]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Fix flux_sparsity and project_boundary_values for vector-valued hp objects 5107/head
authorEldar Khattatov <eld.khattatov@gmail.com>
Tue, 26 Sep 2017 22:43:52 +0000 (18:43 -0400)
committerEldar Khattatov <eld.khattatov@gmail.com>
Tue, 26 Sep 2017 22:43:52 +0000 (18:43 -0400)
doc/news/changes/minor/20170926EldarKhattatov [new file with mode: 0644]
include/deal.II/numerics/matrix_creator.templates.h
include/deal.II/numerics/vector_tools.h
source/dofs/dof_tools_sparsity.cc
tests/hp/boundary_matrices.cc [new file with mode: 0644]
tests/hp/boundary_matrices.output [new file with mode: 0644]
tests/hp/boundary_matrices_hp.cc [new file with mode: 0644]
tests/hp/boundary_matrices_hp.output [new file with mode: 0644]
tests/hp/flux_sparsity.cc [new file with mode: 0644]
tests/hp/flux_sparsity.output [new file with mode: 0644]

diff --git a/doc/news/changes/minor/20170926EldarKhattatov b/doc/news/changes/minor/20170926EldarKhattatov
new file mode 100644 (file)
index 0000000..75a6d08
--- /dev/null
@@ -0,0 +1,6 @@
+Fixed: the hp version of DoFTools::make_flux_sparsity_pattern() with masks for 
+DoF couplings now works with non-primitive FE spaces, similarly to its non-hp version.
+The hp version of project_boundary_values() is modified to work properly with Hdiv
+conforming finite elements. 
+<br>
+(Eldar Khattatov, 2017/09/26)
index 9cad1f0a7763aa64926b17fa188ab99227f34983..578a8c054bf1fcb6eb2305186135bac9a3f882f9 100644 (file)
@@ -1,6 +1,6 @@
 // ---------------------------------------------------------------------
 //
-// Copyright (C) 2016 by the deal.II authors
+// Copyright (C) 2016 - 2017 by the deal.II authors
 //
 // This file is part of the deal.II library.
 //
@@ -52,8 +52,6 @@
 #  include <deal.II/lac/trilinos_parallel_block_vector.h>
 #endif
 
-#include <algorithm>
-
 
 #include <algorithm>
 #include <set>
@@ -903,7 +901,7 @@ namespace MatrixCreator
                                    std::vector<unsigned int> const &component_mapping)
 
     {
-      // All assertions for this function are in the calling function
+      // Most assertions for this function are in the calling function
       // before creating threads.
       const unsigned int n_components = fe.n_components();
       const unsigned int n_function_components = boundary_functions.begin()->second->n_components;
@@ -926,8 +924,7 @@ namespace MatrixCreator
       std::vector<number>          coefficient_values (fe_values.n_quadrature_points, 1.);
       std::vector<Vector<number> > coefficient_vector_values (fe_values.n_quadrature_points,
                                                               Vector<number>(n_components));
-      const bool coefficient_is_vector = (coefficient != nullptr && coefficient->n_components != 1)
-                                         ? true : false;
+      const bool coefficient_is_vector = (coefficient != nullptr && coefficient->n_components != 1);
 
       std::vector<number>          rhs_values_scalar (fe_values.n_quadrature_points);
       std::vector<Vector<number> > rhs_values_system (fe_values.n_quadrature_points,
@@ -981,9 +978,13 @@ namespace MatrixCreator
                       coefficient_vector_values[point] = coefficient_values[point];
                   }
 
-                // Special treatment for Hdiv and Hcurl elements,
-                // where only the normal or tangential component
-                // should be projected.
+                // Special treatment for Hdiv elements,
+                // where only normal components should be projected.
+                // For Hdiv we need to compute (u dot n, v dot n) which
+                // can be done as sum over dim components of
+                // u[c] * n[c] * v[c] * n[c] = u[c] * v[c] * normal_adjustment[c]
+                // Same approach does not work for Hcurl, so we throw an exception.
+                // Default value 1.0 allows for use with non Hdiv elements
                 std::vector<std::vector<double> > normal_adjustment(fe_values.n_quadrature_points,
                                                                     std::vector<double>(n_components, 1.));
 
@@ -992,6 +993,15 @@ namespace MatrixCreator
                     const FiniteElement<dim,spacedim> &base = fe.base_element(fe.component_to_base_index(comp).first);
                     const unsigned int bcomp = fe.component_to_base_index(comp).second;
 
+                    if (!base.conforms(FiniteElementData<dim>::H1) &&
+                        base.conforms(FiniteElementData<dim>::Hdiv) &&
+                        fe_is_primitive)
+                      Assert(false, ExcNotImplemented());
+
+                    if (!base.conforms(FiniteElementData<dim>::H1) &&
+                        base.conforms(FiniteElementData<dim>::Hcurl))
+                      Assert(false, ExcNotImplemented());
+
                     if (!base.conforms(FiniteElementData<dim>::H1) &&
                         base.conforms(FiniteElementData<dim>::Hdiv))
                       for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
@@ -1278,8 +1288,9 @@ namespace MatrixCreator
     {
       const unsigned int n_components  = fe_collection.n_components();
       const unsigned int n_function_components = boundary_functions.begin()->second->n_components;
-      const bool         fe_is_system  = (n_components != 1);
       const FiniteElement<dim,spacedim> &fe = cell->get_fe();
+      const bool         fe_is_system  = (n_components != 1);
+      const bool         fe_is_primitive = fe.is_primitive();
       const unsigned int dofs_per_face = fe.dofs_per_face;
 
       copy_data.cell = cell;
@@ -1290,6 +1301,7 @@ namespace MatrixCreator
 
       UpdateFlags update_flags = UpdateFlags (update_values     |
                                               update_JxW_values |
+                                              update_normal_vectors |
                                               update_quadrature_points);
       hp::FEFaceValues<dim,spacedim> x_fe_values (mapping, fe_collection, q, update_flags);
 
@@ -1299,6 +1311,8 @@ namespace MatrixCreator
       std::vector<number>          coefficient_values;
       std::vector<Vector<number> > coefficient_vector_values;
 
+      const bool coefficient_is_vector = (coefficient != nullptr && coefficient->n_components != 1);
+
       std::vector<number>          rhs_values_scalar;
       std::vector<Vector<number> > rhs_values_system;
 
@@ -1332,94 +1346,110 @@ namespace MatrixCreator
             if (fe_is_system)
               // FE has several components
               {
+                coefficient_vector_values.resize (fe_values.n_quadrature_points,
+                                                  Vector<number>(n_components));
+                coefficient_values.resize (fe_values.n_quadrature_points, 1.);
+
                 rhs_values_system.resize (fe_values.n_quadrature_points,
                                           Vector<number>(n_function_components));
                 boundary_functions.find(cell->face(face)->boundary_id())
                 ->second->vector_value_list (fe_values.get_quadrature_points(),
                                              rhs_values_system);
+                if (coefficient_is_vector)
+                  // In case coefficient is vector-valued, fill
+                  // all components
+                  coefficient->vector_value_list (fe_values.get_quadrature_points(),
+                                                  coefficient_vector_values);
+                else
+                  // In case the scalar function is given, update the
+                  // values, if not - use the default (1.0)
+                  {
+                    if (coefficient != nullptr)
+                      coefficient->value_list (fe_values.get_quadrature_points(),
+                                               coefficient_values);
 
-                if (coefficient != nullptr)
+                    for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
+                      coefficient_vector_values[point] = coefficient_values[point];
+                  }
+
+                // Special treatment for Hdiv elements,
+                // where only normal components should be projected.
+                // For Hdiv we need to compute (u dot n, v dot n) which
+                // can be done as sum over dim components of
+                // u[c] * n[c] * v[c] * n[c] = u[c] * v[c] * normal_adjustment[c]
+                // Same approach does not work for Hcurl, so we throw an exception.
+                // Default value 1.0 allows for use with non Hdiv elements
+                std::vector<std::vector<double> > normal_adjustment(fe_values.n_quadrature_points,
+                                                                    std::vector<double>(n_components, 1.));
+
+                for (unsigned int comp = 0; comp<n_components; ++comp)
                   {
-                    if (coefficient->n_components==1)
-                      {
-                        coefficient_values.resize (fe_values.n_quadrature_points);
-                        coefficient->value_list (fe_values.get_quadrature_points(),
-                                                 coefficient_values);
-                        for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-                          {
-                            const double weight = fe_values.JxW(point);
-                            for (unsigned int i=0; i<fe_values.dofs_per_cell; ++i)
-                              {
-                                const double v = fe_values.shape_value(i,point);
-                                for (unsigned int j=0; j<fe_values.dofs_per_cell; ++j)
-                                  if (fe.system_to_component_index(i).first ==
-                                      fe.system_to_component_index(j).first)
-                                    {
-                                      const double u = fe_values.shape_value(j,point);
-                                      copy_data.cell_matrix.back()(i,j)
-                                      += (coefficient_values[point] * u * v * weight);
-                                    }
-
-                                copy_data.cell_vector.back()(i) += rhs_values_system[point](
-                                                                     component_mapping[fe.system_to_component_index(i).first])
-                                                                   * weight
-                                                                   * v;
-                              }
-                          }
-                      }
-                    else
-                      {
-                        coefficient_vector_values.resize (fe_values.n_quadrature_points,
-                                                          Vector<number>(n_components));
-                        coefficient->vector_value_list (fe_values.get_quadrature_points(),
-                                                        coefficient_vector_values);
-                        for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-                          {
-                            const double weight = fe_values.JxW(point);
-                            for (unsigned int i=0; i<fe_values.dofs_per_cell; ++i)
-                              {
-                                const double v = fe_values.shape_value(i,point);
-                                const unsigned int component_i=
-                                  fe.system_to_component_index(i).first;
-                                for (unsigned int j=0; j<fe_values.dofs_per_cell; ++j)
-                                  if (fe.system_to_component_index(j).first ==
-                                      component_i)
-                                    {
-                                      const double u = fe_values.shape_value(j,point);
-                                      copy_data.cell_matrix.back()(i,j) +=
-                                        (coefficient_vector_values[point](component_i) * u * v * weight);
-                                    }
-                                copy_data.cell_vector.back()(i) += rhs_values_system[point](component_mapping[component_i])
-                                                                   * v
-                                                                   * weight;
-                              }
-                          }
-                      }
+                    const FiniteElement<dim,spacedim> &base = fe.base_element(fe.component_to_base_index(comp).first);
+                    const unsigned int bcomp = fe.component_to_base_index(comp).second;
+
+                    if (!base.conforms(FiniteElementData<dim>::H1) &&
+                        base.conforms(FiniteElementData<dim>::Hdiv) &&
+                        fe_is_primitive)
+                      Assert(false, ExcNotImplemented());
+
+                    if (!base.conforms(FiniteElementData<dim>::H1) &&
+                        base.conforms(FiniteElementData<dim>::Hcurl))
+                      Assert(false, ExcNotImplemented());
+
+                    if (!base.conforms(FiniteElementData<dim>::H1) &&
+                        base.conforms(FiniteElementData<dim>::Hdiv))
+                      for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
+                        normal_adjustment[point][comp] = fe_values.normal_vector(point)[bcomp]
+                                                         * fe_values.normal_vector(point)[bcomp];
                   }
-                else  //      if (coefficient == 0)
-                  for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-                    {
-                      const double weight = fe_values.JxW(point);
-                      for (unsigned int i=0; i<fe_values.dofs_per_cell; ++i)
+
+                for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
+                  {
+                    const double weight = fe_values.JxW(point);
+                    for (unsigned int i=0; i<fe_values.dofs_per_cell; ++i)
+                      if (fe_is_primitive)
                         {
-                          const double v = fe_values.shape_value(i,point);
                           for (unsigned int j=0; j<fe_values.dofs_per_cell; ++j)
-                            if (fe.system_to_component_index(i).first ==
-                                fe.system_to_component_index(j).first)
-                              {
-                                const double u = fe_values.shape_value(j,point);
-                                copy_data.cell_matrix.back()(i,j) += (u * v * weight);
-                              }
+                            {
+                              if (fe.system_to_component_index(i).first
+                                  == fe.system_to_component_index(j).first)
+                                {
+                                  copy_data.cell_matrix.back()(i,j)
+                                  += coefficient_vector_values[point](fe.system_to_component_index(i).first)
+                                     * fe_values.shape_value(i,point)
+                                     * fe_values.shape_value(j,point)
+                                     * weight;
+                                }
+                            }
+
                           copy_data.cell_vector.back()(i) += rhs_values_system[point](
-                                                               fe.system_to_component_index(i).first) *
-                                                             v *
-                                                             weight;
+                                                               component_mapping[fe.system_to_component_index(i).first])
+                                                             * fe_values.shape_value(i,point)
+                                                             weight;
                         }
-                    }
+                      else
+                        {
+                          for (unsigned int comp=0; comp<n_components; ++comp)
+                            {
+                              for (unsigned int j=0; j<fe_values.dofs_per_cell; ++j)
+                                copy_data.cell_matrix.back()(i,j)
+                                += coefficient_vector_values[point](comp)
+                                   * fe_values.shape_value_component(i,point,comp)
+                                   * fe_values.shape_value_component(j,point,comp)
+                                   * normal_adjustment[point][comp]
+                                   * weight;
+                              copy_data.cell_vector.back()(i) += rhs_values_system[point](component_mapping[comp])
+                                                                 * fe_values.shape_value_component(i,point,comp)
+                                                                 * normal_adjustment[point][comp]
+                                                                 * weight;
+                            }
+                        }
+                  }
               }
             else
-              // FE is a scalar one
+              // FE is scalar
               {
+                coefficient_values.resize (fe_values.n_quadrature_points, 1.);
                 rhs_values_scalar.resize (fe_values.n_quadrature_points);
                 boundary_functions.find(cell->face(face)->boundary_id())
                 ->second->value_list (fe_values.get_quadrature_points(), rhs_values_scalar);
@@ -1429,41 +1459,25 @@ namespace MatrixCreator
                     coefficient_values.resize (fe_values.n_quadrature_points);
                     coefficient->value_list (fe_values.get_quadrature_points(),
                                              coefficient_values);
-                    for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
+                  }
+
+                for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
+                  {
+                    const double weight = fe_values.JxW(point);
+                    for (unsigned int i=0; i<fe_values.dofs_per_cell; ++i)
                       {
-                        const double weight = fe_values.JxW(point);
-                        for (unsigned int i=0; i<fe_values.dofs_per_cell; ++i)
+                        const double v = fe_values.shape_value(i,point);
+                        for (unsigned int j=0; j<fe_values.dofs_per_cell; ++j)
                           {
-                            const double v = fe_values.shape_value(i,point);
-                            for (unsigned int j=0; j<fe_values.dofs_per_cell; ++j)
-                              {
-                                const double u = fe_values.shape_value(j,point);
-                                copy_data.cell_matrix.back()(i,j) += (coefficient_values[point] *
-                                                                      u * v * weight);
-                              }
-                            copy_data.cell_vector.back()(i) += rhs_values_scalar[point] * v * weight;
+                            const double u = fe_values.shape_value(j,point);
+                            copy_data.cell_matrix.back()(i,j) += (coefficient_values[point] * v * u * weight);
                           }
+                        copy_data.cell_vector.back()(i) += rhs_values_scalar[point] * v * weight;
                       }
                   }
-                else
-                  for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-                    {
-                      const double weight = fe_values.JxW(point);
-                      for (unsigned int i=0; i<fe_values.dofs_per_cell; ++i)
-                        {
-                          const double v = fe_values.shape_value(i,point);
-                          for (unsigned int j=0; j<fe_values.dofs_per_cell; ++j)
-                            {
-                              const double u = fe_values.shape_value(j,point);
-                              copy_data.cell_matrix.back()(i,j) += (u * v * weight);
-                            }
-                          copy_data.cell_vector.back()(i) += rhs_values_scalar[point] * v * weight;
-                        }
-                    }
               }
 
-            cell->face(face)->get_dof_indices (dofs_on_face_vector,
-                                               cell->active_fe_index());
+            cell->face(face)->get_dof_indices (dofs_on_face_vector,cell->active_fe_index());
             // for each dof on the cell, have a
             // flag whether it is on the face
             copy_data.dof_is_on_face.emplace_back(copy_data.dofs_per_cell);
@@ -1479,7 +1493,6 @@ namespace MatrixCreator
     }
 
 
-
     template <int dim, int spacedim, typename number>
     void copy_hp_boundary_mass_matrix_1(MatrixCreator::internal::AssemblerBoundary
                                         ::CopyData<hp::DoFHandler<dim,spacedim>,number > const &copy_data,
@@ -1550,38 +1563,23 @@ namespace MatrixCreator
 #endif
 
               for (unsigned int i=0; i<copy_data.dofs_per_cell; ++i)
-                for (unsigned int j=0; j<copy_data.dofs_per_cell; ++j)
-                  {
-                    if (copy_data.dof_is_on_face[pos][i] && copy_data.dof_is_on_face[pos][j])
-                      matrix.add(dof_to_boundary_mapping[copy_data.dofs[i]],
-                                 dof_to_boundary_mapping[copy_data.dofs[j]],
-                                 copy_data.cell_matrix[pos](i,j));
-                    else
-                      {
-                        // assume that all shape functions that are nonzero on the boundary
-                        // are also listed in the @p{dof_to_boundary} mapping. if that
-                        // is not the case, then the boundary mass matrix does not
-                        // make that much sense anyway, as it only contains entries for
-                        // parts of the functions living on the boundary
-                        //
-                        // these, we may compare here for relative smallness of all
-                        // entries in the local matrix which are not taken over to
-                        // the global one
-                        Assert (std::abs(copy_data.cell_matrix[pos](i,j)) <= 1e-10 * max_diag_entry,
-                                ExcInternalError ());
-                      }
-                  }
-
-              for (unsigned int j=0; j<copy_data.dofs_per_cell; ++j)
-                if (copy_data.dof_is_on_face[pos][j])
-                  rhs_vector(dof_to_boundary_mapping[copy_data.dofs[j]]) += copy_data.cell_vector[pos](j);
-                else
-                  {
-                    // compare here for relative
-                    // smallness
-                    Assert (std::abs(copy_data.cell_vector[pos](j)) <= 1e-10 * max_diag_entry,
-                            ExcInternalError());
-                  }
+                {
+                  if (copy_data.dof_is_on_face[pos][i] &&
+                      dof_to_boundary_mapping[copy_data.dofs[i]] != numbers::invalid_dof_index)
+                    {
+                      for (unsigned int j=0; j<copy_data.dofs_per_cell; ++j)
+                        if (copy_data.dof_is_on_face[pos][j] &&
+                            dof_to_boundary_mapping[copy_data.dofs[j]] != numbers::invalid_dof_index)
+                          {
+                            AssertIsFinite(copy_data.cell_matrix[pos](i,j));
+                            matrix.add(dof_to_boundary_mapping[copy_data.dofs[i]],
+                                       dof_to_boundary_mapping[copy_data.dofs[j]],
+                                       copy_data.cell_matrix[pos](i,j));
+                          }
+                      AssertIsFinite(copy_data.cell_vector[pos](i));
+                      rhs_vector(dof_to_boundary_mapping[copy_data.dofs[i]]) += copy_data.cell_vector[pos](i);
+                    }
+                }
               ++pos;
             }
         }
index b7658cb197295c7617d2042054920c778fb00d0a..88bfa3a164079d3e8b1d46763c1a0411e9dede5b 100644 (file)
@@ -1214,6 +1214,20 @@ namespace VectorTools
    * $u_h|_\Gamma$, i.e., the nodal values of the degrees of freedom of this
    * function along the boundary, are then what is computed by this function.
    *
+   * In case this function is used with $H_{div}$ conforming finite element
+   * space, the solution of a different problem is computed, namely: Find $\vec{u}_h
+   * \in V_h \subset H(\text{div}; \Omega)$ so that
+   * @f{align*}{
+   * \int_{\Gamma} (\vec{\varphi}_i \cdot \vec{n}) (\vec{u}_h \cdot \vec{n})
+   * = \sum_{k \in {\cal K}} \int_{\Gamma_k} (\vec{\varphi}_i \cdot \vec{n})
+   * (\vec{f}_k \cdot \vec{n}),
+   * \qquad \forall \vec{\varphi_i} \in V_h,
+   * @f}
+   * where $\vec{n}$ is an outward normal vector.
+   *
+   * This function throws exception if used with $H_{curl}$ conforming elements,
+   * so the project_boundary_values_curl_conforming() should be used instead.
+   *
    * @param[in] mapping The mapping that will be used in the transformations
    * necessary to integrate along the boundary.
    * @param[in] dof The DoFHandler that describes the finite element space and
index 34890afdc9c1c3113527b43e57eb85b41dd88e2a..e65b3f9c2dd3377aa9f1da6141becc78056d0867 100644 (file)
@@ -1,6 +1,6 @@
 // ---------------------------------------------------------------------
 //
-// Copyright (C) 1999 - 2016 by the deal.II authors
+// Copyright (C) 1999 - 2017 by the deal.II authors
 //
 // This file is part of the deal.II library.
 //
@@ -1032,16 +1032,34 @@ namespace DoFTools
                   if (cell->at_boundary (face) && (!periodic_neighbor))
                     {
                       for (unsigned int i=0; i<cell->get_fe().dofs_per_cell; ++i)
-                        for (unsigned int j=0; j<cell->get_fe().dofs_per_cell; ++j)
-                          if ((flux_mask(cell->get_fe().system_to_component_index(i).first,
-                                         cell->get_fe().system_to_component_index(j).first)
-                               == always)
-                              ||
-                              (flux_mask(cell->get_fe().system_to_component_index(i).first,
-                                         cell->get_fe().system_to_component_index(j).first)
-                               == nonzero))
-                            sparsity.add (dofs_on_this_cell[i],
-                                          dofs_on_this_cell[j]);
+                        {
+                          const unsigned int ii
+                            = (cell->get_fe().is_primitive(i) ?
+                               cell->get_fe().system_to_component_index(i).first
+                               :
+                               cell->get_fe().get_nonzero_components(i).first_selected_component()
+                              );
+
+                          Assert (ii < cell->get_fe().n_components(), ExcInternalError());
+
+                          for (unsigned int j=0; j<cell->get_fe().dofs_per_cell; ++j)
+                            {
+                              const unsigned int jj
+                                = (cell->get_fe().is_primitive(j) ?
+                                   cell->get_fe().system_to_component_index(j).first
+                                   :
+                                   cell->get_fe().get_nonzero_components(j).first_selected_component()
+                                  );
+
+                              Assert (jj < cell->get_fe().n_components(), ExcInternalError());
+
+                              if ((flux_mask(ii,jj) == always)
+                                  ||
+                                  (flux_mask(ii,jj) == nonzero))
+                                sparsity.add (dofs_on_this_cell[i],
+                                              dofs_on_this_cell[j]);
+                            }
+                        }
                     }
                   else
                     {
@@ -1096,16 +1114,30 @@ namespace DoFTools
                               sub_neighbor->get_dof_indices (dofs_on_other_cell);
                               for (unsigned int i=0; i<cell->get_fe().dofs_per_cell; ++i)
                                 {
+                                  const unsigned int ii
+                                    = (cell->get_fe().is_primitive(i) ?
+                                       cell->get_fe().system_to_component_index(i).first
+                                       :
+                                       cell->get_fe().get_nonzero_components(i).first_selected_component()
+                                      );
+
+                                  Assert (ii < cell->get_fe().n_components(), ExcInternalError());
+
                                   for (unsigned int j=0; j<sub_neighbor->get_fe().dofs_per_cell;
                                        ++j)
                                     {
-                                      if ((flux_mask(cell->get_fe().system_to_component_index(i).first,
-                                                     sub_neighbor->get_fe().system_to_component_index(j).first)
-                                           == always)
+                                      const unsigned int jj
+                                        = (sub_neighbor->get_fe().is_primitive(j) ?
+                                           sub_neighbor->get_fe().system_to_component_index(j).first
+                                           :
+                                           sub_neighbor->get_fe().get_nonzero_components(j).first_selected_component()
+                                          );
+
+                                      Assert (jj < sub_neighbor->get_fe().n_components(), ExcInternalError());
+
+                                      if ((flux_mask(ii,jj) == always)
                                           ||
-                                          (flux_mask(cell->get_fe().system_to_component_index(i).first,
-                                                     sub_neighbor->get_fe().system_to_component_index(j).first)
-                                           == nonzero))
+                                          (flux_mask(ii,jj) == nonzero))
                                         {
                                           sparsity.add (dofs_on_this_cell[i],
                                                         dofs_on_other_cell[j]);
@@ -1117,13 +1149,9 @@ namespace DoFTools
                                                         dofs_on_other_cell[j]);
                                         }
 
