]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Joa's testcase now appears to work.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 17 May 2007 15:36:17 +0000 (15:36 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 17 May 2007 15:36:17 +0000 (15:36 +0000)
git-svn-id: https://svn.dealii.org/trunk@14680 0785d39b-7218-0410-832d-ea1e28bc413d

tests/fail/joa_1.cc [new file with mode: 0644]

diff --git a/tests/fail/joa_1.cc b/tests/fail/joa_1.cc
new file mode 100644 (file)
index 0000000..05c12d3
--- /dev/null
@@ -0,0 +1,1244 @@
+//----------------------------  joa_1.cc  ---------------------------
+//    joa_1.cc,v 1.3 2003/06/09 16:00:38 wolf Exp
+//    Version: 
+//
+//    Copyright (C) 2003, 2004, 2005, 2007 by the deal.II authors
+//
+//    This file is subject to QPL and may not be  distributed
+//    without copyright and license information. Please refer
+//    to the file deal.II/doc/license.html for the  text  and
+//    further information on this license.
+//
+//----------------------------  joa_1.cc  ---------------------------
+
+
+// a testcase by Joa, see mailing list 2007/02/24. checks that we can find a
+// point inside a cell, where the point is definitely inside the domain. this
+// testcase is a simple modification of step-6, only a few lines are added
+
+#include "../tests.h"
+#include <base/logstream.h>
+#include <base/quadrature_lib.h>
+#include <base/function.h>
+#include <base/logstream.h>
+#include <lac/vector.h>
+#include <lac/full_matrix.h>
+#include <lac/sparse_matrix.h>
+#include <lac/solver_cg.h>
+#include <lac/precondition.h>
+#include <grid/tria.h>
+#include <dofs/dof_handler.h>
+#include <grid/grid_generator.h>
+#include <grid/tria_accessor.h>
+#include <grid/tria_iterator.h>
+#include <grid/tria_boundary_lib.h>
+#include <dofs/dof_accessor.h>
+#include <dofs/dof_tools.h>
+#include <fe/fe_values.h>
+#include <numerics/vectors.h>
+#include <numerics/matrices.h>
+#include <numerics/data_out.h>
+
+#include <fstream>
+#include <iostream>
+
+                                // From the following include file we
+                                // will import the declaration of
+                                // H1-conforming finite element shape
+                                // functions. This family of finite
+                                // elements is called <code>FE_Q</code>, and
+                                // was used in all examples before
+                                // already to define the usual bi- or
+                                // tri-linear elements, but we will
+                                // now use it for bi-quadratic
+                                // elements:
+#include <fe/fe_q.h>
+                                // We will not read the grid from a
+                                // file as in the previous example,
+                                // but generate it using a function
+                                // of the library. However, we will
+                                // want to write out the locally
+                                // refined grids (just the grid, not
+                                // the solution) in each step, so we
+                                // need the following include file
+                                // instead of <code>grid_in.h</code>:
+#include <grid/grid_out.h>
+
+
+                                // When using locally refined grids,
+                                // we will get so-called <code>hanging
+                                // nodes</code>. However, the standard
+                                // finite element methods assumes
+                                // that the discrete solution spaces
+                                // be continuous, so we need to make
+                                // sure that the degrees of freedom
+                                // on hanging nodes conform to some
+                                // constraints such that the global
+                                // solution is continuous. The
+                                // following file contains a class
+                                // which is used to handle these
+                                // constraints:
+#include <dofs/dof_constraints.h>
+
+                                // In order to refine our grids
+                                // locally, we need a function from
+                                // the library that decides which
+                                // cells to flag for refinement or
+                                // coarsening based on the error
+                                // indicators we have computed. This
+                                // function is defined here:
+#include <grid/grid_refinement.h>
+
+                                // Finally, we need a simple way to
+                                // actually compute the refinement
+                                // indicators based on some error
+                                // estimat. While in general,
+                                // adaptivity is very
+                                // problem-specific, the error
+                                // indicator in the following file
+                                // often yields quite nicely adapted
+                                // grids for a wide class of
+                                // problems.
+#include <numerics/error_estimator.h>
+
+                                // Finally, this is as in previous
+                                // programs:
+using namespace dealii;
+
+
+                                 // @sect3{The <code>LaplaceProblem</code> class template}
+
+                                // The main class is again almost
+                                // unchanged. Two additions, however,
+                                // are made: we have added the
+                                // <code>refine_grid</code> function, which is
+                                // used to adaptively refine the grid
+                                // (instead of the global refinement
+                                // in the previous examples), and a
+                                // variable which will hold the
+                                // constraints associated to the
+                                // hanging nodes. In addition, we
+                                // have added a destructor to the
+                                // class for reasons that will become
+                                // clear when we discuss its
+                                // implementation.
