed at the end of the
+                                 // function, i.e. after running the 3d
+                                 // problem, and would needlessly hog memory
+                                 // while the 3d run could actually use it.
                                  //
                                  // Finally, the first line of the function is
                                  // used to suppress some output.  Remember
@@ -1480,6 +1477,9 @@ void Step4<dim>::run ()
                                  // library.
 int main (int argc, char *argv[])
 {
+  using namespace dealii;
+  using namespace Step42;
+
   deallog.depth_console (0);
 
   clock_t     start, end;
@@ -1488,16 +1488,16 @@ int main (int argc, char *argv[])
 
   Utilities::MPI::MPI_InitFinalize mpi_initialization (argc, argv);
   {
-    int _n_refinements_global = 1;
+    int _n_refinements_global = 4;
     int _n_refinements_local = 1;
-    
+
     if (argc == 3)
     {
       _n_refinements_global = atoi(argv[1]);
       _n_refinements_local = atoi(argv[2]);
     }
-    
-    Step4<3> laplace_problem_3d (_n_refinements_global, _n_refinements_local);
+
+    PlasticityContactProblem<3> laplace_problem_3d (_n_refinements_global, _n_refinements_local);
     laplace_problem_3d.run ();
   }
 

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.