-                                      if ((flux_mask(sub_neighbor->get_fe().system_to_component_index(j).first,
-                                                     cell->get_fe().system_to_component_index(i).first)
-                                           == always)
+                                      if ((flux_mask(jj,ii) == always)
                                           ||
-                                          (flux_mask(sub_neighbor->get_fe().system_to_component_index(j).first,
-                                                     cell->get_fe().system_to_component_index(i).first)
-                                           == nonzero))
+                                          (flux_mask(jj,ii) == nonzero))
                                         {
                                           sparsity.add (dofs_on_this_cell[j],
                                                         dofs_on_other_cell[i]);
@@ -1144,15 +1172,29 @@ namespace DoFTools
                           neighbor->get_dof_indices (dofs_on_other_cell);
                           for (unsigned int i=0; i<cell->get_fe().dofs_per_cell; ++i)
                             {
+                              const unsigned int ii
+                                = (cell->get_fe().is_primitive(i) ?
+                                   cell->get_fe().system_to_component_index(i).first
+                                   :
+                                   cell->get_fe().get_nonzero_components(i).first_selected_component()
+                                  );
+
+                              Assert (ii < cell->get_fe().n_components(), ExcInternalError());
+
                               for (unsigned int j=0; j<neighbor->get_fe().dofs_per_cell; ++j)
                                 {
-                                  if ((flux_mask(cell->get_fe().system_to_component_index(i).first,
-                                                 neighbor->get_fe().system_to_component_index(j).first)
-                                       == always)
+                                  const unsigned int jj
+                                    = (neighbor->get_fe().is_primitive(j) ?
+                                       neighbor->get_fe().system_to_component_index(j).first
+                                       :
+                                       neighbor->get_fe().get_nonzero_components(j).first_selected_component()
+                                      );
+
+                                  Assert (jj < neighbor->get_fe().n_components(), ExcInternalError());
+
+                                  if ((flux_mask(ii,jj) == always)
                                       ||
-                                      (flux_mask(cell->get_fe().system_to_component_index(i).first,
-                                                 neighbor->get_fe().system_to_component_index(j).first)
-                                       == nonzero))
+                                      (flux_mask(ii,jj) == nonzero))
                                     {
                                       sparsity.add (dofs_on_this_cell[i],
                                                     dofs_on_other_cell[j]);
@@ -1164,13 +1206,9 @@ namespace DoFTools
                                                     dofs_on_other_cell[j]);
                                     }
 