+template <int dim>
+class LaplaceProblem 
+{
+  public:
+    LaplaceProblem ();
+    ~LaplaceProblem ();
+
+    void run ();
+    
+  private:
+    void setup_system ();
+    void assemble_system ();
+    void solve ();
+    void refine_grid ();
+    void output_results (const unsigned int cycle) const;
+
+    Triangulation<dim>   triangulation;
+
+    DoFHandler<dim>      dof_handler;
+    FE_Q<dim>            fe;
+
+                                    // This is the new variable in
+                                    // the main class. We need an
+                                    // object which holds a list of
+                                    // constraints originating from
+                                    // the hanging nodes:
+    ConstraintMatrix     hanging_node_constraints;
+
+    SparsityPattern      sparsity_pattern;
+    SparseMatrix<double> system_matrix;
+
+    Vector<double>       solution;
+    Vector<double>       system_rhs;
+};
+
+
+                                 // @sect3{Nonconstant coefficients}
+
+                                // The implementation of nonconstant
+                                // coefficients is copied verbatim
+                                // from step-5:
+
+template <int dim>
+class Coefficient : public Function<dim> 
+{
+  public:
+    Coefficient () : Function<dim>() {}
+    
+    virtual double value (const Point<dim>   &p,
+                         const unsigned int  component = 0) const;
+    
+    virtual void value_list (const std::vector<Point<dim> > &points,
+                            std::vector<double>            &values,
+                            const unsigned int              component = 0) const;
+};
+
+
+
+template <int dim>
+double Coefficient<dim>::value (const Point<dim> &p,
+                               const unsigned int) const 
+{
+  if (p.square() < 0.5*0.5)
+    return 20;
+  else
+    return 1;
+}
+
+
+
+template <int dim>
+void Coefficient<dim>::value_list (const std::vector<Point<dim> > &points,
+                                  std::vector<double>            &values,
+                                  const unsigned int              component) const 
+{
+  const unsigned int n_points = points.size();
+
+  Assert (values.size() == n_points, 
+         ExcDimensionMismatch (values.size(), n_points));
+  
+  Assert (component == 0, 
+         ExcIndexRange (component, 0, 1));
+  
+  for (unsigned int i=0; i<n_points; ++i)
+    {
+      if (points[i].square() < 0.5*0.5)
+       values[i] = 20;
+      else
+       values[i] = 1;
+    }
+}
+
+
+                                 // @sect3{The <code>LaplaceProblem</code> class implementation}
+
+                                 // @sect4{LaplaceProblem::LaplaceProblem}
+
+                                // The constructor of this class is
+                                // mostly the same as before, but
+                                // this time we want to use the
+                                // quadratic element. To do so, we
+                                // only have to replace the
+                                // constructor argument (which was
+                                // <code>1</code> in all previous examples) by
+                                // the desired polynomial degree
+                                // (here <code>2</code>):
+template <int dim>
+LaplaceProblem<dim>::LaplaceProblem () :
+               dof_handler (triangulation),
+                fe (2)
+{}
+
+
+                                 // @sect4{LaplaceProblem::~LaplaceProblem}
+
+                                // Here comes the added destructor of
+                                // the class. The reason why we want
+                                // to add it is a subtle change in
+                                // the order of data elements in the
+                                // class as compared to all previous
+                                // examples: the <code>dof_handler</code>
+                                // object was defined before and not
+                                // after the <code>fe</code> object. Of course
+                                // we could have left this order
+                                // unchanged, but we would like to
+                                // show what happens if the order is
+                                // reversed since this produces a
+                                // rather nasty side-effect and
+                                // results in an error which is
+                                // difficult to track down if one
+                                // does not know what happens.
+                                //
+                                // Basically what happens is the
+                                // following: when we distribute the
+                                // degrees of freedom using the
+                                // function call
+                                // <code>dof_handler.distribute_dofs()</code>,
+                                // the <code>dof_handler</code> also stores a
+                                // pointer to the finite element in
+                                // use. Since this pointer is used
+                                // every now and then until either
+                                // the degrees of freedom are
+                                // re-distributed using another
+                                // finite element object or until the
+                                // <code>dof_handler</code> object is
+                                // destroyed, it would be unwise if
+                                // we would allow the finite element
+                                // object to be deleted before the
+                                // <code>dof_handler</code> object. To
+                                // disallow this, the DoF handler
+                                // increases a counter inside the
+                                // finite element object which counts
+                                // how many objects use that finite
+                                // element (this is what the
+                                // <code>Subscriptor</code>/<code>SmartPointer</code>
+                                // class pair is used for, in case
+                                // you want something like this for
+                                // your own programs; see step-7 for
+                                // a more complete discussion
+                                // of this topic). The finite
+                                // element object will refuse its
+                                // destruction if that counter is
+                                // larger than zero, since then some
+                                // other objects might rely on the
+                                // persistence of the finite element
+                                // object. An exception will then be
+                                // thrown and the program will
+                                // usually abort upon the attempt to
+                                // destroy the finite element.
+                                //
+                                // To be fair, such exceptions about
+                                // still used objects are not
+                                // particularly popular among
+                                // programmers using deal.II, since
+                                // they only tell us that something
+                                // is wrong, namely that some other
+                                // object is still using the object
+                                // that is presently being
+                                // destructed, but most of the time
+                                // not who this user is. It is
+                                // therefore often rather
+                                // time-consuming to find out where
+                                // the problem exactly is, although
+                                // it is then usually straightforward
+                                // to remedy the situation. However,
+                                // we believe that the effort to find
+                                // invalid references to objects that
+                                // do no longer exist is less if the
+                                // problem is detected once the
+                                // reference becomes invalid, rather
+                                // than when non-existent objects are
+                                // actually accessed again, since
+                                // then usually only invalid data is
+                                // accessed, but no error is
+                                // immediately raised.
