typename Number, typename OtherNumber>
inline
typename Tensor<rank_1 + rank_2 - 4, dim, typename ProductType<Number, OtherNumber>::type>::tensor_type
-contract (const Tensor<rank_1, dim, Number> &src1,
- const Tensor<rank_2, dim, OtherNumber> &src2)
+double_contract (const Tensor<rank_1, dim, Number> &src1,
+ const Tensor<rank_2, dim, OtherNumber> &src2)
{
Assert(0 <= index_1 && index_1 < rank_1,
ExcMessage("The specified index_1 must lie within the range [0,rank_1)"));
* Double contract two tensors of rank 2, thus computing the Frobenius inner
* product <tt>sum<sub>i,j</sub> src1[i][j]*src2[i][j]</tt>.
*
- * @deprecated Use the contract function that takes indices as template
+ * @deprecated Use the double_contract function that takes indices as template
* arguments and returns its result instead.
* @relates Tensor
*/
* <tt>src2</tt>, creating a rank-2 tensor. This is the matrix-vector product
* analog operation between tensors of rank 4 and rank 2.
*
- * @deprecated Use the contract function that takes indices as template
- * arguments and returns its result instead.
+ * @deprecated Use the double_contract function that takes indices as
+ * template arguments and returns its result instead.
* @relates Tensor
*/
template <int dim, typename Number>