-                                  if ((flux_mask(neighbor->get_fe().system_to_component_index(j).first,
-                                                 cell->get_fe().system_to_component_index(i).first)
-                                       == always)
+                                  if ((flux_mask(jj,ii) == always)
                                       ||
-                                      (flux_mask(neighbor->get_fe().system_to_component_index(j).first,
-                                                 cell->get_fe().system_to_component_index(i).first)
-                                       == nonzero))
+                                      (flux_mask(jj,ii) == nonzero))
                                     {
                                       sparsity.add (dofs_on_this_cell[j],
                                                     dofs_on_other_cell[i]);
diff --git a/tests/hp/boundary_matrices.cc b/tests/hp/boundary_matrices.cc
new file mode 100644 (file)
index 0000000..779eba8
--- /dev/null
@@ -0,0 +1,144 @@
+// ---------------------------------------------------------------------
+//
+// Copyright (C) 2017 by the deal.II authors
+//
+// This file is part of the deal.II library.
+//
+// The deal.II library is free software; you can use it, redistribute
+// it, and/or modify it under the terms of the GNU Lesser General
+// Public License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+// The full text of the license can be found in the file LICENSE at
+// the top level of the deal.II distribution.
+//
+// ---------------------------------------------------------------------
+
+
+
+// Like hp/matrices, but only the boundary mass matrices for vector-valued
+// (non-primitive) hp objects are being tested.
+
+
+#include "../tests.h"
+#include <deal.II/base/quadrature_lib.h>
+#include <deal.II/base/function_lib.h>
+#include <deal.II/lac/sparse_matrix.h>
+#include <deal.II/lac/vector.h>
+#include <deal.II/grid/tria.h>
+#include <deal.II/grid/tria_iterator.h>
+#include <deal.II/grid/tria_accessor.h>
+#include <deal.II/grid/grid_generator.h>
+#include <deal.II/hp/dof_handler.h>
+#include <deal.II/dofs/dof_tools.h>
+#include <deal.II/lac/constraint_matrix.h>
+#include <deal.II/fe/fe_dgq.h>
+#include <deal.II/fe/fe_raviart_thomas.h>
+#include <deal.II/fe/fe_q.h>
+#include <deal.II/fe/fe_system.h>
+#include <deal.II/hp/fe_collection.h>
+#include <deal.II/hp/q_collection.h>
+#include <deal.II/fe/mapping_q.h>
+#include <deal.II/hp/mapping_collection.h>
+#include <deal.II/numerics/matrix_tools.h>
+
+
+
+template <int dim>
+class MySquareFunction : public Function<dim>
+{
+public:
+  MySquareFunction () : Function<dim>(dim+1) {}
+
+  virtual double value (const Point<dim>   &p,
+                        const unsigned int  component) const
+  {
+    return (component+1)*p.square();
+  }
+
+  virtual void   vector_value (const Point<dim>   &p,
+                               Vector<double>     &values) const
+  {
+    for (unsigned int i=0; i<dim+1; ++i)
+      values(i) = value(p,i);
+  }
+};
+
+
+
+template <int dim>
+void
+check ()
+{
+  Triangulation<dim> tr;
+  if (dim==2)
+    GridGenerator::hyper_ball(tr, Point<dim>(), 1);
+  else
+    GridGenerator::hyper_cube(tr, -1,1);
+  tr.refine_global (1);
+  tr.begin_active()->set_refine_flag ();
+  tr.execute_coarsening_and_refinement ();
+  if (dim==1)
+    tr.refine_global(2);
+
+  // Create a system element composed
+  // of one RT1 and one DGQ1
+  hp::FECollection<dim> element;
+  element.push_back (FESystem<dim> (FE_RaviartThomasNodal<dim>(1), 1,
+                                    FE_DGQ<dim>(1), 1));
+  hp::DoFHandler<dim> dof(tr);
+  dof.distribute_dofs(element);
+
+  MySquareFunction<dim> coefficient;
+  typename FunctionMap<dim>::type function_map;
+  function_map[0] = &coefficient;
+
+  hp::QCollection<dim-1> face_quadrature;
+  face_quadrature.push_back (QGauss<dim-1>(6));
+
+  std::vector<types::global_dof_index> dof_to_boundary_mapping;
+  DoFTools::map_dof_to_boundary_indices (dof,
+                                         dof_to_boundary_mapping);
+
+  SparsityPattern sparsity(dof.n_boundary_dofs(function_map),
+                           dof.max_couplings_between_boundary_dofs());
+  DoFTools::make_boundary_sparsity_pattern (dof,
+                                            function_map,
+                                            dof_to_boundary_mapping,
+                                            sparsity);
+  sparsity.compress ();
+
+  SparseMatrix<double> matrix;
+  matrix.reinit (sparsity);
+
+  Vector<double> rhs (dof.n_boundary_dofs(function_map));
+  MatrixTools::
+  create_boundary_mass_matrix (dof,
+                               face_quadrature, matrix,
+                               function_map, rhs,
+                               dof_to_boundary_mapping,
+                               &coefficient);
+
+  // Multiply matrix by 100 to
+  // make test more sensitive
+  matrix *= 100;
+
+  // Write out matrix
+  matrix.print (deallog.get_file_stream());
+}
+
+
+
+int main ()
+{
+  std::ofstream logfile ("output");
+  logfile.precision (2);
+  logfile.setf(std::ios::fixed);
+  deallog.attach(logfile);
+
+  deallog.push ("2d");
+  check<2> ();
+  deallog.pop ();
+  deallog.push ("3d");
+  check<3> ();
+  deallog.pop ();
+}
diff --git a/tests/hp/boundary_matrices.output b/tests/hp/boundary_matrices.output
new file mode 100644 (file)
index 0000000..156d438
--- /dev/null
@@ -0,0 +1,565 @@
+
+(0,0) 76.23
+(0,1) -2.36
+(1,1) 117.05
+(1,0) -2.36
+(2,2) 58.53
+(2,3) -1.18
+(3,3) 38.11
+(3,2) -1.18
+(4,4) 38.11
+(4,5) -1.18
+(5,5) 58.53
+(5,4) -1.18
+(6,6) 58.53
+(6,7) -1.18
+(7,7) 38.11
+(7,6) -1.18
+(8,8) 38.11
+(8,9) -1.18
+(9,9) 58.53
+(9,8) -1.18
+(10,10) 117.05
+(10,11) -2.36
+(11,11) 76.23
+(11,10) -2.36
+(12,12) 76.23
+(12,13) -2.36
+(13,13) 117.05
+(13,12) -2.36
+(14,14) 255.71
+(14,15) -1.18
+(15,15) 194.48
+(15,14) -1.18
+(16,16) 164.59
+(16,17) -1.18
+(17,17) 144.18
+(17,16) -1.18
+(0,0) 57.77
+(0,1) -0.83
+(0,2) -0.83
+(0,3) 0.00
+(1,1) 43.33
+(1,0) -0.83
+(1,2) 0.00
+(1,3) -0.83
+(2,2) 43.33
+(2,0) -0.83
+(2,1) 0.00
+(2,3) -0.83
+(3,3) 28.90
+(3,0) 0.00
+(3,1) -0.83
+(3,2) -0.83
+(4,4) 86.67
+(4,5) -1.67
+(4,6) -1.67
+(4,7) 0.00
+(5,5) 57.80
+(5,4) -1.67
+(5,6) 0.00
+(5,7) -1.67
+(6,6) 115.53
+(6,4) -1.67
+(6,5) 0.00
+(6,7) -1.67
+(7,7) 86.67
+(7,4) 0.00
+(7,5) -1.67
+(7,6) -1.67
+(8,8) 130.00
+(8,9) -2.50
+(8,10) -2.50
+(8,11) 0.00
+(9,9) 173.30
+(9,8) -2.50
+(9,10) 0.00
+(9,11) -2.50
+(10,10) 86.70
+(10,8) -2.50
+(10,9) 0.00
+(10,11) -2.50
+(11,11) 130.00
+(11,8) 0.00
+(11,9) -2.50
+(11,10) -2.50
+(12,12) 43.33
+(12,13) -0.83
+(12,14) -0.83
+(12,15) 0.00
+(13,13) 57.77
+(13,12) -0.83
+(13,14) 0.00
+(13,15) -0.83
+(14,14) 28.90
+(14,12) -0.83
+(14,13) 0.00
+(14,15) -0.83
+(15,15) 43.33
+(15,12) 0.00
+(15,13) -0.83
+(15,14) -0.83
+(16,16) 115.53
+(16,17) -1.67
+(16,18) -1.67
+(16,19) 0.00
+(17,17) 86.67
+(17,16) -1.67
+(17,18) 0.00
+(17,19) -1.67
+(18,18) 86.67
+(18,16) -1.67
+(18,17) 0.00
+(18,19) -1.67
+(19,19) 57.80
+(19,16) 0.00
+(19,17) -1.67
+(19,18) -1.67
+(20,20) 130.00
+(20,21) -2.50
+(20,22) -2.50
+(20,23) 0.00
+(21,21) 86.70
+(21,20) -2.50
+(21,22) 0.00
+(21,23) -2.50
+(22,22) 173.30
+(22,20) -2.50
+(22,21) 0.00
+(22,23) -2.50
+(23,23) 130.00
+(23,20) 0.00
+(23,21) -2.50
+(23,22) -2.50
+(24,24) 43.33
+(24,25) -0.83
+(24,26) -0.83
+(24,27) 0.00
+(25,25) 57.77
+(25,24) -0.83
+(25,26) 0.00
+(25,27) -0.83
+(26,26) 28.90
+(26,24) -0.83
+(26,25) 0.00
+(26,27) -0.83
+(27,27) 43.33
+(27,24) 0.00
+(27,25) -0.83
+(27,26) -0.83
+(28,28) 86.67
+(28,29) -1.67
+(28,30) -1.67
+(28,31) 0.00
+(29,29) 57.80
+(29,28) -1.67
+(29,30) 0.00
+(29,31) -1.67
+(30,30) 115.53
+(30,28) -1.67
+(30,29) 0.00
+(30,31) -1.67
+(31,31) 86.67
+(31,28) 0.00
+(31,29) -1.67
+(31,30) -1.67
+(32,32) 86.70
+(32,33) -2.50
+(32,34) -2.50
+(32,35) 0.00
+(33,33) 130.00
+(33,32) -2.50
+(33,34) 0.00
+(33,35) -2.50
+(34,34) 130.00
+(34,32) -2.50
+(34,33) 0.00
+(34,35) -2.50
+(35,35) 173.30
+(35,32) 0.00
+(35,33) -2.50
+(35,34) -2.50
+(36,36) 43.33
+(36,37) -0.83
+(36,38) -0.83
+(36,39) 0.00
+(37,37) 28.90
+(37,36) -0.83
+(37,38) 0.00
+(37,39) -0.83
+(38,38) 57.77
+(38,36) -0.83
+(38,37) 0.00
+(38,39) -0.83
+(39,39) 43.33
+(39,36) 0.00
+(39,37) -0.83
+(39,38) -0.83
+(40,40) 86.67
+(40,41) -1.67
+(40,42) -1.67
+(40,43) 0.00
+(41,41) 115.53
+(41,40) -1.67
+(41,42) 0.00
+(41,43) -1.67
+(42,42) 57.80
+(42,40) -1.67
+(42,41) 0.00
+(42,43) -1.67
+(43,43) 86.67
+(43,40) 0.00
+(43,41) -1.67
+(43,42) -1.67
+(44,44) 173.30
+(44,45) -2.50
+(44,46) -2.50
+(44,47) 0.00
+(45,45) 130.00
+(45,44) -2.50
+(45,46) 0.00
+(45,47) -2.50
+(46,46) 130.00
+(46,44) -2.50
+(46,45) 0.00
+(46,47) -2.50
+(47,47) 86.70
+(47,44) 0.00
+(47,45) -2.50
+(47,46) -2.50
+(48,48) 43.33
+(48,49) -0.83
+(48,50) -0.83
+(48,51) 0.00
+(49,49) 28.90
+(49,48) -0.83
+(49,50) 0.00
+(49,51) -0.83
+(50,50) 57.77
+(50,48) -0.83
+(50,49) 0.00
+(50,51) -0.83
+(51,51) 43.33
+(51,48) 0.00
+(51,49) -0.83
+(51,50) -0.83
+(52,52) 57.80
+(52,53) -1.67
+(52,54) -1.67
+(52,55) 0.00
+(53,53) 86.67
+(53,52) -1.67
+(53,54) 0.00
+(53,55) -1.67
+(54,54) 86.67
+(54,52) -1.67
+(54,53) 0.00
+(54,55) -1.67
+(55,55) 115.53
+(55,52) 0.00
+(55,53) -1.67
+(55,54) -1.67
+(56,56) 130.00
+(56,57) -2.50
+(56,58) -2.50
+(56,59) 0.00
+(57,57) 173.30
+(57,56) -2.50
+(57,58) 0.00
+(57,59) -2.50
+(58,58) 86.70
+(58,56) -2.50
+(58,57) 0.00
+(58,59) -2.50
+(59,59) 130.00
+(59,56) 0.00
+(59,57) -2.50
+(59,58) -2.50
+(60,60) 28.90
+(60,61) -0.83
+(60,62) -0.83
+(60,63) 0.00
+(61,61) 43.33
+(61,60) -0.83
+(61,62) 0.00
+(61,63) -0.83
+(62,62) 43.33
+(62,60) -0.83
+(62,61) 0.00
+(62,63) -0.83
+(63,63) 57.77
+(63,60) 0.00
+(63,61) -0.83
+(63,62) -0.83
+(64,64) 86.67
+(64,65) -1.67
+(64,66) -1.67
+(64,67) 0.00
+(65,65) 115.53
+(65,64) -1.67
+(65,66) 0.00
+(65,67) -1.67
+(66,66) 57.80
+(66,64) -1.67
+(66,65) 0.00
+(66,67) -1.67
+(67,67) 86.67
+(67,64) 0.00
+(67,65) -1.67
+(67,66) -1.67
+(68,68) 130.00
+(68,69) -2.50
+(68,70) -2.50
+(68,71) 0.00
+(69,69) 86.70
+(69,68) -2.50
+(69,70) 0.00
+(69,71) -2.50
+(70,70) 173.30
+(70,68) -2.50
+(70,69) 0.00
+(70,71) -2.50
+(71,71) 130.00
+(71,68) 0.00
+(71,69) -2.50
+(71,70) -2.50
+(72,72) 28.90
+(72,73) -0.83
+(72,74) -0.83
+(72,75) 0.00
+(73,73) 43.33
+(73,72) -0.83
+(73,74) 0.00
+(73,75) -0.83
+(74,74) 43.33
+(74,72) -0.83
+(74,73) 0.00
+(74,75) -0.83
+(75,75) 57.77
+(75,72) 0.00
+(75,73) -0.83
+(75,74) -0.83
+(76,76) 57.80
+(76,77) -1.67
+(76,78) -1.67
+(76,79) 0.00
+(77,77) 86.67
+(77,76) -1.67
+(77,78) 0.00
+(77,79) -1.67
+(78,78) 86.67
+(78,76) -1.67
+(78,77) 0.00
+(78,79) -1.67
+(79,79) 115.53
+(79,76) 0.00
+(79,77) -1.67
+(79,78) -1.67
+(80,80) 86.70
+(80,81) -2.50
+(80,82) -2.50
+(80,83) 0.00
+(81,81) 130.00
+(81,80) -2.50
+(81,82) 0.00
+(81,83) -2.50
+(82,82) 130.00
+(82,80) -2.50
+(82,81) 0.00
+(82,83) -2.50
+(83,83) 173.30
+(83,80) 0.00
+(83,81) -2.50
+(83,82) -2.50
+(84,84) 261.63
+(84,85) -0.83
+(84,86) -0.83
+(84,87) 0.00
+(85,85) 218.33
+(85,84) -0.83
+(85,86) 0.00
+(85,87) -0.83
+(86,86) 218.33
+(86,84) -0.83
+(86,85) 0.00
+(86,87) -0.83
+(87,87) 175.03
+(87,84) 0.00
+(87,85) -0.83
+(87,86) -0.83
+(88,88) 523.27
+(88,89) -1.67
+(88,90) -1.67
+(88,91) 0.00
+(89,89) 436.67
+(89,88) -1.67
+(89,90) 0.00
+(89,91) -1.67
+(90,90) 436.67
+(90,88) -1.67
+(90,89) 0.00
+(90,91) -1.67
+(91,91) 350.06
+(91,88) 0.00
+(91,89) -1.67
+(91,90) -1.67
+(92,92) 784.90
+(92,93) -2.50
+(92,94) -2.50
+(92,95) 0.00
+(93,93) 655.00
+(93,92) -2.50
+(93,94) 0.00
+(93,95) -2.50
+(94,94) 655.00
+(94,92) -2.50
+(94,93) 0.00
+(94,95) -2.50
+(95,95) 525.10
+(95,92) 0.00
+(95,93) -2.50
+(95,94) -2.50
+(96,96) 394.40
+(96,97) -1.67
+(96,98) -1.67
+(96,99) 0.00
+(97,97) 307.80
+(97,96) -1.67
+(97,98) 0.00
+(97,99) -1.67
+(98,98) 365.53
+(98,96) -1.67
+(98,97) 0.00
+(98,99) -1.67
+(99,99) 278.93
+(99,96) 0.00
+(99,97) -1.67
+(99,98) -1.67
+(100,100) 591.60
+(100,101) -2.50
+(100,102) -2.50
+(100,103) 0.00
+(101,101) 548.30
+(101,100) -2.50
+(101,102) 0.00
+(101,103) -2.50
+(102,102) 461.70
+(102,100) -2.50
+(102,101) 0.00
+(102,103) -2.50
+(103,103) 418.40
+(103,100) 0.00
+(103,101) -2.50
+(103,102) -2.50
+(104,104) 197.20
+(104,105) -0.83
+(104,106) -0.83
+(104,107) 0.00
+(105,105) 182.77
+(105,104) -0.83
+(105,106) 0.00
+(105,107) -0.83
+(106,106) 153.90
+(106,104) -0.83
+(106,105) 0.00
+(106,107) -0.83
+(107,107) 139.47
+(107,104) 0.00
+(107,105) -0.83
+(107,106) -0.83
+(108,108) 591.60
+(108,109) -2.50
+(108,110) -2.50
+(108,111) 0.00
+(109,109) 461.70
+(109,108) -2.50
+(109,110) 0.00
+(109,111) -2.50
+(110,110) 548.30
+(110,108) -2.50
+(110,109) 0.00
+(110,111) -2.50
+(111,111) 418.40
+(111,108) 0.00
+(111,109) -2.50
+(111,110) -2.50
+(112,112) 398.30
+(112,113) -2.50
+(112,114) -2.50
+(112,115) 0.00
+(113,113) 355.00
+(113,112) -2.50
+(113,114) 0.00
+(113,115) -2.50
+(114,114) 355.00
+(114,112) -2.50
+(114,113) 0.00
+(114,115) -2.50
+(115,115) 311.70
+(115,112) 0.00
+(115,113) -2.50
+(115,114) -2.50
+(116,116) 197.20
+(116,117) -0.83
+(116,118) -0.83
+(116,119) 0.00
+(117,117) 153.90
+(117,116) -0.83
+(117,118) 0.00
+(117,119) -0.83
+(118,118) 182.77
+(118,116) -0.83
+(118,117) 0.00
+(118,119) -0.83
+(119,119) 139.47
+(119,116) 0.00
+(119,117) -0.83
+(119,118) -0.83
+(120,120) 394.40
+(120,121) -1.67
+(120,122) -1.67
+(120,123) 0.00
+(121,121) 365.53
+(121,120) -1.67
+(121,122) 0.00
+(121,123) -1.67
+(122,122) 307.80
+(122,120) -1.67
+(122,121) 0.00
+(122,123) -1.67
+(123,123) 278.93
+(123,120) 0.00
+(123,121) -1.67
+(123,122) -1.67
+(124,124) 265.53
+(124,125) -1.67
+(124,126) -1.67
+(124,127) 0.00
+(125,125) 236.67
+(125,124) -1.67
+(125,126) 0.00
+(125,127) -1.67
+(126,126) 236.67
+(126,124) -1.67
+(126,125) 0.00
+(126,127) -1.67
+(127,127) 207.80
+(127,124) 0.00
+(127,125) -1.67
+(127,126) -1.67
+(128,128) 132.77
+(128,129) -0.83
+(128,130) -0.83
+(128,131) 0.00
+(129,129) 118.33
+(129,128) -0.83
+(129,130) 0.00
+(129,131) -0.83
+(130,130) 118.33
+(130,128) -0.83
+(130,129) 0.00
+(130,131) -0.83
+(131,131) 103.90
+(131,128) 0.00
+(131,129) -0.83
+(131,130) -0.83
diff --git a/tests/hp/boundary_matrices_hp.cc b/tests/hp/boundary_matrices_hp.cc
new file mode 100644 (file)
index 0000000..e0960b5
--- /dev/null
@@ -0,0 +1,161 @@
+// ---------------------------------------------------------------------
+//
+// Copyright (C) 2017 by the deal.II authors
+//
+// This file is part of the deal.II library.
+//
+// The deal.II library is free software; you can use it, redistribute
+// it, and/or modify it under the terms of the GNU Lesser General
+// Public License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+// The full text of the license can be found in the file LICENSE at
+// the top level of the deal.II distribution.
+//
+// ---------------------------------------------------------------------
+
+
+
+// Same as hp/boundary_matrices, but with different FE objects. Tests
+// the boundary mass matrces for vector-valued (non-primiteve) hp
+// FE objects.
+
+
+#include "../tests.h"
+#include <deal.II/base/quadrature_lib.h>
+#include <deal.II/base/function_lib.h>
+#include <deal.II/lac/sparse_matrix.h>
+#include <deal.II/lac/vector.h>
+#include <deal.II/grid/tria.h>
+#include <deal.II/grid/tria_iterator.h>