+                                //
+                                // Coming back to the present
+                                // situation, if we did not write
+                                // this destructor, the compiler will
+                                // generate code that triggers
+                                // exactly the behavior sketched
+                                // above. The reason is that member
+                                // variables of the
+                                // <code>LaplaceProblem</code> class are
+                                // destructed bottom-up (i.e. in
+                                // reverse order of their declaration
+                                // in the class), as always in
+                                // C++. Thus, the finite element
+                                // object will be destructed before
+                                // the DoF handler object, since its
+                                // declaration is below the one of
+                                // the DoF handler. This triggers the
+                                // situation above, and an exception
+                                // will be raised when the <code>fe</code>
+                                // object is destructed. What needs
+                                // to be done is to tell the
+                                // <code>dof_handler</code> object to release
+                                // its lock to the finite element. Of
+                                // course, the <code>dof_handler</code> will
+                                // only release its lock if it really
+                                // does not need the finite element
+                                // any more, i.e. when all finite
+                                // element related data is deleted
+                                // from it. For this purpose, the
+                                // <code>DoFHandler</code> class has a
+                                // function <code>clear</code> which deletes
+                                // all degrees of freedom, and
+                                // releases its lock to the finite
+                                // element. After this, you can
+                                // safely destruct the finite element
+                                // object since its internal counter
+                                // is then zero.
+                                //
+                                // For completeness, we add the
+                                // output of the exception that would
+                                // have been triggered without this
+                                // destructor, to the end of the
+                                // results section of this example.
+template <int dim>
+LaplaceProblem<dim>::~LaplaceProblem () 
+{
+  dof_handler.clear ();
+}
+
+
+                                 // @sect4{LaplaceProblem::setup_system}
+
+                                // The next function is setting up
+                                // all the variables that describe
+                                // the linear finite element problem,
+                                // such as the DoF handler, the
+                                // matrices, and vectors. The
+                                // difference to what we did in
+                                // step-5 is only that we now also
+                                // have to take care of handing node
+                                // constraints. These constraints are
+                                // handled almost transparently by
+                                // the library, i.e. you only need to
+                                // know that they exist and how to
+                                // get them, but you do not have to
+                                // know how they are formed or what
+                                // exactly is done with them.
+                                //
+                                // At the beginning of the function,
+                                // you find all the things that are
+                                // the same as in step-5: setting up
+                                // the degrees of freedom (this time
+                                // we have quadratic elements, but
+                                // there is no difference from a user
+                                // code perspective to the linear --
+                                // or cubic, for that matter --
+                                // case), generating the sparsity
+                                // pattern, and initializing the
+                                // solution and right hand side
+                                // vectors. Note that the sparsity
+                                // pattern will have significantly
+                                // more entries per row now, since
+                                // there are now 9 degrees of freedom
+                                // per cell, not only four, that can
+                                // couple with each other. The
+                                // <code>dof_Handler.max_couplings_between_dofs()</code>
+                                // call will take care of this,
+                                // however:
+template <int dim>
+void LaplaceProblem<dim>::setup_system ()
+{
+  dof_handler.distribute_dofs (fe);
+
+  sparsity_pattern.reinit (dof_handler.n_dofs(),
+                          dof_handler.n_dofs(),
+                          dof_handler.max_couplings_between_dofs());
+  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
+
+  solution.reinit (dof_handler.n_dofs());
+  system_rhs.reinit (dof_handler.n_dofs());
+
+  
+                                  // After setting up all the degrees
+                                  // of freedoms, here are now the
+                                  // differences compared to step-5,
+                                  // all of which are related to
+                                  // constraints associated with the
+                                  // hanging nodes. In the class
+                                  // desclaration, we have already
+                                  // allocated space for an object
+                                  // <code>hanging_node_constraints</code>
+                                  // that will hold a list of these
+                                  // constraints (they form a matrix,
+                                  // which is reflected in the name
+                                  // of the class, but that is
+                                  // immaterial for the moment). Now
+                                  // we have to fill this
+                                  // object. This is done using the
+                                  // following function calls (the
+                                  // first clears the contents of the
+                                  // object that may still be left
+                                  // over from computations on the
+                                  // previous mesh before the last
+                                  // adaptive refinement):
+  hanging_node_constraints.clear ();
+  DoFTools::make_hanging_node_constraints (dof_handler,
+                                          hanging_node_constraints);
+
+                                  // The next step is <code>closing</code>
+                                  // this object. For this note that,
+                                  // in principle, the
+                                  // <code>ConstraintMatrix</code> class can
+                                  // hold other constraints as well,
+                                  // i.e. constraints that do not
+                                  // stem from hanging
+                                  // nodes. Sometimes, it is useful
+                                  // to use such constraints, in
+                                  // which case they may be added to
+                                  // the <code>ConstraintMatrix</code> object
+                                  // after the hanging node
+                                  // constraints were computed. After
+                                  // all constraints have been added,
+                                  // they need to be sorted and
+                                  // rearranged to perform some
+                                  // actions more efficiently. This
+                                  // postprocessing is done using the
+                                  // <code>close()</code> function, after which
+                                  // no further constraints may be
+                                  // added any more:
+  hanging_node_constraints.close ();
+
+                                  // The constrained hanging nodes
+                                  // will later be eliminated from
+                                  // the linear system of
+                                  // equations. When doing so, some
+                                  // additional entries in the global
+                                  // matrix will be set to non-zero
+                                  // values, so we have to reserve
+                                  // some space for them here. Since
+                                  // the process of elimination of
+                                  // these constrained nodes is
+                                  // called <code>condensation</code>, the
+                                  // functions that eliminate them
+                                  // are called <code>condense</code> for both
+                                  // the system matrix and right hand
+                                  // side, as well as for the
+                                  // sparsity pattern.