+#include <deal.II/grid/tria_accessor.h>
+#include <deal.II/grid/grid_generator.h>
+#include <deal.II/hp/dof_handler.h>
+#include <deal.II/dofs/dof_tools.h>
+#include <deal.II/lac/constraint_matrix.h>
+#include <deal.II/fe/fe_dgq.h>
+#include <deal.II/fe/fe_nothing.h>
+#include <deal.II/fe/fe_raviart_thomas.h>
+#include <deal.II/fe/fe_q.h>
+#include <deal.II/fe/fe_system.h>
+#include <deal.II/hp/fe_collection.h>
+#include <deal.II/hp/q_collection.h>
+#include <deal.II/fe/mapping_q.h>
+#include <deal.II/hp/mapping_collection.h>
+#include <deal.II/numerics/matrix_tools.h>
+
+
+
+template <int dim>
+class MySquareFunction : public Function<dim>
+{
+public:
+  MySquareFunction () : Function<dim>(2*dim+1) {}
+
+  virtual double value (const Point<dim>   &p,
+                        const unsigned int  component) const
+  {
+    return (component+1)*p.square();
+  }
+
+  virtual void   vector_value (const Point<dim>   &p,
+                               Vector<double>     &values) const
+  {
+    for (unsigned int i=0; i<2*dim+1; ++i)
+      values(i) = value(p,i);
+  }
+};
+
+
+
+template <int dim>
+void
+check ()
+{
+  Triangulation<dim> tr;
+  if (dim==2)
+    GridGenerator::hyper_ball(tr, Point<dim>(), 1);
+  else
+    GridGenerator::hyper_cube(tr, -1,1);
+  tr.refine_global (1);
+  tr.begin_active()->set_refine_flag ();
+  tr.execute_coarsening_and_refinement ();
+  if (dim==1)
+    tr.refine_global(2);
+
+  // Create a system element composed
+  // of one RT-i and one DGQ-i.
+  hp::FECollection<dim> element;
+  for (unsigned int i=0; i<5-dim; ++i)
+    element.push_back (FESystem<dim> (FE_RaviartThomasNodal<dim>(i), 1,
+                                      FE_DGQ<dim>(i), 1,
+                                      FE_Nothing<dim>(), dim));
+
+  // ... also add Q-(i+1) ^ dim
+  // to this system
+  for (unsigned int i=1; i<3; ++i)
+    element.push_back (FESystem<dim> (FE_Nothing<dim>(dim), 1,
+                                      FE_Nothing<dim>(), 1,
+                                      FE_Q<dim>(i), dim));
+
+  hp::DoFHandler<dim> dof(tr);
+  for (typename hp::DoFHandler<dim>::active_cell_iterator
+       cell = dof.begin_active(); cell!=dof.end(); ++cell)
+    cell->set_active_fe_index (Testing::rand() % element.size());
+
+  dof.distribute_dofs(element);
+
+  MySquareFunction<dim> coefficient;
+  typename FunctionMap<dim>::type function_map;
+  function_map[0] = &coefficient;
+
+  hp::QCollection<dim-1> face_quadrature;
+  for (unsigned int i=0; i<7-dim; ++i)
+    face_quadrature.push_back (QGauss<dim-1>(4+i));
+
+  std::vector<types::global_dof_index> dof_to_boundary_mapping;
+  DoFTools::map_dof_to_boundary_indices (dof,
+                                         dof_to_boundary_mapping);
+
+  SparsityPattern sparsity(dof.n_boundary_dofs(function_map),
+                           dof.max_couplings_between_boundary_dofs());
+  DoFTools::make_boundary_sparsity_pattern (dof,
+                                            function_map,
+                                            dof_to_boundary_mapping,
+                                            sparsity);
+  sparsity.compress ();
+
+  SparseMatrix<double> matrix;
+  matrix.reinit (sparsity);
+
+  Vector<double> rhs (dof.n_boundary_dofs(function_map));
+  MatrixTools::
+  create_boundary_mass_matrix (dof,
+                               face_quadrature, matrix,
+                               function_map, rhs,
+                               dof_to_boundary_mapping,
+                               &coefficient);
+
+  // Multiply matrix by 100 to
+  // make test more sensitive
+  matrix *= 100;
+
+  // Write out matrix
+  matrix.print (deallog.get_file_stream());
+}
+
+
+
+int main ()
+{
+  std::ofstream logfile ("output");
+  logfile.precision (2);
+  logfile.setf(std::ios::fixed);
+  deallog.attach(logfile);
+
+  deallog.push ("2d");
+  check<2> ();
+  deallog.pop ();
+  deallog.push ("3d");
+  check<3> ();
+  deallog.pop ();
+}
diff --git a/tests/hp/boundary_matrices_hp.output b/tests/hp/boundary_matrices_hp.output
new file mode 100644 (file)
index 0000000..b2dfbcc
--- /dev/null
@@ -0,0 +1,7812 @@
+
+(0,0) 51.85
+(0,1) 0.00
+(0,2) 30.64
+(0,3) 0.00
+(1,1) 64.82
+(1,0) 0.00
+(1,2) 0.00
+(1,3) 38.30
+(2,2) 75.42
+(2,0) 30.64
+(2,1) 0.00
+(2,3) 0.00
+(3,3) 94.28
+(3,0) 0.00
+(3,1) 38.30
+(3,2) 0.00
+(4,4) 94.28
+(5,5) 94.28
+(6,6) 35.39
+(6,7) -0.56
+(6,8) 0.28
+(7,7) 40.41
+(7,6) -0.56
+(7,8) -0.56
+(8,8) 20.17
+(8,6) 0.28
+(8,7) -0.56
+(9,9) 94.28
+(10,10) 117.05
+(10,11) -2.36
+(11,11) 76.23
+(11,10) -2.36
+(12,12) 76.23
+(12,13) -2.36
+(13,13) 117.05
+(13,12) -2.36
+(14,14) 255.71
+(14,15) -1.18
+(15,15) 194.48
+(15,14) -1.18
+(16,16) 164.59
+(16,17) -1.18
+(17,17) 144.18
+(17,16) -1.18
+(0,0) 57.77
+(0,1) -0.83
+(0,2) -0.83
+(0,3) 0.00
+(1,1) 43.33
+(1,0) -0.83
+(1,2) 0.00
+(1,3) -0.83
+(2,2) 43.33
+(2,0) -0.83
+(2,1) 0.00
+(2,3) -0.83
+(3,3) 28.90
+(3,0) 0.00
+(3,1) -0.83
+(3,2) -0.83
+(4,4) 86.67
+(4,5) -1.67
+(4,6) -1.67
+(4,7) 0.00
+(5,5) 57.80
+(5,4) -1.67
+(5,6) 0.00
+(5,7) -1.67
+(6,6) 115.53
+(6,4) -1.67
+(6,5) 0.00
+(6,7) -1.67
+(7,7) 86.67
+(7,4) 0.00
+(7,5) -1.67
+(7,6) -1.67
+(8,8) 130.00
+(8,9) -2.50
+(8,10) -2.50
+(8,11) 0.00
+(9,9) 173.30
+(9,8) -2.50
+(9,10) 0.00
+(9,11) -2.50
+(10,10) 86.70
+(10,8) -2.50
+(10,9) 0.00
+(10,11) -2.50
+(11,11) 130.00
+(11,8) 0.00
+(11,9) -2.50
+(11,10) -2.50
+(12,12) 238.89
+(12,13) 0.00
+(12,14) 0.00
+(12,15) 105.56
+(12,16) 0.00
+(12,17) 0.00
+(12,18) 38.89
+(12,19) 0.00
+(12,20) 0.00
+(12,21) 22.22
+(12,22) 0.00
+(12,23) 0.00
+(12,24) 22.22
+(12,25) 0.00
+(12,26) 0.00
+(12,30) 38.89
+(12,31) 0.00
+(12,32) 0.00
+(12,210) 5.73
+(12,211) 0.00
+(12,212) 0.00
+(12,216) 25.69
+(12,217) 0.00
+(12,218) 0.00
+(12,219) 5.73
+(12,220) 0.00
+(12,221) 0.00
+(12,222) 11.11
+(12,223) 0.00
+(12,224) 0.00
+(12,225) 11.11
+(12,226) 0.00
+(12,227) 0.00
+(13,13) 286.67
+(13,12) 0.00
+(13,14) 0.00
+(13,15) 0.00
+(13,16) 126.67
+(13,17) 0.00
+(13,18) 0.00
+(13,19) 46.67
+(13,20) 0.00
+(13,21) 0.00
+(13,22) 26.67
+(13,23) 0.00
+(13,24) 0.00
+(13,25) 26.67
+(13,26) 0.00
+(13,30) 0.00
+(13,31) 46.67
+(13,32) 0.00
+(13,210) 0.00
+(13,211) 6.87
+(13,212) 0.00
+(13,216) 0.00
+(13,217) 30.83
+(13,218) 0.00
+(13,219) 0.00
+(13,220) 6.87
+(13,221) 0.00
+(13,222) 0.00
+(13,223) 13.33
+(13,224) 0.00
+(13,225) 0.00
+(13,226) 13.33
+(13,227) 0.00
+(14,14) 334.44
+(14,12) 0.00
+(14,13) 0.00
+(14,15) 0.00
+(14,16) 0.00
+(14,17) 147.78
+(14,18) 0.00
+(14,19) 0.00
+(14,20) 54.44
+(14,21) 0.00
+(14,22) 0.00
+(14,23) 31.11
+(14,24) 0.00
+(14,25) 0.00
+(14,26) 31.11
+(14,30) 0.00
+(14,31) 0.00
+(14,32) 54.44
+(14,210) 0.00
+(14,211) 0.00
+(14,212) 8.02
+(14,216) 0.00
+(14,217) 0.00
+(14,218) 35.97
+(14,219) 0.00
+(14,220) 0.00
+(14,221) 8.02
+(14,222) 0.00
+(14,223) 0.00
+(14,224) 15.56
+(14,225) 0.00
+(14,226) 0.00
+(14,227) 15.56
+(15,15) 366.67
+(15,12) 105.56
+(15,13) 0.00
+(15,14) 0.00
+(15,16) 0.00
+(15,17) 0.00
+(15,18) 22.22
+(15,19) 0.00
+(15,20) 0.00
+(15,21) 105.56
+(15,22) 0.00
+(15,23) 0.00
+(15,24) 105.56
+(15,25) 0.00
+(15,26) 0.00
+(15,27) 22.22
+(15,28) 0.00
+(15,29) 0.00
+(15,30) 22.22
+(15,31) 0.00
+(15,32) 0.00
+(16,16) 440.00
+(16,12) 0.00
+(16,13) 126.67
+(16,14) 0.00
+(16,15) 0.00
+(16,17) 0.00
+(16,18) 0.00
+(16,19) 26.67
+(16,20) 0.00
+(16,21) 0.00
+(16,22) 126.67
+(16,23) 0.00
+(16,24) 0.00
+(16,25) 126.67
+(16,26) 0.00
+(16,27) 0.00
+(16,28) 26.67
+(16,29) 0.00
+(16,30) 0.00
+(16,31) 26.67
+(16,32) 0.00
+(17,17) 513.33
+(17,12) 0.00
+(17,13) 0.00
+(17,14) 147.78
+(17,15) 0.00
+(17,16) 0.00
+(17,18) 0.00
+(17,19) 0.00
+(17,20) 31.11
+(17,21) 0.00
+(17,22) 0.00
+(17,23) 147.78
+(17,24) 0.00
+(17,25) 0.00
+(17,26) 147.78
+(17,27) 0.00
+(17,28) 0.00
+(17,29) 31.11
+(17,30) 0.00
+(17,31) 0.00
+(17,32) 31.11
+(18,18) 133.33
+(18,12) 38.89
+(18,13) 0.00
+(18,14) 0.00
+(18,15) 22.22
+(18,16) 0.00
+(18,17) 0.00
+(18,19) 0.00
+(18,20) 0.00
+(18,21) 38.89
+(18,22) 0.00
+(18,23) 0.00
+(18,45) 38.89
+(18,46) 0.00
+(18,47) 0.00
+(18,48) 22.22
+(18,49) 0.00
+(18,50) 0.00
+(18,51) 38.89
+(18,52) 0.00
+(18,53) 0.00
+(19,19) 160.00
+(19,12) 0.00
+(19,13) 46.67
+(19,14) 0.00
+(19,15) 0.00
+(19,16) 26.67
+(19,17) 0.00
+(19,18) 0.00
+(19,20) 0.00
+(19,21) 0.00
+(19,22) 46.67
+(19,23) 0.00
+(19,45) 0.00
+(19,46) 46.67
+(19,47) 0.00
+(19,48) 0.00
+(19,49) 26.67
+(19,50) 0.00
+(19,51) 0.00
+(19,52) 46.67
+(19,53) 0.00
+(20,20) 186.67
+(20,12) 0.00
+(20,13) 0.00
+(20,14) 54.44
+(20,15) 0.00
+(20,16) 0.00
+(20,17) 31.11
+(20,18) 0.00
+(20,19) 0.00
+(20,21) 0.00
+(20,22) 0.00
+(20,23) 54.44
+(20,45) 0.00
+(20,46) 0.00
+(20,47) 54.44
+(20,48) 0.00
+(20,49) 0.00
+(20,50) 31.11
+(20,51) 0.00
+(20,52) 0.00
+(20,53) 54.44
+(21,21) 221.27
+(21,12) 22.22
+(21,13) 0.00
+(21,14) 0.00
+(21,15) 105.56
+(21,16) 0.00
+(21,17) 0.00
+(21,18) 38.89
+(21,19) 0.00
+(21,20) 0.00
+(21,22) 0.00
+(21,23) 0.00
+(21,24) 22.22
+(21,25) 0.00
+(21,26) 0.00
+(21,27) 35.79
+(21,28) 0.00
+(21,29) 0.00
+(21,51) 0.95
+(21,52) 0.00
+(21,53) 0.00
+(21,114) -3.10
+(21,115) 0.00
+(21,116) 0.00
+(21,117) -9.52
+(21,118) 0.00
+(21,119) 0.00
+(21,120) -1.35
+(21,121) 0.00
+(21,122) 0.00
+(21,123) 14.60
+(21,124) 0.00
+(21,125) 0.00
+(21,126) 8.41
+(21,127) 0.00
+(21,128) 0.00
+(21,129) -2.46
+(21,130) 0.00
+(21,131) 0.00
+(21,132) 3.81
+(21,133) 0.00
+(21,134) 0.00
+(21,135) 0.95
+(21,136) 0.00
+(21,137) 0.00
+(21,138) 8.41
+(21,139) 0.00
+(21,140) 0.00
+(21,141) -2.46
+(21,142) 0.00
+(21,143) 0.00
+(21,144) -1.35
+(21,145) 0.00
+(21,146) 0.00
+(21,147) 3.81
+(21,148) 0.00
+(21,149) 0.00
+(22,22) 265.52
+(22,12) 0.00
+(22,13) 26.67
+(22,14) 0.00
+(22,15) 0.00
+(22,16) 126.67
+(22,17) 0.00
+(22,18) 0.00
+(22,19) 46.67
+(22,20) 0.00
+(22,21) 0.00
+(22,23) 0.00
+(22,24) 0.00
+(22,25) 26.67
+(22,26) 0.00
+(22,27) 0.00
+(22,28) 42.95
+(22,29) 0.00
+(22,51) 0.00
+(22,52) 1.14
+(22,53) 0.00
+(22,114) 0.00
+(22,115) -3.71
+(22,116) 0.00
+(22,117) 0.00
+(22,118) -11.43
+(22,119) 0.00
+(22,120) 0.00
+(22,121) -1.62
+(22,122) 0.00
+(22,123) 0.00
+(22,124) 17.52
+(22,125) 0.00
+(22,126) 0.00
+(22,127) 10.10
+(22,128) 0.00
+(22,129) 0.00
+(22,130) -2.95
+(22,131) 0.00
+(22,132) 0.00
+(22,133) 4.57
+(22,134) 0.00
+(22,135) 0.00
+(22,136) 1.14
+(22,137) 0.00
+(22,138) 0.00
+(22,139) 10.10
+(22,140) 0.00
+(22,141) 0.00
+(22,142) -2.95
+(22,143) 0.00
+(22,144) 0.00
+(22,145) -1.62
+(22,146) 0.00
+(22,147) 0.00
+(22,148) 4.57
+(22,149) 0.00
+(23,23) 309.78
+(23,12) 0.00
+(23,13) 0.00
+(23,14) 31.11
+(23,15) 0.00
+(23,16) 0.00
+(23,17) 147.78
+(23,18) 0.00
+(23,19) 0.00
+(23,20) 54.44
+(23,21) 0.00
+(23,22) 0.00
+(23,24) 0.00
+(23,25) 0.00
+(23,26) 31.11
+(23,27) 0.00
+(23,28) 0.00
+(23,29) 50.11
+(23,51) 0.00
+(23,52) 0.00
+(23,53) 1.33
+(23,114) 0.00
+(23,115) 0.00
+(23,116) -4.33
+(23,117) 0.00
+(23,118) 0.00
+(23,119) -13.33
+(23,120) 0.00
+(23,121) 0.00
+(23,122) -1.89
+(23,123) 0.00
+(23,124) 0.00
+(23,125) 20.44
+(23,126) 0.00
+(23,127) 0.00
+(23,128) 11.78
+(23,129) 0.00
+(23,130) 0.00
+(23,131) -3.44
+(23,132) 0.00
+(23,133) 0.00
+(23,134) 5.33
+(23,135) 0.00
+(23,136) 0.00
+(23,137) 1.33
+(23,138) 0.00
+(23,139) 0.00
+(23,140) 11.78
+(23,141) 0.00
+(23,142) 0.00
+(23,143) -3.44
+(23,144) 0.00
+(23,145) 0.00
+(23,146) -1.89
+(23,147) 0.00
+(23,148) 0.00
+(23,149) 5.33
+(24,24) 377.78
+(24,12) 22.22
+(24,13) 0.00
+(24,14) 0.00
+(24,15) 105.56
+(24,16) 0.00
+(24,17) 0.00
+(24,21) 22.22
+(24,22) 0.00
+(24,23) 0.00
+(24,25) 0.00
+(24,26) 0.00
+(24,27) 77.78
+(24,28) 0.00
+(24,29) 0.00
+(24,30) 77.78
+(24,31) 0.00
+(24,32) 0.00
+(24,33) 22.22
+(24,34) 0.00
+(24,35) 0.00
+(24,36) 105.56
+(24,37) 0.00
+(24,38) 0.00
+(24,42) 22.22
+(24,43) 0.00
+(24,44) 0.00
+(25,25) 453.33
+(25,12) 0.00
+(25,13) 26.67
+(25,14) 0.00
+(25,15) 0.00
+(25,16) 126.67
+(25,17) 0.00
+(25,21) 0.00
+(25,22) 26.67
+(25,23) 0.00
+(25,24) 0.00
+(25,26) 0.00
+(25,27) 0.00
+(25,28) 93.33
+(25,29) 0.00
+(25,30) 0.00
+(25,31) 93.33
+(25,32) 0.00
+(25,33) 0.00
+(25,34) 26.67
+(25,35) 0.00
+(25,36) 0.00
+(25,37) 126.67
+(25,38) 0.00
+(25,42) 0.00
+(25,43) 26.67
+(25,44) 0.00
+(26,26) 528.89
+(26,12) 0.00
+(26,13) 0.00
+(26,14) 31.11
+(26,15) 0.00
+(26,16) 0.00
+(26,17) 147.78
+(26,21) 0.00
+(26,22) 0.00
+(26,23) 31.11
+(26,24) 0.00
+(26,25) 0.00
+(26,27) 0.00
+(26,28) 0.00
+(26,29) 108.89
+(26,30) 0.00
+(26,31) 0.00
+(26,32) 108.89
+(26,33) 0.00
+(26,34) 0.00
+(26,35) 31.11
+(26,36) 0.00
+(26,37) 0.00
+(26,38) 147.78
+(26,42) 0.00
+(26,43) 0.00
+(26,44) 31.11
+(27,27) 152.38
+(27,15) 22.22
+(27,16) 0.00
+(27,17) 0.00
+(27,21) 35.79
+(27,22) 0.00
+(27,23) 0.00
+(27,24) 77.78
+(27,25) 0.00
+(27,26) 0.00
+(27,28) 0.00
+(27,29) 0.00
+(27,36) 22.22
+(27,37) 0.00
+(27,38) 0.00
+(27,42) 35.79
+(27,43) 0.00
+(27,44) 0.00
+(27,117) 0.95
+(27,118) 0.00
+(27,119) 0.00
+(27,123) -1.35
+(27,124) 0.00
+(27,125) 0.00
+(27,135) -6.19
+(27,136) 0.00
+(27,137) 0.00
+(27,138) 3.97
+(27,139) 0.00
+(27,140) 0.00
+(27,141) -1.35
+(27,142) 0.00
+(27,143) 0.00
+(27,144) 7.94
+(27,145) 0.00
+(27,146) 0.00
+(27,147) 1.59
+(27,148) 0.00
+(27,149) 0.00
+(27,159) 0.95
+(27,160) 0.00
+(27,161) 0.00
+(27,162) -1.35
+(27,163) 0.00
+(27,164) 0.00
+(27,174) 3.97
+(27,175) 0.00
+(27,176) 0.00
+(27,177) -1.35
+(27,178) 0.00
+(27,179) 0.00
+(27,180) 1.59
+(27,181) 0.00
+(27,182) 0.00
+(28,28) 182.86
+(28,15) 0.00
+(28,16) 26.67
+(28,17) 0.00
+(28,21) 0.00
+(28,22) 42.95
+(28,23) 0.00
+(28,24) 0.00
+(28,25) 93.33
+(28,26) 0.00
+(28,27) 0.00
+(28,29) 0.00
+(28,36) 0.00
+(28,37) 26.67
+(28,38) 0.00
+(28,42) 0.00
+(28,43) 42.95
+(28,44) 0.00
+(28,117) 0.00
+(28,118) 1.14
+(28,119) 0.00
+(28,123) 0.00
+(28,124) -1.62
+(28,125) 0.00
+(28,135) 0.00
+(28,136) -7.43
+(28,137) 0.00
+(28,138) 0.00
+(28,139) 4.76
+(28,140) 0.00
+(28,141) 0.00
+(28,142) -1.62
+(28,143) 0.00
+(28,144) 0.00
+(28,145) 9.52
+(28,146) 0.00
+(28,147) 0.00
+(28,148) 1.90
+(28,149) 0.00
+(28,159) 0.00
+(28,160) 1.14
+(28,161) 0.00
+(28,162) 0.00
+(28,163) -1.62
+(28,164) 0.00
+(28,174) 0.00
+(28,175) 4.76
+(28,176) 0.00
+(28,177) 0.00
+(28,178) -1.62
+(28,179) 0.00
+(28,180) 0.00
+(28,181) 1.90
+(28,182) 0.00
+(29,29) 213.33
+(29,15) 0.00
+(29,16) 0.00
+(29,17) 31.11
+(29,21) 0.00
+(29,22) 0.00
+(29,23) 50.11
+(29,24) 0.00
+(29,25) 0.00
+(29,26) 108.89
+(29,27) 0.00
+(29,28) 0.00
+(29,36) 0.00
+(29,37) 0.00
+(29,38) 31.11
+(29,42) 0.00
+(29,43) 0.00
+(29,44) 50.11
+(29,117) 0.00
+(29,118) 0.00
+(29,119) 1.33
+(29,123) 0.00
+(29,124) 0.00
+(29,125) -1.89
+(29,135) 0.00
+(29,136) 0.00
+(29,137) -8.67
+(29,138) 0.00
+(29,139) 0.00
+(29,140) 5.56
+(29,141) 0.00
+(29,142) 0.00
+(29,143) -1.89
+(29,144) 0.00
+(29,145) 0.00
+(29,146) 11.11
+(29,147) 0.00
+(29,148) 0.00
+(29,149) 2.22
+(29,159) 0.00
+(29,160) 0.00
+(29,161) 1.33
+(29,162) 0.00
+(29,163) 0.00
+(29,164) -1.89
+(29,174) 0.00
+(29,175) 0.00
+(29,176) 5.56
+(29,177) 0.00
+(29,178) 0.00
+(29,179) -1.89
+(29,180) 0.00
+(29,181) 0.00
+(29,182) 2.22
+(30,30) 147.92
+(30,12) 38.89
+(30,13) 0.00
+(30,14) 0.00
+(30,15) 22.22
+(30,16) 0.00
+(30,17) 0.00
+(30,24) 77.78
+(30,25) 0.00
+(30,26) 0.00
+(30,31) 0.00
+(30,32) 0.00
+(30,33) 38.89
+(30,34) 0.00
+(30,35) 0.00
+(30,36) 22.22
+(30,37) 0.00
+(30,38) 0.00
+(30,210) 3.99
+(30,211) 0.00
+(30,212) 0.00
+(30,213) 7.64
+(30,214) 0.00
+(30,215) 0.00
+(30,225) 7.64
+(30,226) 0.00
+(30,227) 0.00
+(31,31) 177.50
+(31,12) 0.00