+  hanging_node_constraints.condense (sparsity_pattern);
+
+                                  // Now all non-zero entries of the
+                                  // matrix are known (i.e. those
+                                  // from regularly assembling the
+                                  // matrix and those that were
+                                  // introduced by eliminating
+                                  // constraints). We can thus close
+                                  // the sparsity pattern and remove
+                                  // unneeded space:
+  sparsity_pattern.compress();
+
+                                  // Finally, the so-constructed
+                                  // sparsity pattern serves as the
+                                  // basis on top of which we will
+                                  // create the sparse matrix:
+  system_matrix.reinit (sparsity_pattern);
+}
+
+                                 // @sect4{LaplaceProblem::assemble_system}
+
+                                // Next, we have to assemble the
+                                // matrix again. There are no code
+                                // changes compared to step-5 except
+                                // for a single place: We have to use
+                                // a higher-order quadrature formula
+                                // to account for the higher
+                                // polynomial degree in the finite
+                                // element shape functions. This is
+                                // easy to change: the constructor of
+                                // the <code>QGauss</code> class takes the
+                                // number of quadrature points in
+                                // each space direction. Previously,
+                                // we had two points for bilinear
+                                // elements. Now we should use three
+                                // points for biquadratic elements.
+                                //
+                                // The rest of the code that forms
+                                // the local contributions and
+                                // transfers them into the global
+                                // objects remains unchanged. It is
+                                // worth noting, however, that under
+                                // the hood several things are
+                                // different than before. First, the
+                                // variables <code>dofs_per_cell</code> and
+                                // <code>n_q_points</code> now are 9 each,
+                                // where they were 4
+                                // before. Introducing such variables
+                                // as abbreviations is a good
+                                // strategy to make code work with
+                                // different elements without having
+                                // to change too much code. Secondly,
+                                // the <code>fe_values</code> object of course
+                                // needs to do other things as well,
+                                // since the shape functions are now
+                                // quadratic, rather than linear, in
+                                // each coordinate variable. Again,
+                                // however, this is something that is
+                                // completely transparent to user
+                                // code and nothing that you have to
+                                // worry about.
+template <int dim>
+void LaplaceProblem<dim>::assemble_system () 
+{  
+  const QGauss<dim>  quadrature_formula(3);
+
+  FEValues<dim> fe_values (fe, quadrature_formula, 
+                          update_values    |  update_gradients |
+                          update_q_points  |  update_JxW_values);
+
+  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
+  const unsigned int   n_q_points    = quadrature_formula.n_quadrature_points;
+
+  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
+  Vector<double>       cell_rhs (dofs_per_cell);
+
+  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+  const Coefficient<dim> coefficient;
+  std::vector<double>    coefficient_values (n_q_points);
+
+  typename DoFHandler<dim>::active_cell_iterator
+    cell = dof_handler.begin_active(),
+    endc = dof_handler.end();
+  for (; cell!=endc; ++cell)
+    {
+      cell_matrix = 0;
+      cell_rhs = 0;
+
+      fe_values.reinit (cell);
+
+      coefficient.value_list (fe_values.get_quadrature_points(),
+                             coefficient_values);
+      
+      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         {
+           for (unsigned int j=0; j<dofs_per_cell; ++j)
+             cell_matrix(i,j) += (coefficient_values[q_point] *
+                                  fe_values.shape_grad(i,q_point) *
+                                  fe_values.shape_grad(j,q_point) *
+                                  fe_values.JxW(q_point));
+
+           cell_rhs(i) += (fe_values.shape_value(i,q_point) *
+                           1.0 *
+                           fe_values.JxW(q_point));
+         }
+
+      cell->get_dof_indices (local_dof_indices);
+      for (unsigned int i=0; i<dofs_per_cell; ++i)
+       {
+         for (unsigned int j=0; j<dofs_per_cell; ++j)
+           system_matrix.add (local_dof_indices[i],
+                              local_dof_indices[j],
+                              cell_matrix(i,j));
+         
+         system_rhs(local_dof_indices[i]) += cell_rhs(i);
+       }
+    }
+
+                                  // After the system of equations
+                                  // has been assembled just as for
+                                  // the previous examples, we still
+                                  // have to eliminate the
+                                  // constraints due to hanging
+                                  // nodes. This is done using the
+                                  // following two function calls:
+  hanging_node_constraints.condense (system_matrix);
+  hanging_node_constraints.condense (system_rhs);
+                                  // Using them, degrees of freedom
+                                  // associated to hanging nodes have
+                                  // been removed from the linear
+                                  // system and the independent
+                                  // variables are only the regular
+                                  // nodes. The constrained nodes are
+                                  // still in the linear system
+                                  // (there is a one on the diagonal
+                                  // of the matrix and all other
+                                  // entries for this line are set to
+                                  // zero) but the computed values
+                                  // are invalid (the <code>condense</code>
+                                  // function modifies the system so
+                                  // that the values in the solution
+                                  // corresponding to constrained
+                                  // nodes are invalid, but that the
+                                  // system still has a well-defined
+                                  // solution; we compute the correct
+                                  // values for these nodes at the
+                                  // end of the <code>solve</code> function).