+(31,13) 46.67
+(31,14) 0.00
+(31,15) 0.00
+(31,16) 26.67
+(31,17) 0.00
+(31,24) 0.00
+(31,25) 93.33
+(31,26) 0.00
+(31,30) 0.00
+(31,32) 0.00
+(31,33) 0.00
+(31,34) 46.67
+(31,35) 0.00
+(31,36) 0.00
+(31,37) 26.67
+(31,38) 0.00
+(31,210) 0.00
+(31,211) 4.79
+(31,212) 0.00
+(31,213) 0.00
+(31,214) 9.17
+(31,215) 0.00
+(31,225) 0.00
+(31,226) 9.17
+(31,227) 0.00
+(32,32) 207.08
+(32,12) 0.00
+(32,13) 0.00
+(32,14) 54.44
+(32,15) 0.00
+(32,16) 0.00
+(32,17) 31.11
+(32,24) 0.00
+(32,25) 0.00
+(32,26) 108.89
+(32,30) 0.00
+(32,31) 0.00
+(32,33) 0.00
+(32,34) 0.00
+(32,35) 54.44
+(32,36) 0.00
+(32,37) 0.00
+(32,38) 31.11
+(32,210) 0.00
+(32,211) 0.00
+(32,212) 5.59
+(32,213) 0.00
+(32,214) 0.00
+(32,215) 10.69
+(32,225) 0.00
+(32,226) 0.00
+(32,227) 10.69
+(33,33) 188.89
+(33,24) 22.22
+(33,25) 0.00
+(33,26) 0.00
+(33,30) 38.89
+(33,31) 0.00
+(33,32) 0.00
+(33,34) 0.00
+(33,35) 0.00
+(33,36) 105.56
+(33,37) 0.00
+(33,38) 0.00
+(33,39) 38.89
+(33,40) 0.00
+(33,41) 0.00
+(33,42) 22.22
+(33,43) 0.00
+(33,44) 0.00
+(34,34) 226.67
+(34,24) 0.00
+(34,25) 26.67
+(34,26) 0.00
+(34,30) 0.00
+(34,31) 46.67
+(34,32) 0.00
+(34,33) 0.00
+(34,35) 0.00
+(34,36) 0.00
+(34,37) 126.67
+(34,38) 0.00
+(34,39) 0.00
+(34,40) 46.67
+(34,41) 0.00
+(34,42) 0.00
+(34,43) 26.67
+(34,44) 0.00
+(35,35) 264.44
+(35,24) 0.00
+(35,25) 0.00
+(35,26) 31.11
+(35,30) 0.00
+(35,31) 0.00
+(35,32) 54.44
+(35,33) 0.00
+(35,34) 0.00
+(35,36) 0.00
+(35,37) 0.00
+(35,38) 147.78
+(35,39) 0.00
+(35,40) 0.00
+(35,41) 54.44
+(35,42) 0.00
+(35,43) 0.00
+(35,44) 31.11
+(36,36) 366.67
+(36,24) 105.56
+(36,25) 0.00
+(36,26) 0.00
+(36,27) 22.22
+(36,28) 0.00
+(36,29) 0.00
+(36,30) 22.22
+(36,31) 0.00
+(36,32) 0.00
+(36,33) 105.56
+(36,34) 0.00
+(36,35) 0.00
+(36,37) 0.00
+(36,38) 0.00
+(36,39) 22.22
+(36,40) 0.00
+(36,41) 0.00
+(36,42) 105.56
+(36,43) 0.00
+(36,44) 0.00
+(37,37) 440.00
+(37,24) 0.00
+(37,25) 126.67
+(37,26) 0.00
+(37,27) 0.00
+(37,28) 26.67
+(37,29) 0.00
+(37,30) 0.00
+(37,31) 26.67
+(37,32) 0.00
+(37,33) 0.00
+(37,34) 126.67
+(37,35) 0.00
+(37,36) 0.00
+(37,38) 0.00
+(37,39) 0.00
+(37,40) 26.67
+(37,41) 0.00
+(37,42) 0.00
+(37,43) 126.67
+(37,44) 0.00
+(38,38) 513.33
+(38,24) 0.00
+(38,25) 0.00
+(38,26) 147.78
+(38,27) 0.00
+(38,28) 0.00
+(38,29) 31.11
+(38,30) 0.00
+(38,31) 0.00
+(38,32) 31.11
+(38,33) 0.00
+(38,34) 0.00
+(38,35) 147.78
+(38,36) 0.00
+(38,37) 0.00
+(38,39) 0.00
+(38,40) 0.00
+(38,41) 31.11
+(38,42) 0.00
+(38,43) 0.00
+(38,44) 147.78
+(39,39) 66.67
+(39,33) 38.89
+(39,34) 0.00
+(39,35) 0.00
+(39,36) 22.22
+(39,37) 0.00
+(39,38) 0.00
+(39,40) 0.00
+(39,41) 0.00
+(39,42) 38.89
+(39,43) 0.00
+(39,44) 0.00
+(40,40) 80.00
+(40,33) 0.00
+(40,34) 46.67
+(40,35) 0.00
+(40,36) 0.00
+(40,37) 26.67
+(40,38) 0.00
+(40,39) 0.00
+(40,41) 0.00
+(40,42) 0.00
+(40,43) 46.67
+(40,44) 0.00
+(41,41) 93.33
+(41,33) 0.00
+(41,34) 0.00
+(41,35) 54.44
+(41,36) 0.00
+(41,37) 0.00
+(41,38) 31.11
+(41,39) 0.00
+(41,40) 0.00
+(41,42) 0.00
+(41,43) 0.00
+(41,44) 54.44
+(42,42) 221.27
+(42,24) 22.22
+(42,25) 0.00
+(42,26) 0.00
+(42,27) 35.79
+(42,28) 0.00
+(42,29) 0.00
+(42,33) 22.22
+(42,34) 0.00
+(42,35) 0.00
+(42,36) 105.56
+(42,37) 0.00
+(42,38) 0.00
+(42,39) 38.89
+(42,40) 0.00
+(42,41) 0.00
+(42,43) 0.00
+(42,44) 0.00
+(42,66) -3.10
+(42,67) 0.00
+(42,68) 0.00
+(42,72) 0.95
+(42,73) 0.00
+(42,74) 0.00
+(42,78) -1.35
+(42,79) 0.00
+(42,80) 0.00
+(42,135) 0.95
+(42,136) 0.00
+(42,137) 0.00
+(42,144) -1.35
+(42,145) 0.00
+(42,146) 0.00
+(42,159) -9.52
+(42,160) 0.00
+(42,161) 0.00
+(42,162) 14.60
+(42,163) 0.00
+(42,164) 0.00
+(42,165) 8.41
+(42,166) 0.00
+(42,167) 0.00
+(42,168) -2.46
+(42,169) 0.00
+(42,170) 0.00
+(42,171) 3.81
+(42,172) 0.00
+(42,173) 0.00
+(42,174) 8.41
+(42,175) 0.00
+(42,176) 0.00
+(42,177) -2.46
+(42,178) 0.00
+(42,179) 0.00
+(42,180) 3.81
+(42,181) 0.00
+(42,182) 0.00
+(43,43) 265.52
+(43,24) 0.00
+(43,25) 26.67
+(43,26) 0.00
+(43,27) 0.00
+(43,28) 42.95
+(43,29) 0.00
+(43,33) 0.00
+(43,34) 26.67
+(43,35) 0.00
+(43,36) 0.00
+(43,37) 126.67
+(43,38) 0.00
+(43,39) 0.00
+(43,40) 46.67
+(43,41) 0.00
+(43,42) 0.00
+(43,44) 0.00
+(43,66) 0.00
+(43,67) -3.71
+(43,68) 0.00
+(43,72) 0.00
+(43,73) 1.14
+(43,74) 0.00
+(43,78) 0.00
+(43,79) -1.62
+(43,80) 0.00
+(43,135) 0.00
+(43,136) 1.14
+(43,137) 0.00
+(43,144) 0.00
+(43,145) -1.62
+(43,146) 0.00
+(43,159) 0.00
+(43,160) -11.43
+(43,161) 0.00
+(43,162) 0.00
+(43,163) 17.52
+(43,164) 0.00
+(43,165) 0.00
+(43,166) 10.10
+(43,167) 0.00
+(43,168) 0.00
+(43,169) -2.95
+(43,170) 0.00
+(43,171) 0.00
+(43,172) 4.57
+(43,173) 0.00
+(43,174) 0.00
+(43,175) 10.10
+(43,176) 0.00
+(43,177) 0.00
+(43,178) -2.95
+(43,179) 0.00
+(43,180) 0.00
+(43,181) 4.57
+(43,182) 0.00
+(44,44) 309.78
+(44,24) 0.00
+(44,25) 0.00
+(44,26) 31.11
+(44,27) 0.00
+(44,28) 0.00
+(44,29) 50.11
+(44,33) 0.00
+(44,34) 0.00
+(44,35) 31.11
+(44,36) 0.00
+(44,37) 0.00
+(44,38) 147.78
+(44,39) 0.00
+(44,40) 0.00
+(44,41) 54.44
+(44,42) 0.00
+(44,43) 0.00
+(44,66) 0.00
+(44,67) 0.00
+(44,68) -4.33
+(44,72) 0.00
+(44,73) 0.00
+(44,74) 1.33
+(44,78) 0.00
+(44,79) 0.00
+(44,80) -1.89
+(44,135) 0.00
+(44,136) 0.00
+(44,137) 1.33
+(44,144) 0.00
+(44,145) 0.00
+(44,146) -1.89
+(44,159) 0.00
+(44,160) 0.00
+(44,161) -13.33
+(44,162) 0.00
+(44,163) 0.00
+(44,164) 20.44
+(44,165) 0.00
+(44,166) 0.00
+(44,167) 11.78
+(44,168) 0.00
+(44,169) 0.00
+(44,170) -3.44
+(44,171) 0.00
+(44,172) 0.00
+(44,173) 5.33
+(44,174) 0.00
+(44,175) 0.00
+(44,176) 11.78
+(44,177) 0.00
+(44,178) 0.00
+(44,179) -3.44
+(44,180) 0.00
+(44,181) 0.00
+(44,182) 5.33
+(45,45) 188.89
+(45,18) 38.89
+(45,19) 0.00
+(45,20) 0.00
+(45,46) 0.00
+(45,47) 0.00
+(45,48) 105.56
+(45,49) 0.00
+(45,50) 0.00
+(45,51) 22.22
+(45,52) 0.00
+(45,53) 0.00
+(45,54) 38.89
+(45,55) 0.00
+(45,56) 0.00
+(45,57) 22.22
+(45,58) 0.00
+(45,59) 0.00
+(46,46) 226.67
+(46,18) 0.00
+(46,19) 46.67
+(46,20) 0.00
+(46,45) 0.00
+(46,47) 0.00
+(46,48) 0.00
+(46,49) 126.67
+(46,50) 0.00
+(46,51) 0.00
+(46,52) 26.67
+(46,53) 0.00
+(46,54) 0.00
+(46,55) 46.67
+(46,56) 0.00
+(46,57) 0.00
+(46,58) 26.67
+(46,59) 0.00
+(47,47) 264.44
+(47,18) 0.00
+(47,19) 0.00
+(47,20) 54.44
+(47,45) 0.00
+(47,46) 0.00
+(47,48) 0.00
+(47,49) 0.00
+(47,50) 147.78
+(47,51) 0.00
+(47,52) 0.00
+(47,53) 31.11
+(47,54) 0.00
+(47,55) 0.00
+(47,56) 54.44
+(47,57) 0.00
+(47,58) 0.00
+(47,59) 31.11
+(48,48) 366.67
+(48,18) 22.22
+(48,19) 0.00
+(48,20) 0.00
+(48,45) 105.56
+(48,46) 0.00
+(48,47) 0.00
+(48,49) 0.00
+(48,50) 0.00
+(48,51) 105.56
+(48,52) 0.00
+(48,53) 0.00
+(48,54) 22.22
+(48,55) 0.00
+(48,56) 0.00
+(48,57) 105.56
+(48,58) 0.00
+(48,59) 0.00
+(48,60) 22.22
+(48,61) 0.00
+(48,62) 0.00
+(49,49) 440.00
+(49,18) 0.00
+(49,19) 26.67
+(49,20) 0.00
+(49,45) 0.00
+(49,46) 126.67
+(49,47) 0.00
+(49,48) 0.00
+(49,50) 0.00
+(49,51) 0.00
+(49,52) 126.67
+(49,53) 0.00
+(49,54) 0.00
+(49,55) 26.67
+(49,56) 0.00
+(49,57) 0.00
+(49,58) 126.67
+(49,59) 0.00
+(49,60) 0.00
+(49,61) 26.67
+(49,62) 0.00
+(50,50) 513.33
+(50,18) 0.00
+(50,19) 0.00
+(50,20) 31.11
+(50,45) 0.00
+(50,46) 0.00
+(50,47) 147.78
+(50,48) 0.00
+(50,49) 0.00
+(50,51) 0.00
+(50,52) 0.00
+(50,53) 147.78
+(50,54) 0.00
+(50,55) 0.00
+(50,56) 31.11
+(50,57) 0.00
+(50,58) 0.00
+(50,59) 147.78
+(50,60) 0.00
+(50,61) 0.00
+(50,62) 31.11
+(51,51) 221.27
+(51,18) 38.89
+(51,19) 0.00
+(51,20) 0.00
+(51,21) 0.95
+(51,22) 0.00
+(51,23) 0.00
+(51,45) 22.22
+(51,46) 0.00
+(51,47) 0.00
+(51,48) 105.56
+(51,49) 0.00
+(51,50) 0.00
+(51,52) 0.00
+(51,53) 0.00
+(51,57) 22.22
+(51,58) 0.00
+(51,59) 0.00
+(51,60) 35.79
+(51,61) 0.00
+(51,62) 0.00
+(51,114) -3.10
+(51,115) 0.00
+(51,116) 0.00
+(51,117) -9.52
+(51,118) 0.00
+(51,119) 0.00
+(51,120) 8.41
+(51,121) 0.00
+(51,122) 0.00
+(51,123) -2.46
+(51,124) 0.00
+(51,125) 0.00
+(51,126) -1.35
+(51,127) 0.00
+(51,128) 0.00
+(51,129) 14.60
+(51,130) 0.00
+(51,131) 0.00
+(51,132) 3.81
+(51,133) 0.00
+(51,134) 0.00
+(51,135) 0.95
+(51,136) 0.00
+(51,137) 0.00
+(51,141) -2.46
+(51,142) 0.00
+(51,143) 0.00
+(51,150) -1.35
+(51,151) 0.00
+(51,152) 0.00
+(51,153) 8.41
+(51,154) 0.00
+(51,155) 0.00
+(51,156) 3.81
+(51,157) 0.00
+(51,158) 0.00
+(52,52) 265.52
+(52,18) 0.00
+(52,19) 46.67
+(52,20) 0.00
+(52,21) 0.00
+(52,22) 1.14
+(52,23) 0.00
+(52,45) 0.00
+(52,46) 26.67
+(52,47) 0.00
+(52,48) 0.00
+(52,49) 126.67
+(52,50) 0.00
+(52,51) 0.00
+(52,53) 0.00
+(52,57) 0.00
+(52,58) 26.67
+(52,59) 0.00
+(52,60) 0.00
+(52,61) 42.95
+(52,62) 0.00
+(52,114) 0.00
+(52,115) -3.71
+(52,116) 0.00
+(52,117) 0.00
+(52,118) -11.43
+(52,119) 0.00
+(52,120) 0.00
+(52,121) 10.10
+(52,122) 0.00
+(52,123) 0.00
+(52,124) -2.95
+(52,125) 0.00
+(52,126) 0.00
+(52,127) -1.62
+(52,128) 0.00
+(52,129) 0.00
+(52,130) 17.52
+(52,131) 0.00
+(52,132) 0.00
+(52,133) 4.57
+(52,134) 0.00
+(52,135) 0.00
+(52,136) 1.14
+(52,137) 0.00
+(52,141) 0.00
+(52,142) -2.95
+(52,143) 0.00
+(52,150) 0.00
+(52,151) -1.62
+(52,152) 0.00
+(52,153) 0.00
+(52,154) 10.10
+(52,155) 0.00
+(52,156) 0.00
+(52,157) 4.57
+(52,158) 0.00
+(53,53) 309.78
+(53,18) 0.00
+(53,19) 0.00
+(53,20) 54.44
+(53,21) 0.00
+(53,22) 0.00
+(53,23) 1.33
+(53,45) 0.00
+(53,46) 0.00
+(53,47) 31.11
+(53,48) 0.00
+(53,49) 0.00
+(53,50) 147.78
+(53,51) 0.00
+(53,52) 0.00
+(53,57) 0.00
+(53,58) 0.00
+(53,59) 31.11
+(53,60) 0.00
+(53,61) 0.00
+(53,62) 50.11
+(53,114) 0.00
+(53,115) 0.00
+(53,116) -4.33
+(53,117) 0.00
+(53,118) 0.00
+(53,119) -13.33
+(53,120) 0.00
+(53,121) 0.00
+(53,122) 11.78
+(53,123) 0.00
+(53,124) 0.00
+(53,125) -3.44
+(53,126) 0.00
+(53,127) 0.00
+(53,128) -1.89
+(53,129) 0.00
+(53,130) 0.00
+(53,131) 20.44
+(53,132) 0.00
+(53,133) 0.00
+(53,134) 5.33
+(53,135) 0.00
+(53,136) 0.00
+(53,137) 1.33
+(53,141) 0.00
+(53,142) 0.00
+(53,143) -3.44
+(53,150) 0.00
+(53,151) 0.00
+(53,152) -1.89
+(53,153) 0.00
+(53,154) 0.00
+(53,155) 11.78
+(53,156) 0.00
+(53,157) 0.00
+(53,158) 5.33
+(54,54) 66.67
+(54,45) 38.89
+(54,46) 0.00
+(54,47) 0.00
+(54,48) 22.22
+(54,49) 0.00
+(54,50) 0.00
+(54,55) 0.00
+(54,56) 0.00
+(54,57) 38.89
+(54,58) 0.00
+(54,59) 0.00
+(55,55) 80.00
+(55,45) 0.00
+(55,46) 46.67
+(55,47) 0.00
+(55,48) 0.00
+(55,49) 26.67
+(55,50) 0.00
+(55,54) 0.00
+(55,56) 0.00
+(55,57) 0.00
+(55,58) 46.67
+(55,59) 0.00
+(56,56) 93.33
+(56,45) 0.00
+(56,46) 0.00
+(56,47) 54.44
+(56,48) 0.00
+(56,49) 0.00
+(56,50) 31.11
+(56,54) 0.00
+(56,55) 0.00
+(56,57) 0.00
+(56,58) 0.00
+(56,59) 54.44
+(57,57) 221.27
+(57,45) 22.22
+(57,46) 0.00
+(57,47) 0.00
+(57,48) 105.56
+(57,49) 0.00
+(57,50) 0.00
+(57,51) 22.22
+(57,52) 0.00
+(57,53) 0.00
+(57,54) 38.89
+(57,55) 0.00
+(57,56) 0.00
+(57,58) 0.00
+(57,59) 0.00
+(57,60) 35.79
+(57,61) 0.00
+(57,62) 0.00
+(57,63) 0.95
+(57,64) 0.00
+(57,65) 0.00
+(57,69) -9.52
+(57,70) 0.00
+(57,71) 0.00
+(57,72) 0.95
+(57,73) 0.00
+(57,74) 0.00
+(57,75) -2.46
+(57,76) 0.00
+(57,77) 0.00
+(57,84) -2.46
+(57,85) 0.00
+(57,86) 0.00
+(57,90) -3.10
+(57,91) 0.00
+(57,92) 0.00
+(57,93) -1.35
+(57,94) 0.00
+(57,95) 0.00
+(57,96) 14.60
+(57,97) 0.00
+(57,98) 0.00
+(57,99) 8.41
+(57,100) 0.00
+(57,101) 0.00
+(57,102) 3.81
+(57,103) 0.00
+(57,104) 0.00
+(57,105) 8.41
+(57,106) 0.00
+(57,107) 0.00
+(57,108) -1.35
+(57,109) 0.00
+(57,110) 0.00
+(57,111) 3.81
+(57,112) 0.00
+(57,113) 0.00
+(58,58) 265.52
+(58,45) 0.00
+(58,46) 26.67
+(58,47) 0.00
+(58,48) 0.00
+(58,49) 126.67
+(58,50) 0.00
+(58,51) 0.00
+(58,52) 26.67
+(58,53) 0.00
+(58,54) 0.00
+(58,55) 46.67
+(58,56) 0.00
+(58,57) 0.00
+(58,59) 0.00
+(58,60) 0.00
+(58,61) 42.95
+(58,62) 0.00
+(58,63) 0.00
+(58,64) 1.14
+(58,65) 0.00
+(58,69) 0.00
+(58,70) -11.43
+(58,71) 0.00
+(58,72) 0.00
+(58,73) 1.14
+(58,74) 0.00
+(58,75) 0.00
+(58,76) -2.95
+(58,77) 0.00
+(58,84) 0.00
+(58,85) -2.95
+(58,86) 0.00
+(58,90) 0.00
+(58,91) -3.71
+(58,92) 0.00
+(58,93) 0.00
+(58,94) -1.62
+(58,95) 0.00
+(58,96) 0.00
+(58,97) 17.52
+(58,98) 0.00
+(58,99) 0.00
+(58,100) 10.10
+(58,101) 0.00
+(58,102) 0.00
+(58,103) 4.57
+(58,104) 0.00
+(58,105) 0.00
+(58,106) 10.10
+(58,107) 0.00
+(58,108) 0.00
+(58,109) -1.62
+(58,110) 0.00
+(58,111) 0.00
+(58,112) 4.57
+(58,113) 0.00
+(59,59) 309.78
+(59,45) 0.00
+(59,46) 0.00
+(59,47) 31.11
+(59,48) 0.00
+(59,49) 0.00
+(59,50) 147.78
+(59,51) 0.00
+(59,52) 0.00
+(59,53) 31.11
+(59,54) 0.00
+(59,55) 0.00
+(59,56) 54.44
+(59,57) 0.00
+(59,58) 0.00
+(59,60) 0.00
+(59,61) 0.00
+(59,62) 50.11
+(59,63) 0.00
+(59,64) 0.00
+(59,65) 1.33
+(59,69) 0.00
+(59,70) 0.00
+(59,71) -13.33
+(59,72) 0.00
+(59,73) 0.00
+(59,74) 1.33
+(59,75) 0.00
+(59,76) 0.00
+(59,77) -3.44
+(59,84) 0.00
+(59,85) 0.00
+(59,86) -3.44
+(59,90) 0.00
+(59,91) 0.00
+(59,92) -4.33
+(59,93) 0.00
+(59,94) 0.00
+(59,95) -1.89
+(59,96) 0.00
+(59,97) 0.00
+(59,98) 20.44
+(59,99) 0.00
+(59,100) 0.00
+(59,101) 11.78
+(59,102) 0.00
+(59,103) 0.00
+(59,104) 5.33
+(59,105) 0.00
+(59,106) 0.00
+(59,107) 11.78
+(59,108) 0.00
+(59,109) 0.00
+(59,110) -1.89
+(59,111) 0.00
+(59,112) 0.00
+(59,113) 5.33
+(60,60) 95.24
+(60,48) 22.22
+(60,49) 0.00
+(60,50) 0.00
+(60,51) 35.79
+(60,52) 0.00
+(60,53) 0.00
+(60,57) 35.79
+(60,58) 0.00
+(60,59) 0.00
+(60,61) 0.00
+(60,62) 0.00
+(60,69) 0.95
+(60,70) 0.00
+(60,71) 0.00
+(60,72) -6.19
+(60,73) 0.00
+(60,74) 0.00
+(60,84) -1.35
+(60,85) 0.00
+(60,86) 0.00
+(60,96) -1.35
+(60,97) 0.00
+(60,98) 0.00
+(60,105) 3.97
+(60,106) 0.00
+(60,107) 0.00
+(60,108) 7.94
+(60,109) 0.00
+(60,110) 0.00
+(60,111) 1.59
+(60,112) 0.00
+(60,113) 0.00
+(60,117) 0.95
+(60,118) 0.00
+(60,119) 0.00
+(60,129) -1.35
+(60,130) 0.00
+(60,131) 0.00
+(60,135) -6.19
+(60,136) 0.00
+(60,137) 0.00
+(60,141) -1.35
+(60,142) 0.00
+(60,143) 0.00
+(60,150) 7.94
+(60,151) 0.00
+(60,152) 0.00
+(60,153) 3.97
+(60,154) 0.00
+(60,155) 0.00
+(60,156) 1.59
+(60,157) 0.00
+(60,158) 0.00
+(60,159) 0.95
+(60,160) 0.00
+(60,161) 0.00
+(60,168) -1.35
+(60,169) 0.00
+(60,170) 0.00
+(60,177) -1.35
+(60,178) 0.00
+(60,179) 0.00
+(60,183) 1.59
+(60,184) 0.00
+(60,185) 0.00
+(61,61) 114.29
+(61,48) 0.00
+(61,49) 26.67
+(61,50) 0.00
+(61,51) 0.00
+(61,52) 42.95
+(61,53) 0.00
+(61,57) 0.00
+(61,58) 42.95
+(61,59) 0.00
+(61,60) 0.00
+(61,62) 0.00
+(61,69) 0.00
+(61,70) 1.14
+(61,71) 0.00
+(61,72) 0.00
+(61,73) -7.43
+(61,74) 0.00
+(61,84) 0.00
+(61,85) -1.62
+(61,86) 0.00
+(61,96) 0.00
+(61,97) -1.62
+(61,98) 0.00
+(61,105) 0.00
+(61,106) 4.76
+(61,107) 0.00
+(61,108) 0.00
+(61,109) 9.52
+(61,110) 0.00
+(61,111) 0.00
+(61,112) 1.90
+(61,113) 0.00
+(61,117) 0.00
+(61,118) 1.14
+(61,119) 0.00
+(61,129) 0.00
+(61,130) -1.62
+(61,131) 0.00
+(61,135) 0.00
+(61,136) -7.43
+(61,137) 0.00
+(61,141) 0.00
+(61,142) -1.62
+(61,143) 0.00
+(61,150) 0.00
+(61,151) 9.52
+(61,152) 0.00
+(61,153) 0.00
+(61,154) 4.76
+(61,155) 0.00
+(61,156) 0.00
+(61,157) 1.90
+(61,158) 0.00
+(61,159) 0.00
+(61,160) 1.14
+(61,161) 0.00
+(61,168) 0.00
+(61,169) -1.62
+(61,170) 0.00
+(61,177) 0.00
+(61,178) -1.62
+(61,179) 0.00
+(61,183) 0.00
+(61,184) 1.90
+(61,185) 0.00
+(62,62) 133.33
+(62,48) 0.00
+(62,49) 0.00
+(62,50) 31.11
+(62,51) 0.00
+(62,52) 0.00
+(62,53) 50.11
+(62,57) 0.00
+(62,58) 0.00
+(62,59) 50.11
+(62,60) 0.00
+(62,61) 0.00
+(62,69) 0.00
+(62,70) 0.00
+(62,71) 1.33
+(62,72) 0.00
+(62,73) 0.00
+(62,74) -8.67
+(62,84) 0.00
+(62,85) 0.00
+(62,86) -1.89
+(62,96) 0.00
+(62,97) 0.00
+(62,98) -1.89
+(62,105) 0.00
+(62,106) 0.00
+(62,107) 5.56
+(62,108) 0.00
+(62,109) 0.00
+(62,110) 11.11
+(62,111) 0.00
+(62,112) 0.00
+(62,113) 2.22
+(62,117) 0.00