+
+                                  // As almost all the stuff before,
+                                  // the interpolation of boundary
+                                  // values works also for higher
+                                  // order elements without the need
+                                  // to change your code for that. We
+                                  // note that for proper results, it
+                                  // is important that the
+                                  // elimination of boundary nodes
+                                  // from the system of equations
+                                  // happens *after* the elimination
+                                  // of hanging nodes.
+  std::map<unsigned int,double> boundary_values;
+  VectorTools::interpolate_boundary_values (dof_handler,
+                                           0,
+                                           ZeroFunction<dim>(),
+                                           boundary_values);
+  MatrixTools::apply_boundary_values (boundary_values,
+                                     system_matrix,
+                                     solution,
+                                     system_rhs);
+}
+
+
+
+                                 // @sect4{LaplaceProblem::solve}
+
+                                // We continue with gradual
+                                // improvements. The function that
+                                // solves the linear system again
+                                // uses the SSOR preconditioner, and
+                                // is again unchanged except that we
+                                // have to incorporate hanging node
+                                // constraints. As mentioned above,
+                                // the degrees of freedom
+                                // corresponding to hanging node
+                                // constraints have been removed from
+                                // the linear system by giving the
+                                // rows and columns of the matrix a
+                                // special treatment. This way, the
+                                // values for these degrees of
+                                // freedom have wrong, but
+                                // well-defined values after solving
+                                // the linear system. What we then
+                                // have to do is to use the
+                                // constraints to assign to them the
+                                // values that they should have. This
+                                // process, called <code>distributing</code>
+                                // hanging nodes, computes the values
+                                // of constrained nodes from the
+                                // values of the unconstrained ones,
+                                // and requires only a single
+                                // additional function call that you
+                                // find at the end of this function:
+
+template <int dim>
+void LaplaceProblem<dim>::solve () 
+{
+  SolverControl           solver_control (1000, 1e-12);
+  SolverCG<>              cg (solver_control);
+
+  PreconditionSSOR<> preconditioner;
+  preconditioner.initialize(system_matrix, 1.2);
+
+  cg.solve (system_matrix, solution, system_rhs,
+           preconditioner);
+
+  hanging_node_constraints.distribute (solution);
+}
+
+
+                                 // @sect4{LaplaceProblem::refine_grid}
+
+                                // Instead of global refinement, we
+                                // now use a slightly more elaborate
+                                // scheme. We will use the
+                                // <code>KellyErrorEstimator</code> class
+                                // which implements an error
+                                // estimator for the Laplace
+                                // equation; it can in principle
+                                // handle variable coefficients, but
+                                // we will not use these advanced
+                                // features, but rather use its most
+                                // simple form since we are not
+                                // interested in quantitative results
+                                // but only in a quick way to
+                                // generate locally refined grids.
+                                //
+                                // Although the error estimator
+                                // derived by Kelly et al. was
+                                // originally developed for the Laplace
+                                // equation, we have found that it is
+                                // also well suited to quickly
+                                // generate locally refined grids for
+                                // a wide class of
+                                // problems. Basically, it looks at
+                                // the jumps of the gradients of the
+                                // solution over the faces of cells
+                                // (which is a measure for the second
+                                // derivatives) and scales it by the
+                                // size of the cell. It is therefore
+                                // a measure for the local smoothness
+                                // of the solution at the place of
+                                // each cell and it is thus
+                                // understandable that it yields
+                                // reasonable grids also for
+                                // hyperbolic transport problems or
+                                // the wave equation as well,
+                                // although these grids are certainly
+                                // suboptimal compared to approaches
+                                // specially tailored to the
+                                // problem. This error estimator may
+                                // therefore be understood as a quick
+                                // way to test an adaptive program.
+                                //
+                                // The way the estimator works is to
+                                // take a <code>DoFHandler</code> object
+                                // describing the degrees of freedom
+                                // and a vector of values for each
+                                // degree of freedom as input and
+                                // compute a single indicator value
+                                // for each active cell of the
+                                // triangulation (i.e. one value for
+                                // each of the
+                                // <code>triangulation.n_active_cells()</code>
+                                // cells). To do so, it needs two
+                                // additional pieces of information:
+                                // a quadrature formula on the faces
+                                // (i.e. quadrature formula on
+                                // <code>dim-1</code> dimensional objects. We
+                                // use a 3-point Gauss rule again, a
+                                // pick that is consistent and
+                                // appropriate with the choice
+                                // bi-quadratic finite element shape
+                                // functions in this program.