+(62,118) 0.00
+(62,119) 1.33
+(62,129) 0.00
+(62,130) 0.00
+(62,131) -1.89
+(62,135) 0.00
+(62,136) 0.00
+(62,137) -8.67
+(62,141) 0.00
+(62,142) 0.00
+(62,143) -1.89
+(62,150) 0.00
+(62,151) 0.00
+(62,152) 11.11
+(62,153) 0.00
+(62,154) 0.00
+(62,155) 5.56
+(62,156) 0.00
+(62,157) 0.00
+(62,158) 2.22
+(62,159) 0.00
+(62,160) 0.00
+(62,161) 1.33
+(62,168) 0.00
+(62,169) 0.00
+(62,170) -1.89
+(62,177) 0.00
+(62,178) 0.00
+(62,179) -1.89
+(62,183) 0.00
+(62,184) 0.00
+(62,185) 2.22
+(63,63) 32.38
+(63,57) 0.95
+(63,58) 0.00
+(63,59) 0.00
+(63,64) 0.00
+(63,65) 0.00
+(63,66) -3.10
+(63,67) 0.00
+(63,68) 0.00
+(63,69) -9.52
+(63,70) 0.00
+(63,71) 0.00
+(63,72) 0.95
+(63,73) 0.00
+(63,74) 0.00
+(63,75) 14.60
+(63,76) 0.00
+(63,77) 0.00
+(63,78) -1.35
+(63,79) 0.00
+(63,80) 0.00
+(63,81) 8.41
+(63,82) 0.00
+(63,83) 0.00
+(63,84) -2.46
+(63,85) 0.00
+(63,86) 0.00
+(63,87) 3.81
+(63,88) 0.00
+(63,89) 0.00
+(63,90) -3.10
+(63,91) 0.00
+(63,92) 0.00
+(63,93) 8.41
+(63,94) 0.00
+(63,95) 0.00
+(63,96) -2.46
+(63,97) 0.00
+(63,98) 0.00
+(63,99) -1.35
+(63,100) 0.00
+(63,101) 0.00
+(63,102) 3.81
+(63,103) 0.00
+(63,104) 0.00
+(64,64) 38.86
+(64,57) 0.00
+(64,58) 1.14
+(64,59) 0.00
+(64,63) 0.00
+(64,65) 0.00
+(64,66) 0.00
+(64,67) -3.71
+(64,68) 0.00
+(64,69) 0.00
+(64,70) -11.43
+(64,71) 0.00
+(64,72) 0.00
+(64,73) 1.14
+(64,74) 0.00
+(64,75) 0.00
+(64,76) 17.52
+(64,77) 0.00
+(64,78) 0.00
+(64,79) -1.62
+(64,80) 0.00
+(64,81) 0.00
+(64,82) 10.10
+(64,83) 0.00
+(64,84) 0.00
+(64,85) -2.95
+(64,86) 0.00
+(64,87) 0.00
+(64,88) 4.57
+(64,89) 0.00
+(64,90) 0.00
+(64,91) -3.71
+(64,92) 0.00
+(64,93) 0.00
+(64,94) 10.10
+(64,95) 0.00
+(64,96) 0.00
+(64,97) -2.95
+(64,98) 0.00
+(64,99) 0.00
+(64,100) -1.62
+(64,101) 0.00
+(64,102) 0.00
+(64,103) 4.57
+(64,104) 0.00
+(65,65) 45.33
+(65,57) 0.00
+(65,58) 0.00
+(65,59) 1.33
+(65,63) 0.00
+(65,64) 0.00
+(65,66) 0.00
+(65,67) 0.00
+(65,68) -4.33
+(65,69) 0.00
+(65,70) 0.00
+(65,71) -13.33
+(65,72) 0.00
+(65,73) 0.00
+(65,74) 1.33
+(65,75) 0.00
+(65,76) 0.00
+(65,77) 20.44
+(65,78) 0.00
+(65,79) 0.00
+(65,80) -1.89
+(65,81) 0.00
+(65,82) 0.00
+(65,83) 11.78
+(65,84) 0.00
+(65,85) 0.00
+(65,86) -3.44
+(65,87) 0.00
+(65,88) 0.00
+(65,89) 5.33
+(65,90) 0.00
+(65,91) 0.00
+(65,92) -4.33
+(65,93) 0.00
+(65,94) 0.00
+(65,95) 11.78
+(65,96) 0.00
+(65,97) 0.00
+(65,98) -3.44
+(65,99) 0.00
+(65,100) 0.00
+(65,101) -1.89
+(65,102) 0.00
+(65,103) 0.00
+(65,104) 5.33
+(66,66) 19.05
+(66,42) -3.10
+(66,43) 0.00
+(66,44) 0.00
+(66,63) -3.10
+(66,64) 0.00
+(66,65) 0.00
+(66,67) 0.00
+(66,68) 0.00
+(66,69) 0.95
+(66,70) 0.00
+(66,71) 0.00
+(66,72) -6.19
+(66,73) 0.00
+(66,74) 0.00
+(66,75) -1.35
+(66,76) 0.00
+(66,77) 0.00
+(66,78) 7.94
+(66,79) 0.00
+(66,80) 0.00
+(66,81) 3.97
+(66,82) 0.00
+(66,83) 0.00
+(66,84) -1.35
+(66,85) 0.00
+(66,86) 0.00
+(66,87) 1.59
+(66,88) 0.00
+(66,89) 0.00
+(66,159) 0.95
+(66,160) 0.00
+(66,161) 0.00
+(66,162) -1.35
+(66,163) 0.00
+(66,164) 0.00
+(66,165) 3.97
+(66,166) 0.00
+(66,167) 0.00
+(66,168) -1.35
+(66,169) 0.00
+(66,170) 0.00
+(66,171) 1.59
+(66,172) 0.00
+(66,173) 0.00
+(67,67) 22.86
+(67,42) 0.00
+(67,43) -3.71
+(67,44) 0.00
+(67,63) 0.00
+(67,64) -3.71
+(67,65) 0.00
+(67,66) 0.00
+(67,68) 0.00
+(67,69) 0.00
+(67,70) 1.14
+(67,71) 0.00
+(67,72) 0.00
+(67,73) -7.43
+(67,74) 0.00
+(67,75) 0.00
+(67,76) -1.62
+(67,77) 0.00
+(67,78) 0.00
+(67,79) 9.52
+(67,80) 0.00
+(67,81) 0.00
+(67,82) 4.76
+(67,83) 0.00
+(67,84) 0.00
+(67,85) -1.62
+(67,86) 0.00
+(67,87) 0.00
+(67,88) 1.90
+(67,89) 0.00
+(67,159) 0.00
+(67,160) 1.14
+(67,161) 0.00
+(67,162) 0.00
+(67,163) -1.62
+(67,164) 0.00
+(67,165) 0.00
+(67,166) 4.76
+(67,167) 0.00
+(67,168) 0.00
+(67,169) -1.62
+(67,170) 0.00
+(67,171) 0.00
+(67,172) 1.90
+(67,173) 0.00
+(68,68) 26.67
+(68,42) 0.00
+(68,43) 0.00
+(68,44) -4.33
+(68,63) 0.00
+(68,64) 0.00
+(68,65) -4.33
+(68,66) 0.00
+(68,67) 0.00
+(68,69) 0.00
+(68,70) 0.00
+(68,71) 1.33
+(68,72) 0.00
+(68,73) 0.00
+(68,74) -8.67
+(68,75) 0.00
+(68,76) 0.00
+(68,77) -1.89
+(68,78) 0.00
+(68,79) 0.00
+(68,80) 11.11
+(68,81) 0.00
+(68,82) 0.00
+(68,83) 5.56
+(68,84) 0.00
+(68,85) 0.00
+(68,86) -1.89
+(68,87) 0.00
+(68,88) 0.00
+(68,89) 2.22
+(68,159) 0.00
+(68,160) 0.00
+(68,161) 1.33
+(68,162) 0.00
+(68,163) 0.00
+(68,164) -1.89
+(68,165) 0.00
+(68,166) 0.00
+(68,167) 5.56
+(68,168) 0.00
+(68,169) 0.00
+(68,170) -1.89
+(68,171) 0.00
+(68,172) 0.00
+(68,173) 2.22
+(69,69) 68.57
+(69,57) -9.52
+(69,58) 0.00
+(69,59) 0.00
+(69,60) 0.95
+(69,61) 0.00
+(69,62) 0.00
+(69,63) -9.52
+(69,64) 0.00
+(69,65) 0.00
+(69,66) 0.95
+(69,67) 0.00
+(69,68) 0.00
+(69,70) 0.00
+(69,71) 0.00
+(69,72) -9.52
+(69,73) 0.00
+(69,74) 0.00
+(69,75) 23.49
+(69,76) 0.00
+(69,77) 0.00
+(69,78) -2.46
+(69,79) 0.00
+(69,80) 0.00
+(69,81) -2.46
+(69,82) 0.00
+(69,83) 0.00
+(69,84) 23.49
+(69,85) 0.00
+(69,86) 0.00
+(69,87) 6.03
+(69,88) 0.00
+(69,89) 0.00
+(69,90) 0.95
+(69,91) 0.00
+(69,92) 0.00
+(69,93) -2.46
+(69,94) 0.00
+(69,95) 0.00
+(69,96) 23.49
+(69,97) 0.00
+(69,98) 0.00
+(69,99) -2.46
+(69,100) 0.00
+(69,101) 0.00
+(69,102) 6.03
+(69,103) 0.00
+(69,104) 0.00
+(69,105) -2.46
+(69,106) 0.00
+(69,107) 0.00
+(69,108) -2.46
+(69,109) 0.00
+(69,110) 0.00
+(69,111) 6.03
+(69,112) 0.00
+(69,113) 0.00
+(70,70) 82.29
+(70,57) 0.00
+(70,58) -11.43
+(70,59) 0.00
+(70,60) 0.00
+(70,61) 1.14
+(70,62) 0.00
+(70,63) 0.00
+(70,64) -11.43
+(70,65) 0.00
+(70,66) 0.00
+(70,67) 1.14
+(70,68) 0.00
+(70,69) 0.00
+(70,71) 0.00
+(70,72) 0.00
+(70,73) -11.43
+(70,74) 0.00
+(70,75) 0.00
+(70,76) 28.19
+(70,77) 0.00
+(70,78) 0.00
+(70,79) -2.95
+(70,80) 0.00
+(70,81) 0.00
+(70,82) -2.95
+(70,83) 0.00
+(70,84) 0.00
+(70,85) 28.19
+(70,86) 0.00
+(70,87) 0.00
+(70,88) 7.24
+(70,89) 0.00
+(70,90) 0.00
+(70,91) 1.14
+(70,92) 0.00
+(70,93) 0.00
+(70,94) -2.95
+(70,95) 0.00
+(70,96) 0.00
+(70,97) 28.19
+(70,98) 0.00
+(70,99) 0.00
+(70,100) -2.95
+(70,101) 0.00
+(70,102) 0.00
+(70,103) 7.24
+(70,104) 0.00
+(70,105) 0.00
+(70,106) -2.95
+(70,107) 0.00
+(70,108) 0.00
+(70,109) -2.95
+(70,110) 0.00
+(70,111) 0.00
+(70,112) 7.24
+(70,113) 0.00
+(71,71) 96.00
+(71,57) 0.00
+(71,58) 0.00
+(71,59) -13.33
+(71,60) 0.00
+(71,61) 0.00
+(71,62) 1.33
+(71,63) 0.00
+(71,64) 0.00
+(71,65) -13.33
+(71,66) 0.00
+(71,67) 0.00
+(71,68) 1.33
+(71,69) 0.00
+(71,70) 0.00
+(71,72) 0.00
+(71,73) 0.00
+(71,74) -13.33
+(71,75) 0.00
+(71,76) 0.00
+(71,77) 32.89
+(71,78) 0.00
+(71,79) 0.00
+(71,80) -3.44
+(71,81) 0.00
+(71,82) 0.00
+(71,83) -3.44
+(71,84) 0.00
+(71,85) 0.00
+(71,86) 32.89
+(71,87) 0.00
+(71,88) 0.00
+(71,89) 8.44
+(71,90) 0.00
+(71,91) 0.00
+(71,92) 1.33
+(71,93) 0.00
+(71,94) 0.00
+(71,95) -3.44
+(71,96) 0.00
+(71,97) 0.00
+(71,98) 32.89
+(71,99) 0.00
+(71,100) 0.00
+(71,101) -3.44
+(71,102) 0.00
+(71,103) 0.00
+(71,104) 8.44
+(71,105) 0.00
+(71,106) 0.00
+(71,107) -3.44
+(71,108) 0.00
+(71,109) 0.00
+(71,110) -3.44
+(71,111) 0.00
+(71,112) 0.00
+(71,113) 8.44
+(72,72) 64.76
+(72,42) 0.95
+(72,43) 0.00
+(72,44) 0.00
+(72,57) 0.95
+(72,58) 0.00
+(72,59) 0.00
+(72,60) -6.19
+(72,61) 0.00
+(72,62) 0.00
+(72,63) 0.95
+(72,64) 0.00
+(72,65) 0.00
+(72,66) -6.19
+(72,67) 0.00
+(72,68) 0.00
+(72,69) -9.52
+(72,70) 0.00
+(72,71) 0.00
+(72,73) 0.00
+(72,74) 0.00
+(72,75) -2.46
+(72,76) 0.00
+(72,77) 0.00
+(72,78) 16.83
+(72,79) 0.00
+(72,80) 0.00
+(72,81) -1.35
+(72,82) 0.00
+(72,83) 0.00
+(72,84) 14.60
+(72,85) 0.00
+(72,86) 0.00
+(72,87) 3.81
+(72,88) 0.00
+(72,89) 0.00
+(72,96) -2.46
+(72,97) 0.00
+(72,98) 0.00
+(72,105) -1.35
+(72,106) 0.00
+(72,107) 0.00
+(72,108) 16.83
+(72,109) 0.00
+(72,110) 0.00
+(72,111) 3.81
+(72,112) 0.00
+(72,113) 0.00
+(72,135) 0.95
+(72,136) 0.00
+(72,137) 0.00
+(72,150) -1.35
+(72,151) 0.00
+(72,152) 0.00
+(72,159) -9.52
+(72,160) 0.00
+(72,161) 0.00
+(72,162) -2.46
+(72,163) 0.00
+(72,164) 0.00
+(72,165) -1.35
+(72,166) 0.00
+(72,167) 0.00
+(72,168) 14.60
+(72,169) 0.00
+(72,170) 0.00
+(72,171) 3.81
+(72,172) 0.00
+(72,173) 0.00
+(72,177) -2.46
+(72,178) 0.00
+(72,179) 0.00
+(72,183) 3.81
+(72,184) 0.00
+(72,185) 0.00
+(73,73) 77.71
+(73,42) 0.00
+(73,43) 1.14
+(73,44) 0.00
+(73,57) 0.00
+(73,58) 1.14
+(73,59) 0.00
+(73,60) 0.00
+(73,61) -7.43
+(73,62) 0.00
+(73,63) 0.00
+(73,64) 1.14
+(73,65) 0.00
+(73,66) 0.00
+(73,67) -7.43
+(73,68) 0.00
+(73,69) 0.00
+(73,70) -11.43
+(73,71) 0.00
+(73,72) 0.00
+(73,74) 0.00
+(73,75) 0.00
+(73,76) -2.95
+(73,77) 0.00
+(73,78) 0.00
+(73,79) 20.19
+(73,80) 0.00
+(73,81) 0.00
+(73,82) -1.62
+(73,83) 0.00
+(73,84) 0.00
+(73,85) 17.52
+(73,86) 0.00
+(73,87) 0.00
+(73,88) 4.57
+(73,89) 0.00
+(73,96) 0.00
+(73,97) -2.95
+(73,98) 0.00
+(73,105) 0.00
+(73,106) -1.62
+(73,107) 0.00
+(73,108) 0.00
+(73,109) 20.19
+(73,110) 0.00
+(73,111) 0.00
+(73,112) 4.57
+(73,113) 0.00
+(73,135) 0.00
+(73,136) 1.14
+(73,137) 0.00
+(73,150) 0.00
+(73,151) -1.62
+(73,152) 0.00
+(73,159) 0.00
+(73,160) -11.43
+(73,161) 0.00
+(73,162) 0.00
+(73,163) -2.95
+(73,164) 0.00
+(73,165) 0.00
+(73,166) -1.62
+(73,167) 0.00
+(73,168) 0.00
+(73,169) 17.52
+(73,170) 0.00
+(73,171) 0.00
+(73,172) 4.57
+(73,173) 0.00
+(73,177) 0.00
+(73,178) -2.95
+(73,179) 0.00
+(73,183) 0.00
+(73,184) 4.57
+(73,185) 0.00
+(74,74) 90.67
+(74,42) 0.00
+(74,43) 0.00
+(74,44) 1.33
+(74,57) 0.00
+(74,58) 0.00
+(74,59) 1.33
+(74,60) 0.00
+(74,61) 0.00
+(74,62) -8.67
+(74,63) 0.00
+(74,64) 0.00
+(74,65) 1.33
+(74,66) 0.00
+(74,67) 0.00
+(74,68) -8.67
+(74,69) 0.00
+(74,70) 0.00
+(74,71) -13.33
+(74,72) 0.00
+(74,73) 0.00
+(74,75) 0.00
+(74,76) 0.00
+(74,77) -3.44
+(74,78) 0.00
+(74,79) 0.00
+(74,80) 23.56
+(74,81) 0.00
+(74,82) 0.00
+(74,83) -1.89
+(74,84) 0.00
+(74,85) 0.00
+(74,86) 20.44
+(74,87) 0.00
+(74,88) 0.00
+(74,89) 5.33
+(74,96) 0.00
+(74,97) 0.00
+(74,98) -3.44
+(74,105) 0.00
+(74,106) 0.00
+(74,107) -1.89
+(74,108) 0.00
+(74,109) 0.00
+(74,110) 23.56
+(74,111) 0.00
+(74,112) 0.00
+(74,113) 5.33
+(74,135) 0.00
+(74,136) 0.00
+(74,137) 1.33
+(74,150) 0.00
+(74,151) 0.00
+(74,152) -1.89
+(74,159) 0.00
+(74,160) 0.00
+(74,161) -13.33
+(74,162) 0.00
+(74,163) 0.00
+(74,164) -3.44
+(74,165) 0.00
+(74,166) 0.00
+(74,167) -1.89
+(74,168) 0.00
+(74,169) 0.00
+(74,170) 20.44
+(74,171) 0.00
+(74,172) 0.00
+(74,173) 5.33
+(74,177) 0.00
+(74,178) 0.00
+(74,179) -3.44
+(74,183) 0.00
+(74,184) 0.00
+(74,185) 5.33
+(75,75) 147.30
+(75,57) -2.46
+(75,58) 0.00
+(75,59) 0.00
+(75,63) 14.60
+(75,64) 0.00
+(75,65) 0.00
+(75,66) -1.35
+(75,67) 0.00
+(75,68) 0.00
+(75,69) 23.49
+(75,70) 0.00
+(75,71) 0.00
+(75,72) -2.46
+(75,73) 0.00
+(75,74) 0.00
+(75,76) 0.00
+(75,77) 0.00
+(75,78) -14.60
+(75,79) 0.00
+(75,80) 0.00
+(75,81) 3.81
+(75,82) 0.00
+(75,83) 0.00
+(75,84) 6.03
+(75,85) 0.00
+(75,86) 0.00
+(75,87) 38.10
+(75,88) 0.00
+(75,89) 0.00
+(75,90) -1.35
+(75,91) 0.00
+(75,92) 0.00
+(75,93) 3.81
+(75,94) 0.00
+(75,95) 0.00
+(75,96) 6.03
+(75,97) 0.00
+(75,98) 0.00
+(75,99) -14.60
+(75,100) 0.00
+(75,101) 0.00
+(75,102) 38.10
+(75,103) 0.00
+(75,104) 0.00
+(76,76) 176.76
+(76,57) 0.00
+(76,58) -2.95
+(76,59) 0.00
+(76,63) 0.00
+(76,64) 17.52
+(76,65) 0.00
+(76,66) 0.00
+(76,67) -1.62
+(76,68) 0.00
+(76,69) 0.00
+(76,70) 28.19
+(76,71) 0.00
+(76,72) 0.00
+(76,73) -2.95
+(76,74) 0.00
+(76,75) 0.00
+(76,77) 0.00
+(76,78) 0.00
+(76,79) -17.52
+(76,80) 0.00
+(76,81) 0.00
+(76,82) 4.57
+(76,83) 0.00
+(76,84) 0.00
+(76,85) 7.24
+(76,86) 0.00
+(76,87) 0.00
+(76,88) 45.71
+(76,89) 0.00
+(76,90) 0.00
+(76,91) -1.62
+(76,92) 0.00
+(76,93) 0.00
+(76,94) 4.57
+(76,95) 0.00
+(76,96) 0.00
+(76,97) 7.24
+(76,98) 0.00
+(76,99) 0.00
+(76,100) -17.52
+(76,101) 0.00
+(76,102) 0.00
+(76,103) 45.71
+(76,104) 0.00
+(77,77) 206.22
+(77,57) 0.00
+(77,58) 0.00
+(77,59) -3.44
+(77,63) 0.00
+(77,64) 0.00
+(77,65) 20.44
+(77,66) 0.00
+(77,67) 0.00
+(77,68) -1.89
+(77,69) 0.00
+(77,70) 0.00
+(77,71) 32.89
+(77,72) 0.00
+(77,73) 0.00
+(77,74) -3.44
+(77,75) 0.00
+(77,76) 0.00
+(77,78) 0.00
+(77,79) 0.00
+(77,80) -20.44
+(77,81) 0.00
+(77,82) 0.00
+(77,83) 5.33
+(77,84) 0.00
+(77,85) 0.00
+(77,86) 8.44
+(77,87) 0.00
+(77,88) 0.00
+(77,89) 53.33
+(77,90) 0.00
+(77,91) 0.00
+(77,92) -1.89
+(77,93) 0.00
+(77,94) 0.00
+(77,95) 5.33
+(77,96) 0.00
+(77,97) 0.00
+(77,98) 8.44
+(77,99) 0.00
+(77,100) 0.00
+(77,101) -20.44
+(77,102) 0.00
+(77,103) 0.00
+(77,104) 53.33
+(78,78) 93.97
+(78,42) -1.35
+(78,43) 0.00
+(78,44) 0.00
+(78,63) -1.35
+(78,64) 0.00
+(78,65) 0.00
+(78,66) 7.94
+(78,67) 0.00
+(78,68) 0.00
+(78,69) -2.46
+(78,70) 0.00
+(78,71) 0.00
+(78,72) 16.83
+(78,73) 0.00
+(78,74) 0.00
+(78,75) -14.60
+(78,76) 0.00
+(78,77) 0.00
+(78,79) 0.00
+(78,80) 0.00
+(78,81) 1.59
+(78,82) 0.00
+(78,83) 0.00
+(78,84) 3.81
+(78,85) 0.00
+(78,86) 0.00
+(78,87) 20.32
+(78,88) 0.00
+(78,89) 0.00
+(78,159) -2.46
+(78,160) 0.00
+(78,161) 0.00
+(78,162) -14.60
+(78,163) 0.00
+(78,164) 0.00
+(78,165) 1.59
+(78,166) 0.00
+(78,167) 0.00
+(78,168) 3.81
+(78,169) 0.00
+(78,170) 0.00
+(78,171) 20.32
+(78,172) 0.00
+(78,173) 0.00
+(79,79) 112.76
+(79,42) 0.00
+(79,43) -1.62
+(79,44) 0.00
+(79,63) 0.00
+(79,64) -1.62
+(79,65) 0.00
+(79,66) 0.00
+(79,67) 9.52
+(79,68) 0.00
+(79,69) 0.00
+(79,70) -2.95
+(79,71) 0.00
+(79,72) 0.00
+(79,73) 20.19
+(79,74) 0.00
+(79,75) 0.00
+(79,76) -17.52
+(79,77) 0.00
+(79,78) 0.00
+(79,80) 0.00
+(79,81) 0.00
+(79,82) 1.90
+(79,83) 0.00
+(79,84) 0.00
+(79,85) 4.57
+(79,86) 0.00
+(79,87) 0.00
+(79,88) 24.38
+(79,89) 0.00
+(79,159) 0.00
+(79,160) -2.95
+(79,161) 0.00
+(79,162) 0.00
+(79,163) -17.52
+(79,164) 0.00
+(79,165) 0.00
+(79,166) 1.90
+(79,167) 0.00
+(79,168) 0.00
+(79,169) 4.57
+(79,170) 0.00
+(79,171) 0.00
+(79,172) 24.38
+(79,173) 0.00
+(80,80) 131.56
+(80,42) 0.00
+(80,43) 0.00
+(80,44) -1.89
+(80,63) 0.00
+(80,64) 0.00
+(80,65) -1.89
+(80,66) 0.00
+(80,67) 0.00
+(80,68) 11.11
+(80,69) 0.00
+(80,70) 0.00
+(80,71) -3.44
+(80,72) 0.00
+(80,73) 0.00
+(80,74) 23.56
+(80,75) 0.00
+(80,76) 0.00
+(80,77) -20.44
+(80,78) 0.00
+(80,79) 0.00
+(80,81) 0.00
+(80,82) 0.00
+(80,83) 2.22
+(80,84) 0.00
+(80,85) 0.00
+(80,86) 5.33
+(80,87) 0.00
+(80,88) 0.00
+(80,89) 28.44
+(80,159) 0.00
+(80,160) 0.00
+(80,161) -3.44
+(80,162) 0.00
+(80,163) 0.00
+(80,164) -20.44
+(80,165) 0.00
+(80,166) 0.00
+(80,167) 2.22
+(80,168) 0.00
+(80,169) 0.00
+(80,170) 5.33
+(80,171) 0.00
+(80,172) 0.00
+(80,173) 28.44
+(81,81) 46.98
+(81,63) 8.41
+(81,64) 0.00
+(81,65) 0.00
+(81,66) 3.97
+(81,67) 0.00
+(81,68) 0.00
+(81,69) -2.46
+(81,70) 0.00
+(81,71) 0.00
+(81,72) -1.35
+(81,73) 0.00
+(81,74) 0.00
+(81,75) 3.81
+(81,76) 0.00
+(81,77) 0.00
+(81,78) 1.59
+(81,79) 0.00
+(81,80) 0.00
+(81,82) 0.00
+(81,83) 0.00
+(81,84) -14.60
+(81,85) 0.00
+(81,86) 0.00
+(81,87) 20.32
+(81,88) 0.00
+(81,89) 0.00
+(82,82) 56.38
+(82,63) 0.00
+(82,64) 10.10
+(82,65) 0.00
+(82,66) 0.00
+(82,67) 4.76
+(82,68) 0.00
+(82,69) 0.00
+(82,70) -2.95
+(82,71) 0.00
+(82,72) 0.00
+(82,73) -1.62
+(82,74) 0.00
+(82,75) 0.00
+(82,76) 4.57
+(82,77) 0.00
+(82,78) 0.00
+(82,79) 1.90
+(82,80) 0.00
+(82,81) 0.00
+(82,83) 0.00
+(82,84) 0.00
+(82,85) -17.52
+(82,86) 0.00
+(82,87) 0.00
+(82,88) 24.38
+(82,89) 0.00
+(83,83) 65.78
+(83,63) 0.00
+(83,64) 0.00
+(83,65) 11.78
+(83,66) 0.00
+(83,67) 0.00
+(83,68) 5.56
+(83,69) 0.00
+(83,70) 0.00
+(83,71) -3.44
+(83,72) 0.00
+(83,73) 0.00
+(83,74) -1.89
+(83,75) 0.00
+(83,76) 0.00
+(83,77) 5.33
+(83,78) 0.00
+(83,79) 0.00
+(83,80) 2.22
+(83,81) 0.00
+(83,82) 0.00
+(83,84) 0.00
+(83,85) 0.00