+                                // (What constitutes a suitable
+                                // quadrature rule here of course
+                                // depends on knowledge of the way
+                                // the error estimator evaluates
+                                // the solution field. As said
+                                // above, the jump of the gradient
+                                // is integrated over each face,
+                                // which would be a quadratic
+                                // function on each face for the
+                                // quadratic elements in use in
+                                // this example. In fact, however,
+                                // it is the square of the jump of
+                                // the gradient, as explained in
+                                // the documentation of that class,
+                                // and that is a quartic function,
+                                // for which a 3 point Gauss
+                                // formula is sufficient since it
+                                // integrates polynomials up to
+                                // order 5 exactly.)
+                                //
+                                // Secondly, the function wants a
+                                // list of boundaries where we have
+                                // imposed Neumann value, and the
+                                // corresponding Neumann values. This
+                                // information is represented by an
+                                // object of type
+                                // <code>FunctionMap@<dim@>::type</code> that is
+                                // essentially a map from boundary
+                                // indicators to function objects
+                                // describing Neumann boundary values
+                                // (in the present example program,
+                                // we do not use Neumann boundary
+                                // values, so this map is empty, and
+                                // in fact constructed using the
+                                // default constructor of the map in
+                                // the place where the function call
+                                // expects the respective function
+                                // argument).
+                                //
+                                // The output, as mentioned is a
+                                // vector of values for all
+                                // cells. While it may make sense to
+                                // compute the *value* of a degree of
+                                // freedom very accurately, it is
+                                // usually not helpful to compute the
+                                // *error indicator* corresponding to
+                                // a cell particularly accurately. We
+                                // therefore typically use a vector
+                                // of floats instead of a vector of
+                                // doubles to represent error
+                                // indicators.
+template <int dim>
+void LaplaceProblem<dim>::refine_grid ()
+{
+  Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
+
+  KellyErrorEstimator<dim>::estimate (dof_handler,
+                                     QGauss<dim-1>(3),
+                                     typename FunctionMap<dim>::type(),
+                                     solution,
+                                     estimated_error_per_cell);
+
+                                  // The above function returned one
+                                  // error indicator value for each
+                                  // cell in the
+                                  // <code>estimated_error_per_cell</code>
+                                  // array. Refinement is now done as
+                                  // follows: refine those 30 per
+                                  // cent of the cells with the
+                                  // highest error values, and
+                                  // coarsen the 3 per cent of cells
+                                  // with the lowest values.
+                                  //
+                                  // One can easily verify that if
+                                  // the second number were zero,
+                                  // this would approximately result
+                                  // in a doubling of cells in each
+                                  // step in two space dimensions,
+                                  // since for each of the 30 per
+                                  // cent of cells, four new would be
+                                  // replaced, while the remaining 70
+                                  // per cent of cells remain
+                                  // untouched. In practice, some
+                                  // more cells are usually produced
+                                  // since it is disallowed that a
+                                  // cell is refined twice while the
+                                  // neighbor cell is not refined; in
+                                  // that case, the neighbor cell
+                                  // would be refined as well.
+                                  //
+                                  // In many applications, the number
+                                  // of cells to be coarsened would
+                                  // be set to something larger than
+                                  // only three per cent. A non-zero
+                                  // value is useful especially if
+                                  // for some reason the initial
+                                  // (coarse) grid is already rather
+                                  // refined. In that case, it might
+                                  // be necessary to refine it in
+                                  // some regions, while coarsening
+                                  // in some other regions is
+                                  // useful. In our case here, the
+                                  // initial grid is very coarse, so
+                                  // coarsening is only necessary in
+                                  // a few regions where
+                                  // over-refinement may have taken
+                                  // place. Thus a small, non-zero
+                                  // value is appropriate here.
+                                  //
+                                  // The following function now takes
+                                  // these refinement indicators and
+                                  // flags some cells of the
+                                  // triangulation for refinement or
+                                  // coarsening using the method
+                                  // described above. It is from a
+                                  // class that implements
+                                  // several different algorithms to
+                                  // refine a triangulation based on
+                                  // cell-wise error indicators.
+  GridRefinement::refine_and_coarsen_fixed_number (triangulation,
+                                                  estimated_error_per_cell,
+                                                  0.3, 0.03);
+
+                                  // After the previous function has
+                                  // exited, some cells are flagged
+                                  // for refinement, and some other
+                                  // for coarsening. The refinement
+                                  // or coarsening itself is not
+                                  // performed by now, however, since
+                                  // there are cases where further
+                                  // modifications of these flags is
+                                  // useful. Here, we don't want to
+                                  // do any such thing, so we can
+                                  // tell the triangulation to
+                                  // perform the actions for which
+                                  // the cells are flagged:
+  triangulation.execute_coarsening_and_refinement ();
+}
+
+
+                                 // @sect4{LaplaceProblem::output_results}
+
+                                // At the end of computations on each
+                                // grid, and just before we continue
+                                // the next cycle with mesh
+                                // refinement, we want to output the
+                                // results from this cycle.