+(83,86) -20.44
+(83,87) 0.00
+(83,88) 0.00
+(83,89) 28.44
+(84,84) 147.30
+(84,57) -2.46
+(84,58) 0.00
+(84,59) 0.00
+(84,60) -1.35
+(84,61) 0.00
+(84,62) 0.00
+(84,63) -2.46
+(84,64) 0.00
+(84,65) 0.00
+(84,66) -1.35
+(84,67) 0.00
+(84,68) 0.00
+(84,69) 23.49
+(84,70) 0.00
+(84,71) 0.00
+(84,72) 14.60
+(84,73) 0.00
+(84,74) 0.00
+(84,75) 6.03
+(84,76) 0.00
+(84,77) 0.00
+(84,78) 3.81
+(84,79) 0.00
+(84,80) 0.00
+(84,81) -14.60
+(84,82) 0.00
+(84,83) 0.00
+(84,85) 0.00
+(84,86) 0.00
+(84,87) 38.10
+(84,88) 0.00
+(84,89) 0.00
+(84,96) 6.03
+(84,97) 0.00
+(84,98) 0.00
+(84,105) -14.60
+(84,106) 0.00
+(84,107) 0.00
+(84,108) 3.81
+(84,109) 0.00
+(84,110) 0.00
+(84,111) 38.10
+(84,112) 0.00
+(84,113) 0.00
+(85,85) 176.76
+(85,57) 0.00
+(85,58) -2.95
+(85,59) 0.00
+(85,60) 0.00
+(85,61) -1.62
+(85,62) 0.00
+(85,63) 0.00
+(85,64) -2.95
+(85,65) 0.00
+(85,66) 0.00
+(85,67) -1.62
+(85,68) 0.00
+(85,69) 0.00
+(85,70) 28.19
+(85,71) 0.00
+(85,72) 0.00
+(85,73) 17.52
+(85,74) 0.00
+(85,75) 0.00
+(85,76) 7.24
+(85,77) 0.00
+(85,78) 0.00
+(85,79) 4.57
+(85,80) 0.00
+(85,81) 0.00
+(85,82) -17.52
+(85,83) 0.00
+(85,84) 0.00
+(85,86) 0.00
+(85,87) 0.00
+(85,88) 45.71
+(85,89) 0.00
+(85,96) 0.00
+(85,97) 7.24
+(85,98) 0.00
+(85,105) 0.00
+(85,106) -17.52
+(85,107) 0.00
+(85,108) 0.00
+(85,109) 4.57
+(85,110) 0.00
+(85,111) 0.00
+(85,112) 45.71
+(85,113) 0.00
+(86,86) 206.22
+(86,57) 0.00
+(86,58) 0.00
+(86,59) -3.44
+(86,60) 0.00
+(86,61) 0.00
+(86,62) -1.89
+(86,63) 0.00
+(86,64) 0.00
+(86,65) -3.44
+(86,66) 0.00
+(86,67) 0.00
+(86,68) -1.89
+(86,69) 0.00
+(86,70) 0.00
+(86,71) 32.89
+(86,72) 0.00
+(86,73) 0.00
+(86,74) 20.44
+(86,75) 0.00
+(86,76) 0.00
+(86,77) 8.44
+(86,78) 0.00
+(86,79) 0.00
+(86,80) 5.33
+(86,81) 0.00
+(86,82) 0.00
+(86,83) -20.44
+(86,84) 0.00
+(86,85) 0.00
+(86,87) 0.00
+(86,88) 0.00
+(86,89) 53.33
+(86,96) 0.00
+(86,97) 0.00
+(86,98) 8.44
+(86,105) 0.00
+(86,106) 0.00
+(86,107) -20.44
+(86,108) 0.00
+(86,109) 0.00
+(86,110) 5.33
+(86,111) 0.00
+(86,112) 0.00
+(86,113) 53.33
+(87,87) 223.49
+(87,63) 3.81
+(87,64) 0.00
+(87,65) 0.00
+(87,66) 1.59
+(87,67) 0.00
+(87,68) 0.00
+(87,69) 6.03
+(87,70) 0.00
+(87,71) 0.00
+(87,72) 3.81
+(87,73) 0.00
+(87,74) 0.00
+(87,75) 38.10
+(87,76) 0.00
+(87,77) 0.00
+(87,78) 20.32
+(87,79) 0.00
+(87,80) 0.00
+(87,81) 20.32
+(87,82) 0.00
+(87,83) 0.00
+(87,84) 38.10
+(87,85) 0.00
+(87,86) 0.00
+(87,88) 0.00
+(87,89) 0.00
+(88,88) 268.19
+(88,63) 0.00
+(88,64) 4.57
+(88,65) 0.00
+(88,66) 0.00
+(88,67) 1.90
+(88,68) 0.00
+(88,69) 0.00
+(88,70) 7.24
+(88,71) 0.00
+(88,72) 0.00
+(88,73) 4.57
+(88,74) 0.00
+(88,75) 0.00
+(88,76) 45.71
+(88,77) 0.00
+(88,78) 0.00
+(88,79) 24.38
+(88,80) 0.00
+(88,81) 0.00
+(88,82) 24.38
+(88,83) 0.00
+(88,84) 0.00
+(88,85) 45.71
+(88,86) 0.00
+(88,87) 0.00
+(88,89) 0.00
+(89,89) 312.89
+(89,63) 0.00
+(89,64) 0.00
+(89,65) 5.33
+(89,66) 0.00
+(89,67) 0.00
+(89,68) 2.22
+(89,69) 0.00
+(89,70) 0.00
+(89,71) 8.44
+(89,72) 0.00
+(89,73) 0.00
+(89,74) 5.33
+(89,75) 0.00
+(89,76) 0.00
+(89,77) 53.33
+(89,78) 0.00
+(89,79) 0.00
+(89,80) 28.44
+(89,81) 0.00
+(89,82) 0.00
+(89,83) 28.44
+(89,84) 0.00
+(89,85) 0.00
+(89,86) 53.33
+(89,87) 0.00
+(89,88) 0.00
+(90,90) 11.79
+(90,57) -3.10
+(90,58) 0.00
+(90,59) 0.00
+(90,63) -3.10
+(90,64) 0.00
+(90,65) 0.00
+(90,69) 0.95
+(90,70) 0.00
+(90,71) 0.00
+(90,75) -1.35
+(90,76) 0.00
+(90,77) 0.00
+(90,91) 0.00
+(90,92) 0.00
+(90,93) 3.97
+(90,94) 0.00
+(90,95) 0.00
+(90,96) -1.35
+(90,97) 0.00
+(90,98) 0.00
+(90,99) 3.97
+(90,100) 0.00
+(90,101) 0.00
+(90,102) 1.59
+(90,103) 0.00
+(90,104) 0.00
+(90,207) -0.61
+(90,208) 0.00
+(90,209) 0.00
+(90,236) 0.16
+(90,237) 0.00
+(90,238) 0.00
+(90,239) -0.61
+(90,240) 0.00
+(90,241) 0.00
+(90,242) -0.29
+(90,243) 0.00
+(90,244) 0.00
+(90,245) 1.08
+(90,246) 0.00
+(90,247) 0.00
+(90,248) -0.29
+(90,249) 0.00
+(90,250) 0.00
+(90,251) 1.08
+(90,252) 0.00
+(90,253) 0.00
+(90,254) 0.52
+(90,255) 0.00
+(90,256) 0.00
+(91,91) 14.14
+(91,57) 0.00
+(91,58) -3.71
+(91,59) 0.00
+(91,63) 0.00
+(91,64) -3.71
+(91,65) 0.00
+(91,69) 0.00
+(91,70) 1.14
+(91,71) 0.00
+(91,75) 0.00
+(91,76) -1.62
+(91,77) 0.00
+(91,90) 0.00
+(91,92) 0.00
+(91,93) 0.00
+(91,94) 4.76
+(91,95) 0.00
+(91,96) 0.00
+(91,97) -1.62
+(91,98) 0.00
+(91,99) 0.00
+(91,100) 4.76
+(91,101) 0.00
+(91,102) 0.00
+(91,103) 1.90
+(91,104) 0.00
+(91,207) 0.00
+(91,208) -0.73
+(91,209) 0.00
+(91,236) 0.00
+(91,237) 0.20
+(91,238) 0.00
+(91,239) 0.00
+(91,240) -0.73
+(91,241) 0.00
+(91,242) 0.00
+(91,243) -0.35
+(91,244) 0.00
+(91,245) 0.00
+(91,246) 1.30
+(91,247) 0.00
+(91,248) 0.00
+(91,249) -0.35
+(91,250) 0.00
+(91,251) 0.00
+(91,252) 1.30
+(91,253) 0.00
+(91,254) 0.00
+(91,255) 0.62
+(91,256) 0.00
+(92,92) 16.50
+(92,57) 0.00
+(92,58) 0.00
+(92,59) -4.33
+(92,63) 0.00
+(92,64) 0.00
+(92,65) -4.33
+(92,69) 0.00
+(92,70) 0.00
+(92,71) 1.33
+(92,75) 0.00
+(92,76) 0.00
+(92,77) -1.89
+(92,90) 0.00
+(92,91) 0.00
+(92,93) 0.00
+(92,94) 0.00
+(92,95) 5.56
+(92,96) 0.00
+(92,97) 0.00
+(92,98) -1.89
+(92,99) 0.00
+(92,100) 0.00
+(92,101) 5.56
+(92,102) 0.00
+(92,103) 0.00
+(92,104) 2.22
+(92,207) 0.00
+(92,208) 0.00
+(92,209) -0.85
+(92,236) 0.00
+(92,237) 0.00
+(92,238) 0.23
+(92,239) 0.00
+(92,240) 0.00
+(92,241) -0.85
+(92,242) 0.00
+(92,243) 0.00
+(92,244) -0.41
+(92,245) 0.00
+(92,246) 0.00
+(92,247) 1.51
+(92,248) 0.00
+(92,249) 0.00
+(92,250) -0.41
+(92,251) 0.00
+(92,252) 0.00
+(92,253) 1.51
+(92,254) 0.00
+(92,255) 0.00
+(92,256) 0.72
+(93,93) 46.98
+(93,57) -1.35
+(93,58) 0.00
+(93,59) 0.00
+(93,63) 8.41
+(93,64) 0.00
+(93,65) 0.00
+(93,69) -2.46
+(93,70) 0.00
+(93,71) 0.00
+(93,75) 3.81
+(93,76) 0.00
+(93,77) 0.00
+(93,90) 3.97
+(93,91) 0.00
+(93,92) 0.00
+(93,94) 0.00
+(93,95) 0.00
+(93,96) -14.60
+(93,97) 0.00
+(93,98) 0.00
+(93,99) 1.59
+(93,100) 0.00
+(93,101) 0.00
+(93,102) 20.32
+(93,103) 0.00
+(93,104) 0.00
+(94,94) 56.38
+(94,57) 0.00
+(94,58) -1.62
+(94,59) 0.00
+(94,63) 0.00
+(94,64) 10.10
+(94,65) 0.00
+(94,69) 0.00
+(94,70) -2.95
+(94,71) 0.00
+(94,75) 0.00
+(94,76) 4.57
+(94,77) 0.00
+(94,90) 0.00
+(94,91) 4.76
+(94,92) 0.00
+(94,93) 0.00
+(94,95) 0.00
+(94,96) 0.00
+(94,97) -17.52
+(94,98) 0.00
+(94,99) 0.00
+(94,100) 1.90
+(94,101) 0.00
+(94,102) 0.00
+(94,103) 24.38
+(94,104) 0.00
+(95,95) 65.78
+(95,57) 0.00
+(95,58) 0.00
+(95,59) -1.89
+(95,63) 0.00
+(95,64) 0.00
+(95,65) 11.78
+(95,69) 0.00
+(95,70) 0.00
+(95,71) -3.44
+(95,75) 0.00
+(95,76) 0.00
+(95,77) 5.33
+(95,90) 0.00
+(95,91) 0.00
+(95,92) 5.56
+(95,93) 0.00
+(95,94) 0.00
+(95,96) 0.00
+(95,97) 0.00
+(95,98) -20.44
+(95,99) 0.00
+(95,100) 0.00
+(95,101) 2.22
+(95,102) 0.00
+(95,103) 0.00
+(95,104) 28.44
+(96,96) 147.30
+(96,57) 14.60
+(96,58) 0.00
+(96,59) 0.00
+(96,60) -1.35
+(96,61) 0.00
+(96,62) 0.00
+(96,63) -2.46
+(96,64) 0.00
+(96,65) 0.00
+(96,69) 23.49
+(96,70) 0.00
+(96,71) 0.00
+(96,72) -2.46
+(96,73) 0.00
+(96,74) 0.00
+(96,75) 6.03
+(96,76) 0.00
+(96,77) 0.00
+(96,84) 6.03
+(96,85) 0.00
+(96,86) 0.00
+(96,90) -1.35
+(96,91) 0.00
+(96,92) 0.00
+(96,93) -14.60
+(96,94) 0.00
+(96,95) 0.00
+(96,97) 0.00
+(96,98) 0.00
+(96,99) 3.81
+(96,100) 0.00
+(96,101) 0.00
+(96,102) 38.10
+(96,103) 0.00
+(96,104) 0.00
+(96,105) 3.81
+(96,106) 0.00
+(96,107) 0.00
+(96,108) -14.60
+(96,109) 0.00
+(96,110) 0.00
+(96,111) 38.10
+(96,112) 0.00
+(96,113) 0.00
+(97,97) 176.76
+(97,57) 0.00
+(97,58) 17.52
+(97,59) 0.00
+(97,60) 0.00
+(97,61) -1.62
+(97,62) 0.00
+(97,63) 0.00
+(97,64) -2.95
+(97,65) 0.00
+(97,69) 0.00
+(97,70) 28.19
+(97,71) 0.00
+(97,72) 0.00
+(97,73) -2.95
+(97,74) 0.00
+(97,75) 0.00
+(97,76) 7.24
+(97,77) 0.00
+(97,84) 0.00
+(97,85) 7.24
+(97,86) 0.00
+(97,90) 0.00
+(97,91) -1.62
+(97,92) 0.00
+(97,93) 0.00
+(97,94) -17.52
+(97,95) 0.00
+(97,96) 0.00
+(97,98) 0.00
+(97,99) 0.00
+(97,100) 4.57
+(97,101) 0.00
+(97,102) 0.00
+(97,103) 45.71
+(97,104) 0.00
+(97,105) 0.00
+(97,106) 4.57
+(97,107) 0.00
+(97,108) 0.00
+(97,109) -17.52
+(97,110) 0.00
+(97,111) 0.00
+(97,112) 45.71
+(97,113) 0.00
+(98,98) 206.22
+(98,57) 0.00
+(98,58) 0.00
+(98,59) 20.44
+(98,60) 0.00
+(98,61) 0.00
+(98,62) -1.89
+(98,63) 0.00
+(98,64) 0.00
+(98,65) -3.44
+(98,69) 0.00
+(98,70) 0.00
+(98,71) 32.89
+(98,72) 0.00
+(98,73) 0.00
+(98,74) -3.44
+(98,75) 0.00
+(98,76) 0.00
+(98,77) 8.44
+(98,84) 0.00
+(98,85) 0.00
+(98,86) 8.44
+(98,90) 0.00
+(98,91) 0.00
+(98,92) -1.89
+(98,93) 0.00
+(98,94) 0.00
+(98,95) -20.44
+(98,96) 0.00
+(98,97) 0.00
+(98,99) 0.00
+(98,100) 0.00
+(98,101) 5.33
+(98,102) 0.00
+(98,103) 0.00
+(98,104) 53.33
+(98,105) 0.00
+(98,106) 0.00
+(98,107) 5.33
+(98,108) 0.00
+(98,109) 0.00
+(98,110) -20.44
+(98,111) 0.00
+(98,112) 0.00
+(98,113) 53.33
+(99,99) 46.98
+(99,57) 8.41
+(99,58) 0.00
+(99,59) 0.00
+(99,63) -1.35
+(99,64) 0.00
+(99,65) 0.00
+(99,69) -2.46
+(99,70) 0.00
+(99,71) 0.00
+(99,75) -14.60
+(99,76) 0.00
+(99,77) 0.00
+(99,90) 3.97
+(99,91) 0.00
+(99,92) 0.00
+(99,93) 1.59
+(99,94) 0.00
+(99,95) 0.00
+(99,96) 3.81
+(99,97) 0.00
+(99,98) 0.00
+(99,100) 0.00
+(99,101) 0.00
+(99,102) 20.32
+(99,103) 0.00
+(99,104) 0.00
+(100,100) 56.38
+(100,57) 0.00
+(100,58) 10.10
+(100,59) 0.00
+(100,63) 0.00
+(100,64) -1.62
+(100,65) 0.00
+(100,69) 0.00
+(100,70) -2.95
+(100,71) 0.00
+(100,75) 0.00
+(100,76) -17.52
+(100,77) 0.00
+(100,90) 0.00
+(100,91) 4.76
+(100,92) 0.00
+(100,93) 0.00
+(100,94) 1.90
+(100,95) 0.00
+(100,96) 0.00
+(100,97) 4.57
+(100,98) 0.00
+(100,99) 0.00
+(100,101) 0.00
+(100,102) 0.00
+(100,103) 24.38
+(100,104) 0.00
+(101,101) 65.78
+(101,57) 0.00
+(101,58) 0.00
+(101,59) 11.78
+(101,63) 0.00
+(101,64) 0.00
+(101,65) -1.89
+(101,69) 0.00
+(101,70) 0.00
+(101,71) -3.44
+(101,75) 0.00
+(101,76) 0.00
+(101,77) -20.44
+(101,90) 0.00
+(101,91) 0.00
+(101,92) 5.56
+(101,93) 0.00
+(101,94) 0.00
+(101,95) 2.22
+(101,96) 0.00
+(101,97) 0.00
+(101,98) 5.33
+(101,99) 0.00
+(101,100) 0.00
+(101,102) 0.00
+(101,103) 0.00
+(101,104) 28.44
+(102,102) 223.49
+(102,57) 3.81
+(102,58) 0.00
+(102,59) 0.00
+(102,63) 3.81
+(102,64) 0.00
+(102,65) 0.00
+(102,69) 6.03
+(102,70) 0.00
+(102,71) 0.00
+(102,75) 38.10
+(102,76) 0.00
+(102,77) 0.00
+(102,90) 1.59
+(102,91) 0.00
+(102,92) 0.00
+(102,93) 20.32
+(102,94) 0.00
+(102,95) 0.00
+(102,96) 38.10
+(102,97) 0.00
+(102,98) 0.00
+(102,99) 20.32
+(102,100) 0.00
+(102,101) 0.00
+(102,103) 0.00
+(102,104) 0.00
+(103,103) 268.19
+(103,57) 0.00
+(103,58) 4.57
+(103,59) 0.00
+(103,63) 0.00
+(103,64) 4.57
+(103,65) 0.00
+(103,69) 0.00
+(103,70) 7.24
+(103,71) 0.00
+(103,75) 0.00
+(103,76) 45.71
+(103,77) 0.00
+(103,90) 0.00
+(103,91) 1.90
+(103,92) 0.00
+(103,93) 0.00
+(103,94) 24.38
+(103,95) 0.00
+(103,96) 0.00
+(103,97) 45.71
+(103,98) 0.00
+(103,99) 0.00
+(103,100) 24.38
+(103,101) 0.00
+(103,102) 0.00
+(103,104) 0.00
+(104,104) 312.89
+(104,57) 0.00
+(104,58) 0.00
+(104,59) 5.33
+(104,63) 0.00
+(104,64) 0.00
+(104,65) 5.33
+(104,69) 0.00
+(104,70) 0.00
+(104,71) 8.44
+(104,75) 0.00
+(104,76) 0.00
+(104,77) 53.33
+(104,90) 0.00
+(104,91) 0.00
+(104,92) 2.22
+(104,93) 0.00
+(104,94) 0.00
+(104,95) 28.44
+(104,96) 0.00
+(104,97) 0.00
+(104,98) 53.33
+(104,99) 0.00
+(104,100) 0.00
+(104,101) 28.44
+(104,102) 0.00
+(104,103) 0.00
+(105,105) 46.98
+(105,57) 8.41
+(105,58) 0.00
+(105,59) 0.00
+(105,60) 3.97
+(105,61) 0.00
+(105,62) 0.00
+(105,69) -2.46
+(105,70) 0.00
+(105,71) 0.00
+(105,72) -1.35
+(105,73) 0.00
+(105,74) 0.00
+(105,84) -14.60
+(105,85) 0.00
+(105,86) 0.00
+(105,96) 3.81
+(105,97) 0.00
+(105,98) 0.00
+(105,106) 0.00
+(105,107) 0.00
+(105,108) 1.59
+(105,109) 0.00
+(105,110) 0.00
+(105,111) 20.32
+(105,112) 0.00
+(105,113) 0.00
+(106,106) 56.38
+(106,57) 0.00
+(106,58) 10.10
+(106,59) 0.00
+(106,60) 0.00
+(106,61) 4.76
+(106,62) 0.00
+(106,69) 0.00
+(106,70) -2.95
+(106,71) 0.00
+(106,72) 0.00
+(106,73) -1.62
+(106,74) 0.00
+(106,84) 0.00
+(106,85) -17.52
+(106,86) 0.00
+(106,96) 0.00
+(106,97) 4.57
+(106,98) 0.00
+(106,105) 0.00
+(106,107) 0.00
+(106,108) 0.00
+(106,109) 1.90
+(106,110) 0.00
+(106,111) 0.00
+(106,112) 24.38
+(106,113) 0.00
+(107,107) 65.78
+(107,57) 0.00
+(107,58) 0.00
+(107,59) 11.78
+(107,60) 0.00
+(107,61) 0.00
+(107,62) 5.56
+(107,69) 0.00
+(107,70) 0.00
+(107,71) -3.44
+(107,72) 0.00
+(107,73) 0.00
+(107,74) -1.89
+(107,84) 0.00
+(107,85) 0.00
+(107,86) -20.44
+(107,96) 0.00
+(107,97) 0.00
+(107,98) 5.33
+(107,105) 0.00
+(107,106) 0.00
+(107,108) 0.00
+(107,109) 0.00
+(107,110) 2.22
+(107,111) 0.00
+(107,112) 0.00
+(107,113) 28.44
+(108,108) 93.97
+(108,57) -1.35
+(108,58) 0.00
+(108,59) 0.00
+(108,60) 7.94
+(108,61) 0.00
+(108,62) 0.00
+(108,69) -2.46
+(108,70) 0.00
+(108,71) 0.00
+(108,72) 16.83
+(108,73) 0.00
+(108,74) 0.00
+(108,84) 3.81
+(108,85) 0.00
+(108,86) 0.00
+(108,96) -14.60
+(108,97) 0.00
+(108,98) 0.00
+(108,105) 1.59
+(108,106) 0.00
+(108,107) 0.00
+(108,109) 0.00
+(108,110) 0.00
+(108,111) 20.32
+(108,112) 0.00
+(108,113) 0.00
+(108,135) -1.35
+(108,136) 0.00
+(108,137) 0.00
+(108,150) 1.59
+(108,151) 0.00
+(108,152) 0.00
+(108,159) -2.46
+(108,160) 0.00
+(108,161) 0.00
+(108,168) 3.81
+(108,169) 0.00
+(108,170) 0.00
+(108,177) -14.60
+(108,178) 0.00
+(108,179) 0.00
+(108,183) 20.32
+(108,184) 0.00
+(108,185) 0.00
+(109,109) 112.76
+(109,57) 0.00
+(109,58) -1.62
+(109,59) 0.00
+(109,60) 0.00
+(109,61) 9.52
+(109,62) 0.00
+(109,69) 0.00
+(109,70) -2.95
+(109,71) 0.00
+(109,72) 0.00
+(109,73) 20.19
+(109,74) 0.00
+(109,84) 0.00
+(109,85) 4.57
+(109,86) 0.00
+(109,96) 0.00
+(109,97) -17.52
+(109,98) 0.00
+(109,105) 0.00
+(109,106) 1.90
+(109,107) 0.00
+(109,108) 0.00
+(109,110) 0.00
+(109,111) 0.00
+(109,112) 24.38
+(109,113) 0.00
+(109,135) 0.00
+(109,136) -1.62
+(109,137) 0.00
+(109,150) 0.00
+(109,151) 1.90
+(109,152) 0.00
+(109,159) 0.00
+(109,160) -2.95
+(109,161) 0.00
+(109,168) 0.00
+(109,169) 4.57
+(109,170) 0.00
+(109,177) 0.00
+(109,178) -17.52
+(109,179) 0.00
+(109,183) 0.00
+(109,184) 24.38
+(109,185) 0.00
+(110,110) 131.56
+(110,57) 0.00
+(110,58) 0.00
+(110,59) -1.89
+(110,60) 0.00
+(110,61) 0.00
+(110,62) 11.11
+(110,69) 0.00
+(110,70) 0.00
+(110,71) -3.44
+(110,72) 0.00
+(110,73) 0.00
+(110,74) 23.56
+(110,84) 0.00
+(110,85) 0.00
+(110,86) 5.33
+(110,96) 0.00
+(110,97) 0.00
+(110,98) -20.44
+(110,105) 0.00
+(110,106) 0.00
+(110,107) 2.22
+(110,108) 0.00
+(110,109) 0.00
+(110,111) 0.00
+(110,112) 0.00
+(110,113) 28.44
+(110,135) 0.00
+(110,136) 0.00
+(110,137) -1.89
+(110,150) 0.00
+(110,151) 0.00
+(110,152) 2.22
+(110,159) 0.00
+(110,160) 0.00
+(110,161) -3.44
+(110,168) 0.00
+(110,169) 0.00
+(110,170) 5.33
+(110,177) 0.00
+(110,178) 0.00
+(110,179) -20.44
+(110,183) 0.00
+(110,184) 0.00
+(110,185) 28.44
+(111,111) 223.49
+(111,57) 3.81
+(111,58) 0.00
+(111,59) 0.00
+(111,60) 1.59
+(111,61) 0.00
+(111,62) 0.00
+(111,69) 6.03
+(111,70) 0.00
+(111,71) 0.00
+(111,72) 3.81
+(111,73) 0.00
+(111,74) 0.00
+(111,84) 38.10
+(111,85) 0.00
+(111,86) 0.00
+(111,96) 38.10
+(111,97) 0.00
+(111,98) 0.00
+(111,105) 20.32
+(111,106) 0.00
+(111,107) 0.00
+(111,108) 20.32
+(111,109) 0.00
+(111,110) 0.00
+(111,112) 0.00
+(111,113) 0.00
+(112,112) 268.19
+(112,57) 0.00
+(112,58) 4.57
+(112,59) 0.00
+(112,60) 0.00
+(112,61) 1.90
+(112,62) 0.00
+(112,69) 0.00
+(112,70) 7.24
+(112,71) 0.00
+(112,72) 0.00
+(112,73) 4.57
+(112,74) 0.00
+(112,84) 0.00
+(112,85) 45.71
+(112,86) 0.00
+(112,96) 0.00
+(112,97) 45.71
+(112,98) 0.00
+(112,105) 0.00
+(112,106) 24.38
+(112,107) 0.00