+                                //
+                                // In the present program, we will
+                                // not write the solution (except for
+                                // in the last step, see the next
+                                // function), but only the meshes
+                                // that we generated, as a
+                                // two-dimensional Encapsulated
+                                // Postscript (EPS) file.
+                                //
+                                // We have already seen in step-1 how
+                                // this can be achieved. The only
+                                // thing we have to change is the
+                                // generation of the file name, since
+                                // it should contain the number of
+                                // the present refinement cycle
+                                // provided to this function as an
+                                // argument. The most general way is
+                                // to use the std::stringstream class
+                                // as shown in step-5, but here's a
+                                // little hack that makes it simpler
+                                // if we know that we have less than
+                                // 10 iterations: assume that the
+                                // numbers `0' through `9' are
+                                // represented consecutively in the
+                                // character set used on your machine
+                                // (this is in fact the case in all
+                                // known character sets), then
+                                // '0'+cycle gives the character
+                                // corresponding to the present cycle
+                                // number. Of course, this will only
+                                // work if the number of cycles is
+                                // actually less than 10, and rather
+                                // than waiting for the disaster to
+                                // happen, we safeguard our little
+                                // hack with an explicit assertion at
+                                // the beginning of the function. If
+                                // this assertion is triggered,
+                                // i.e. when <code>cycle</code> is larger than
+                                // or equal to 10, an exception of
+                                // type <code>ExcNotImplemented</code> is
+                                // raised, indicating that some
+                                // functionality is not implemented
+                                // for this case (the functionality
+                                // that is missing, of course, is the
+                                // generation of file names for that
+                                // case):
+template <int dim>
+void LaplaceProblem<dim>::output_results (const unsigned int cycle) const
+{
+  Assert (cycle < 10, ExcNotImplemented());
+
+  std::string filename = "grid-";
+  filename += ('0' + cycle);
+  filename += ".eps";
+  
+  std::ofstream output (filename.c_str());
+
+  GridOut grid_out;
+  grid_out.write_eps (triangulation, output);
+}
+
+
+
+                                 // @sect4{LaplaceProblem::run}
+
+                                // The final function before
+                                // <code>main()</code> is again the main
+                                // driver of the class, <code>run()</code>. It
+                                // is similar to the one of step-5,
+                                // except that we generate a file in
+                                // the program again instead of
+                                // reading it from disk, in that we
+                                // adaptively instead of globally
+                                // refine the mesh, and that we
+                                // output the solution on the final
+                                // mesh in the present function.
+                                //
+                                // The first block in the main loop
+                                // of the function deals with mesh
+                                // generation. If this is the first
+                                // cycle of the program, instead of
+                                // reading the grid from a file on
+                                // disk as in the previous example,
+                                // we now again create it using a
+                                // library function. The domain is
+                                // again a circle, which is why we
+                                // have to provide a suitable
+                                // boundary object as well. We place
+                                // the center of the circle at the
+                                // origin and have the radius be one
+                                // (these are the two hidden
+                                // arguments to the function, which
+                                // have default values).
+                                //
+                                // You will notice by looking at the
+                                // coarse grid that it is of inferior
+                                // quality than the one which we read
+                                // from the file in the previous
+                                // example: the cells are less
+                                // equally formed. However, using the
+                                // library function this program
+                                // works in any space dimension,
+                                // which was not the case before.
+                                //
+                                // In case we find that this is not
+                                // the first cycle, we want to refine
+                                // the grid. Unlike the global
+                                // refinement employed in the last
+                                // example program, we now use the
+                                // adaptive procedure described
+                                // above.
+                                //
+                                // The rest of the loop looks as
+                                // before:
+template <int dim>
+void LaplaceProblem<dim>::run () 
+{
+  for (unsigned int cycle=0; cycle<8; ++cycle)
+    {
+      deallog << "Cycle " << cycle << ':' << std::endl;
+
+      if (cycle == 0)
+       {
+         GridGenerator::hyper_ball (triangulation);
+
+         static const HyperBallBoundary<dim> boundary;
+         triangulation.set_boundary (0, boundary);
+
+         triangulation.refine_global (1);
+       }
+      else
+       refine_grid ();
+      
+
+      deallog << "   Number of active cells:       "
+               << triangulation.n_active_cells()
+               << std::endl;
+
+      setup_system ();
+
+      deallog << "   Number of degrees of freedom: "
+               << dof_handler.n_dofs()
+               << std::endl;
+      
+      assemble_system ();
+      solve ();
+    }
+
+                                  // try to find a bunch of points that are
+                                  // definitely inside the domain (we here
+                                  // have a circle of radius 1, so find
+                                  // points inside a radius of 0.9)
+  for (int i=0; i<1000; i++)
+    {
+      double r = sqrt((0.9*std::rand()/RAND_MAX));
+      double phi = 2*3.14*(1.0*std::rand()/RAND_MAX);
+      double x = r*cos(phi);
+      double y = r*sin(phi);
+      Point<2> p(x,y);
+      VectorTools::point_value(dof_handler,solution,p);
+    }
+  
+  
+                                  // After we have finished computing
+                                  // the solution on the finesh mesh,
+                                  // and writing all the grids to
+                                  // disk, we want to also write the
+                                  // actual solution on this final
+                                  // mesh to a file. As already done
+                                  // in one of the previous examples,
+                                  // we use the EPS format for
+                                  // output, and to obtain a
+                                  // reasonable view on the solution,
+                                  // we rescale the z-axis by a
+                                  // factor of four.
+  DataOutBase::EpsFlags eps_flags;
+  eps_flags.z_scaling = 4;
+  
+  DataOut<dim> data_out;
+  data_out.set_flags (eps_flags);
+
+  data_out.attach_dof_handler (dof_handler);
+  data_out.add_data_vector (solution, "solution");
+  data_out.build_patches ();
+  
+  std::ofstream output ("final-solution.eps");
+  data_out.write_eps (output);
+}
+
+
+                                 // @sect3{The <code>main</code> function}
+
+                                // The main function is unaltered in
+                                // its functionality from the
+                                // previous example, but we have
+                                // taken a step of additional
+                                // caution. Sometimes, something goes
+                                // wrong (such as insufficient disk
+                                // space upon writing an output file,
+                                // not enough memory when trying to
+                                // allocate a vector or a matrix, or
+                                // if we can't read from or write to
+                                // a file for whatever reason), and
+                                // in these cases the library will
+                                // throw exceptions. Since these are
+                                // run-time problems, not programming
+                                // errors that can be fixed once and
+                                // for all, this kind of exceptions
+                                // is not switched off in optimized
+                                // mode, in contrast to the
+                                // <code>Assert</code> macro which we have
+                                // used to test against programming
+                                // errors. If uncaught, these
+                                // exceptions propagate the call tree
+                                // up to the <code>main</code> function, and
+                                // if they are not caught there
+                                // either, the program is aborted. In
+                                // many cases, like if there is not
+                                // enough memory or disk space, we
+                                // can't do anything but we can at
+                                // least print some text trying to
+                                // explain the reason why the program
+                                // failed. A way to do so is shown in
+                                // the following. It is certainly
+                                // useful to write any larger program
+                                // in this way, and you can do so by
+                                // more or less copying this function
+                                // except for the <code>try</code> block that
+                                // actually encodes the functionality
+                                // particular to the present
+                                // application.
+int main () 
+{
+  std::ofstream logfile ("joa_1/output");
+  logfile.precision (3);
+  logfile.setf(std::ios::fixed);  
+  deallog.attach(logfile);
+  deallog.depth_console(0);
+  deallog.threshold_double(1.e-10);
+
+                                  // The general idea behind the
+                                  // layout of this function is as
+                                  // follows: let's try to run the
+                                  // program as we did before...
+  try
+    {
+      LaplaceProblem<2> laplace_problem_2d;
+      laplace_problem_2d.run ();
+    }
+                                  // ...and if this should fail, try
+                                  // to gather as much information as
+                                  // possible. Specifically, if the
+                                  // exception that was thrown is an
+                                  // object of a class that is
+                                  // derived from the C++ standard
+                                  // class <code>exception</code>, then we can
+                                  // use the <code>what</code> member function
+                                  // to get a string which describes
+                                  // the reason why the exception was
+                                  // thrown. 
+                                  //
+                                  // The deal.II exception classes
+                                  // are all derived from the
+                                  // standard class, and in
+                                  // particular, the <code>exc.what()</code>
+                                  // function will return
+                                  // approximately the same string as
+                                  // would be generated if the
+                                  // exception was thrown using the
+                                  // <code>Assert</code> macro. You have seen
+                                  // the output of such an exception
+                                  // in the previous example, and you
+                                  // then know that it contains the
+                                  // file and line number of where
+                                  // the exception occured, and some
+                                  // other information. This is also
+                                  // what the following statements
+                                  // would print.
+                                  //
+                                  // Apart from this, there isn't
+                                  // much that we can do except
+                                  // exiting the program with an
+                                  // error code (this is what the
+                                  // <code>return 1;</code> does):
+  catch (std::exception &exc)
+    {
+      std::cerr << std::endl << std::endl
+               << "----------------------------------------------------"
+               << std::endl;
+      std::cerr << "Exception on processing: " << std::endl
+               << exc.what() << std::endl
+               << "Aborting!" << std::endl
+               << "----------------------------------------------------"
+               << std::endl;
+
+      return 1;
+    }
+                                  // If the exception that was thrown
+                                  // somewhere was not an object of a
+                                  // class derived from the standard
+                                  // <code>exception</code> class, then we
+                                  // can't do anything at all. We
+                                  // then simply print an error
+                                  // message and exit.
+  catch (...) 
+    {
+      std::cerr << std::endl << std::endl
+               << "----------------------------------------------------"
+               << std::endl;
+      std::cerr << "Unknown exception!" << std::endl
+               << "Aborting!" << std::endl
+               << "----------------------------------------------------"
+               << std::endl;
+      return 1;
+    }
+
+                                  // If we got to this point, there
+                                  // was no exception which
+                                  // propagated up to the main
+                                  // function (there may have been
+                                  // exceptions, but they were caught
+                                  // somewhere in the program or the
+                                  // library). Therefore, the program
+                                  // performed as was expected and we
+                                  // can return without error.
+  return 0;
+}

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.