+(112,108) 0.00
+(112,109) 24.38
+(112,110) 0.00
+(112,111) 0.00
+(112,113) 0.00
+(113,113) 312.89
+(113,57) 0.00
+(113,58) 0.00
+(113,59) 5.33
+(113,60) 0.00
+(113,61) 0.00
+(113,62) 2.22
+(113,69) 0.00
+(113,70) 0.00
+(113,71) 8.44
+(113,72) 0.00
+(113,73) 0.00
+(113,74) 5.33
+(113,84) 0.00
+(113,85) 0.00
+(113,86) 53.33
+(113,96) 0.00
+(113,97) 0.00
+(113,98) 53.33
+(113,105) 0.00
+(113,106) 0.00
+(113,107) 28.44
+(113,108) 0.00
+(113,109) 0.00
+(113,110) 28.44
+(113,111) 0.00
+(113,112) 0.00
+(114,114) 9.52
+(114,21) -3.10
+(114,22) 0.00
+(114,23) 0.00
+(114,51) -3.10
+(114,52) 0.00
+(114,53) 0.00
+(114,115) 0.00
+(114,116) 0.00
+(114,117) 0.95
+(114,118) 0.00
+(114,119) 0.00
+(114,120) 3.97
+(114,121) 0.00
+(114,122) 0.00
+(114,123) -1.35
+(114,124) 0.00
+(114,125) 0.00
+(114,126) 3.97
+(114,127) 0.00
+(114,128) 0.00
+(114,129) -1.35
+(114,130) 0.00
+(114,131) 0.00
+(114,132) 1.59
+(114,133) 0.00
+(114,134) 0.00
+(115,115) 11.43
+(115,21) 0.00
+(115,22) -3.71
+(115,23) 0.00
+(115,51) 0.00
+(115,52) -3.71
+(115,53) 0.00
+(115,114) 0.00
+(115,116) 0.00
+(115,117) 0.00
+(115,118) 1.14
+(115,119) 0.00
+(115,120) 0.00
+(115,121) 4.76
+(115,122) 0.00
+(115,123) 0.00
+(115,124) -1.62
+(115,125) 0.00
+(115,126) 0.00
+(115,127) 4.76
+(115,128) 0.00
+(115,129) 0.00
+(115,130) -1.62
+(115,131) 0.00
+(115,132) 0.00
+(115,133) 1.90
+(115,134) 0.00
+(116,116) 13.33
+(116,21) 0.00
+(116,22) 0.00
+(116,23) -4.33
+(116,51) 0.00
+(116,52) 0.00
+(116,53) -4.33
+(116,114) 0.00
+(116,115) 0.00
+(116,117) 0.00
+(116,118) 0.00
+(116,119) 1.33
+(116,120) 0.00
+(116,121) 0.00
+(116,122) 5.56
+(116,123) 0.00
+(116,124) 0.00
+(116,125) -1.89
+(116,126) 0.00
+(116,127) 0.00
+(116,128) 5.56
+(116,129) 0.00
+(116,130) 0.00
+(116,131) -1.89
+(116,132) 0.00
+(116,133) 0.00
+(116,134) 2.22
+(117,117) 68.57
+(117,21) -9.52
+(117,22) 0.00
+(117,23) 0.00
+(117,27) 0.95
+(117,28) 0.00
+(117,29) 0.00
+(117,51) -9.52
+(117,52) 0.00
+(117,53) 0.00
+(117,60) 0.95
+(117,61) 0.00
+(117,62) 0.00
+(117,114) 0.95
+(117,115) 0.00
+(117,116) 0.00
+(117,118) 0.00
+(117,119) 0.00
+(117,120) -2.46
+(117,121) 0.00
+(117,122) 0.00
+(117,123) 23.49
+(117,124) 0.00
+(117,125) 0.00
+(117,126) -2.46
+(117,127) 0.00
+(117,128) 0.00
+(117,129) 23.49
+(117,130) 0.00
+(117,131) 0.00
+(117,132) 6.03
+(117,133) 0.00
+(117,134) 0.00
+(117,135) -9.52
+(117,136) 0.00
+(117,137) 0.00
+(117,138) -2.46
+(117,139) 0.00
+(117,140) 0.00
+(117,141) 23.49
+(117,142) 0.00
+(117,143) 0.00
+(117,144) -2.46
+(117,145) 0.00
+(117,146) 0.00
+(117,147) 6.03
+(117,148) 0.00
+(117,149) 0.00
+(117,150) -2.46
+(117,151) 0.00
+(117,152) 0.00
+(117,153) -2.46
+(117,154) 0.00
+(117,155) 0.00
+(117,156) 6.03
+(117,157) 0.00
+(117,158) 0.00
+(118,118) 82.29
+(118,21) 0.00
+(118,22) -11.43
+(118,23) 0.00
+(118,27) 0.00
+(118,28) 1.14
+(118,29) 0.00
+(118,51) 0.00
+(118,52) -11.43
+(118,53) 0.00
+(118,60) 0.00
+(118,61) 1.14
+(118,62) 0.00
+(118,114) 0.00
+(118,115) 1.14
+(118,116) 0.00
+(118,117) 0.00
+(118,119) 0.00
+(118,120) 0.00
+(118,121) -2.95
+(118,122) 0.00
+(118,123) 0.00
+(118,124) 28.19
+(118,125) 0.00
+(118,126) 0.00
+(118,127) -2.95
+(118,128) 0.00
+(118,129) 0.00
+(118,130) 28.19
+(118,131) 0.00
+(118,132) 0.00
+(118,133) 7.24
+(118,134) 0.00
+(118,135) 0.00
+(118,136) -11.43
+(118,137) 0.00
+(118,138) 0.00
+(118,139) -2.95
+(118,140) 0.00
+(118,141) 0.00
+(118,142) 28.19
+(118,143) 0.00
+(118,144) 0.00
+(118,145) -2.95
+(118,146) 0.00
+(118,147) 0.00
+(118,148) 7.24
+(118,149) 0.00
+(118,150) 0.00
+(118,151) -2.95
+(118,152) 0.00
+(118,153) 0.00
+(118,154) -2.95
+(118,155) 0.00
+(118,156) 0.00
+(118,157) 7.24
+(118,158) 0.00
+(119,119) 96.00
+(119,21) 0.00
+(119,22) 0.00
+(119,23) -13.33
+(119,27) 0.00
+(119,28) 0.00
+(119,29) 1.33
+(119,51) 0.00
+(119,52) 0.00
+(119,53) -13.33
+(119,60) 0.00
+(119,61) 0.00
+(119,62) 1.33
+(119,114) 0.00
+(119,115) 0.00
+(119,116) 1.33
+(119,117) 0.00
+(119,118) 0.00
+(119,120) 0.00
+(119,121) 0.00
+(119,122) -3.44
+(119,123) 0.00
+(119,124) 0.00
+(119,125) 32.89
+(119,126) 0.00
+(119,127) 0.00
+(119,128) -3.44
+(119,129) 0.00
+(119,130) 0.00
+(119,131) 32.89
+(119,132) 0.00
+(119,133) 0.00
+(119,134) 8.44
+(119,135) 0.00
+(119,136) 0.00
+(119,137) -13.33
+(119,138) 0.00
+(119,139) 0.00
+(119,140) -3.44
+(119,141) 0.00
+(119,142) 0.00
+(119,143) 32.89
+(119,144) 0.00
+(119,145) 0.00
+(119,146) -3.44
+(119,147) 0.00
+(119,148) 0.00
+(119,149) 8.44
+(119,150) 0.00
+(119,151) 0.00
+(119,152) -3.44
+(119,153) 0.00
+(119,154) 0.00
+(119,155) -3.44
+(119,156) 0.00
+(119,157) 0.00
+(119,158) 8.44
+(120,120) 46.98
+(120,21) -1.35
+(120,22) 0.00
+(120,23) 0.00
+(120,51) 8.41
+(120,52) 0.00
+(120,53) 0.00
+(120,114) 3.97
+(120,115) 0.00
+(120,116) 0.00
+(120,117) -2.46
+(120,118) 0.00
+(120,119) 0.00
+(120,121) 0.00
+(120,122) 0.00
+(120,123) -14.60
+(120,124) 0.00
+(120,125) 0.00
+(120,126) 1.59
+(120,127) 0.00
+(120,128) 0.00
+(120,129) 3.81
+(120,130) 0.00
+(120,131) 0.00
+(120,132) 20.32
+(120,133) 0.00
+(120,134) 0.00
+(121,121) 56.38
+(121,21) 0.00
+(121,22) -1.62
+(121,23) 0.00
+(121,51) 0.00
+(121,52) 10.10
+(121,53) 0.00
+(121,114) 0.00
+(121,115) 4.76
+(121,116) 0.00
+(121,117) 0.00
+(121,118) -2.95
+(121,119) 0.00
+(121,120) 0.00
+(121,122) 0.00
+(121,123) 0.00
+(121,124) -17.52
+(121,125) 0.00
+(121,126) 0.00
+(121,127) 1.90
+(121,128) 0.00
+(121,129) 0.00
+(121,130) 4.57
+(121,131) 0.00
+(121,132) 0.00
+(121,133) 24.38
+(121,134) 0.00
+(122,122) 65.78
+(122,21) 0.00
+(122,22) 0.00
+(122,23) -1.89
+(122,51) 0.00
+(122,52) 0.00
+(122,53) 11.78
+(122,114) 0.00
+(122,115) 0.00
+(122,116) 5.56
+(122,117) 0.00
+(122,118) 0.00
+(122,119) -3.44
+(122,120) 0.00
+(122,121) 0.00
+(122,123) 0.00
+(122,124) 0.00
+(122,125) -20.44
+(122,126) 0.00
+(122,127) 0.00
+(122,128) 2.22
+(122,129) 0.00
+(122,130) 0.00
+(122,131) 5.33
+(122,132) 0.00
+(122,133) 0.00
+(122,134) 28.44
+(123,123) 147.30
+(123,21) 14.60
+(123,22) 0.00
+(123,23) 0.00
+(123,27) -1.35
+(123,28) 0.00
+(123,29) 0.00
+(123,51) -2.46
+(123,52) 0.00
+(123,53) 0.00
+(123,114) -1.35
+(123,115) 0.00
+(123,116) 0.00
+(123,117) 23.49
+(123,118) 0.00
+(123,119) 0.00
+(123,120) -14.60
+(123,121) 0.00
+(123,122) 0.00
+(123,124) 0.00
+(123,125) 0.00
+(123,126) 3.81
+(123,127) 0.00
+(123,128) 0.00
+(123,129) 6.03
+(123,130) 0.00
+(123,131) 0.00
+(123,132) 38.10
+(123,133) 0.00
+(123,134) 0.00
+(123,135) -2.46
+(123,136) 0.00
+(123,137) 0.00
+(123,138) 3.81
+(123,139) 0.00
+(123,140) 0.00
+(123,141) 6.03
+(123,142) 0.00
+(123,143) 0.00
+(123,144) -14.60
+(123,145) 0.00
+(123,146) 0.00
+(123,147) 38.10
+(123,148) 0.00
+(123,149) 0.00
+(124,124) 176.76
+(124,21) 0.00
+(124,22) 17.52
+(124,23) 0.00
+(124,27) 0.00
+(124,28) -1.62
+(124,29) 0.00
+(124,51) 0.00
+(124,52) -2.95
+(124,53) 0.00
+(124,114) 0.00
+(124,115) -1.62
+(124,116) 0.00
+(124,117) 0.00
+(124,118) 28.19
+(124,119) 0.00
+(124,120) 0.00
+(124,121) -17.52
+(124,122) 0.00
+(124,123) 0.00
+(124,125) 0.00
+(124,126) 0.00
+(124,127) 4.57
+(124,128) 0.00
+(124,129) 0.00
+(124,130) 7.24
+(124,131) 0.00
+(124,132) 0.00
+(124,133) 45.71
+(124,134) 0.00
+(124,135) 0.00
+(124,136) -2.95
+(124,137) 0.00
+(124,138) 0.00
+(124,139) 4.57
+(124,140) 0.00
+(124,141) 0.00
+(124,142) 7.24
+(124,143) 0.00
+(124,144) 0.00
+(124,145) -17.52
+(124,146) 0.00
+(124,147) 0.00
+(124,148) 45.71
+(124,149) 0.00
+(125,125) 206.22
+(125,21) 0.00
+(125,22) 0.00
+(125,23) 20.44
+(125,27) 0.00
+(125,28) 0.00
+(125,29) -1.89
+(125,51) 0.00
+(125,52) 0.00
+(125,53) -3.44
+(125,114) 0.00
+(125,115) 0.00
+(125,116) -1.89
+(125,117) 0.00
+(125,118) 0.00
+(125,119) 32.89
+(125,120) 0.00
+(125,121) 0.00
+(125,122) -20.44
+(125,123) 0.00
+(125,124) 0.00
+(125,126) 0.00
+(125,127) 0.00
+(125,128) 5.33
+(125,129) 0.00
+(125,130) 0.00
+(125,131) 8.44
+(125,132) 0.00
+(125,133) 0.00
+(125,134) 53.33
+(125,135) 0.00
+(125,136) 0.00
+(125,137) -3.44
+(125,138) 0.00
+(125,139) 0.00
+(125,140) 5.33
+(125,141) 0.00
+(125,142) 0.00
+(125,143) 8.44
+(125,144) 0.00
+(125,145) 0.00
+(125,146) -20.44
+(125,147) 0.00
+(125,148) 0.00
+(125,149) 53.33
+(126,126) 46.98
+(126,21) 8.41
+(126,22) 0.00
+(126,23) 0.00
+(126,51) -1.35
+(126,52) 0.00
+(126,53) 0.00
+(126,114) 3.97
+(126,115) 0.00
+(126,116) 0.00
+(126,117) -2.46
+(126,118) 0.00
+(126,119) 0.00
+(126,120) 1.59
+(126,121) 0.00
+(126,122) 0.00
+(126,123) 3.81
+(126,124) 0.00
+(126,125) 0.00
+(126,127) 0.00
+(126,128) 0.00
+(126,129) -14.60
+(126,130) 0.00
+(126,131) 0.00
+(126,132) 20.32
+(126,133) 0.00
+(126,134) 0.00
+(127,127) 56.38
+(127,21) 0.00
+(127,22) 10.10
+(127,23) 0.00
+(127,51) 0.00
+(127,52) -1.62
+(127,53) 0.00
+(127,114) 0.00
+(127,115) 4.76
+(127,116) 0.00
+(127,117) 0.00
+(127,118) -2.95
+(127,119) 0.00
+(127,120) 0.00
+(127,121) 1.90
+(127,122) 0.00
+(127,123) 0.00
+(127,124) 4.57
+(127,125) 0.00
+(127,126) 0.00
+(127,128) 0.00
+(127,129) 0.00
+(127,130) -17.52
+(127,131) 0.00
+(127,132) 0.00
+(127,133) 24.38
+(127,134) 0.00
+(128,128) 65.78
+(128,21) 0.00
+(128,22) 0.00
+(128,23) 11.78
+(128,51) 0.00
+(128,52) 0.00
+(128,53) -1.89
+(128,114) 0.00
+(128,115) 0.00
+(128,116) 5.56
+(128,117) 0.00
+(128,118) 0.00
+(128,119) -3.44
+(128,120) 0.00
+(128,121) 0.00
+(128,122) 2.22
+(128,123) 0.00
+(128,124) 0.00
+(128,125) 5.33
+(128,126) 0.00
+(128,127) 0.00
+(128,129) 0.00
+(128,130) 0.00
+(128,131) -20.44
+(128,132) 0.00
+(128,133) 0.00
+(128,134) 28.44
+(129,129) 147.30
+(129,21) -2.46
+(129,22) 0.00
+(129,23) 0.00
+(129,51) 14.60
+(129,52) 0.00
+(129,53) 0.00
+(129,60) -1.35
+(129,61) 0.00
+(129,62) 0.00
+(129,114) -1.35
+(129,115) 0.00
+(129,116) 0.00
+(129,117) 23.49
+(129,118) 0.00
+(129,119) 0.00
+(129,120) 3.81
+(129,121) 0.00
+(129,122) 0.00
+(129,123) 6.03
+(129,124) 0.00
+(129,125) 0.00
+(129,126) -14.60
+(129,127) 0.00
+(129,128) 0.00
+(129,130) 0.00
+(129,131) 0.00
+(129,132) 38.10
+(129,133) 0.00
+(129,134) 0.00
+(129,135) -2.46
+(129,136) 0.00
+(129,137) 0.00
+(129,141) 6.03
+(129,142) 0.00
+(129,143) 0.00
+(129,150) -14.60
+(129,151) 0.00
+(129,152) 0.00
+(129,153) 3.81
+(129,154) 0.00
+(129,155) 0.00
+(129,156) 38.10
+(129,157) 0.00
+(129,158) 0.00
+(130,130) 176.76
+(130,21) 0.00
+(130,22) -2.95
+(130,23) 0.00
+(130,51) 0.00
+(130,52) 17.52
+(130,53) 0.00
+(130,60) 0.00
+(130,61) -1.62
+(130,62) 0.00
+(130,114) 0.00
+(130,115) -1.62
+(130,116) 0.00
+(130,117) 0.00
+(130,118) 28.19
+(130,119) 0.00
+(130,120) 0.00
+(130,121) 4.57
+(130,122) 0.00
+(130,123) 0.00
+(130,124) 7.24
+(130,125) 0.00
+(130,126) 0.00
+(130,127) -17.52
+(130,128) 0.00
+(130,129) 0.00
+(130,131) 0.00
+(130,132) 0.00
+(130,133) 45.71
+(130,134) 0.00
+(130,135) 0.00
+(130,136) -2.95
+(130,137) 0.00
+(130,141) 0.00
+(130,142) 7.24
+(130,143) 0.00
+(130,150) 0.00
+(130,151) -17.52
+(130,152) 0.00
+(130,153) 0.00
+(130,154) 4.57
+(130,155) 0.00
+(130,156) 0.00
+(130,157) 45.71
+(130,158) 0.00
+(131,131) 206.22
+(131,21) 0.00
+(131,22) 0.00
+(131,23) -3.44
+(131,51) 0.00
+(131,52) 0.00
+(131,53) 20.44
+(131,60) 0.00
+(131,61) 0.00
+(131,62) -1.89
+(131,114) 0.00
+(131,115) 0.00
+(131,116) -1.89
+(131,117) 0.00
+(131,118) 0.00
+(131,119) 32.89
+(131,120) 0.00
+(131,121) 0.00
+(131,122) 5.33
+(131,123) 0.00
+(131,124) 0.00
+(131,125) 8.44
+(131,126) 0.00
+(131,127) 0.00
+(131,128) -20.44
+(131,129) 0.00
+(131,130) 0.00
+(131,132) 0.00
+(131,133) 0.00
+(131,134) 53.33
+(131,135) 0.00
+(131,136) 0.00
+(131,137) -3.44
+(131,141) 0.00
+(131,142) 0.00
+(131,143) 8.44
+(131,150) 0.00
+(131,151) 0.00
+(131,152) -20.44
+(131,153) 0.00
+(131,154) 0.00
+(131,155) 5.33
+(131,156) 0.00
+(131,157) 0.00
+(131,158) 53.33
+(132,132) 223.49
+(132,21) 3.81
+(132,22) 0.00
+(132,23) 0.00
+(132,51) 3.81
+(132,52) 0.00
+(132,53) 0.00
+(132,114) 1.59
+(132,115) 0.00
+(132,116) 0.00
+(132,117) 6.03
+(132,118) 0.00
+(132,119) 0.00
+(132,120) 20.32
+(132,121) 0.00
+(132,122) 0.00
+(132,123) 38.10
+(132,124) 0.00
+(132,125) 0.00
+(132,126) 20.32
+(132,127) 0.00
+(132,128) 0.00
+(132,129) 38.10
+(132,130) 0.00
+(132,131) 0.00
+(132,133) 0.00
+(132,134) 0.00
+(133,133) 268.19
+(133,21) 0.00
+(133,22) 4.57
+(133,23) 0.00
+(133,51) 0.00
+(133,52) 4.57
+(133,53) 0.00
+(133,114) 0.00
+(133,115) 1.90
+(133,116) 0.00
+(133,117) 0.00
+(133,118) 7.24
+(133,119) 0.00
+(133,120) 0.00
+(133,121) 24.38
+(133,122) 0.00
+(133,123) 0.00
+(133,124) 45.71
+(133,125) 0.00
+(133,126) 0.00
+(133,127) 24.38
+(133,128) 0.00
+(133,129) 0.00
+(133,130) 45.71
+(133,131) 0.00
+(133,132) 0.00
+(133,134) 0.00
+(134,134) 312.89
+(134,21) 0.00
+(134,22) 0.00
+(134,23) 5.33
+(134,51) 0.00
+(134,52) 0.00
+(134,53) 5.33
+(134,114) 0.00
+(134,115) 0.00
+(134,116) 2.22
+(134,117) 0.00
+(134,118) 0.00
+(134,119) 8.44
+(134,120) 0.00
+(134,121) 0.00
+(134,122) 28.44
+(134,123) 0.00
+(134,124) 0.00
+(134,125) 53.33
+(134,126) 0.00
+(134,127) 0.00
+(134,128) 28.44
+(134,129) 0.00
+(134,130) 0.00
+(134,131) 53.33
+(134,132) 0.00
+(134,133) 0.00
+(135,135) 64.76
+(135,21) 0.95
+(135,22) 0.00
+(135,23) 0.00
+(135,27) -6.19
+(135,28) 0.00
+(135,29) 0.00
+(135,42) 0.95
+(135,43) 0.00
+(135,44) 0.00
+(135,51) 0.95
+(135,52) 0.00
+(135,53) 0.00
+(135,60) -6.19
+(135,61) 0.00
+(135,62) 0.00
+(135,72) 0.95
+(135,73) 0.00
+(135,74) 0.00
+(135,108) -1.35
+(135,109) 0.00
+(135,110) 0.00
+(135,117) -9.52
+(135,118) 0.00
+(135,119) 0.00
+(135,123) -2.46
+(135,124) 0.00
+(135,125) 0.00
+(135,129) -2.46
+(135,130) 0.00
+(135,131) 0.00
+(135,136) 0.00
+(135,137) 0.00
+(135,138) -1.35
+(135,139) 0.00
+(135,140) 0.00
+(135,141) 14.60
+(135,142) 0.00
+(135,143) 0.00
+(135,144) 16.83
+(135,145) 0.00
+(135,146) 0.00
+(135,147) 3.81
+(135,148) 0.00
+(135,149) 0.00
+(135,150) 16.83
+(135,151) 0.00
+(135,152) 0.00
+(135,153) -1.35
+(135,154) 0.00
+(135,155) 0.00
+(135,156) 3.81
+(135,157) 0.00
+(135,158) 0.00
+(135,159) -9.52
+(135,160) 0.00
+(135,161) 0.00
+(135,162) -2.46
+(135,163) 0.00
+(135,164) 0.00
+(135,168) -2.46
+(135,169) 0.00
+(135,170) 0.00
+(135,174) -1.35
+(135,175) 0.00
+(135,176) 0.00
+(135,177) 14.60
+(135,178) 0.00
+(135,179) 0.00
+(135,180) 3.81
+(135,181) 0.00
+(135,182) 0.00
+(135,183) 3.81
+(135,184) 0.00
+(135,185) 0.00
+(136,136) 77.71
+(136,21) 0.00
+(136,22) 1.14
+(136,23) 0.00
+(136,27) 0.00
+(136,28) -7.43
+(136,29) 0.00
+(136,42) 0.00
+(136,43) 1.14
+(136,44) 0.00
+(136,51) 0.00
+(136,52) 1.14
+(136,53) 0.00
+(136,60) 0.00
+(136,61) -7.43
+(136,62) 0.00
+(136,72) 0.00
+(136,73) 1.14
+(136,74) 0.00
+(136,108) 0.00
+(136,109) -1.62
+(136,110) 0.00
+(136,117) 0.00
+(136,118) -11.43
+(136,119) 0.00
+(136,123) 0.00
+(136,124) -2.95
+(136,125) 0.00
+(136,129) 0.00
+(136,130) -2.95
+(136,131) 0.00
+(136,135) 0.00
+(136,137) 0.00
+(136,138) 0.00
+(136,139) -1.62
+(136,140) 0.00
+(136,141) 0.00
+(136,142) 17.52
+(136,143) 0.00
+(136,144) 0.00
+(136,145) 20.19
+(136,146) 0.00
+(136,147) 0.00
+(136,148) 4.57
+(136,149) 0.00
+(136,150) 0.00
+(136,151) 20.19
+(136,152) 0.00
+(136,153) 0.00
+(136,154) -1.62
+(136,155) 0.00
+(136,156) 0.00
+(136,157) 4.57
+(136,158) 0.00
+(136,159) 0.00
+(136,160) -11.43
+(136,161) 0.00
+(136,162) 0.00
+(136,163) -2.95
+(136,164) 0.00
+(136,168) 0.00
+(136,169) -2.95
+(136,170) 0.00
+(136,174) 0.00
+(136,175) -1.62
+(136,176) 0.00
+(136,177) 0.00
+(136,178) 17.52
+(136,179) 0.00
+(136,180) 0.00
+(136,181) 4.57
+(136,182) 0.00
+(136,183) 0.00
+(136,184) 4.57
+(136,185) 0.00
+(137,137) 90.67
+(137,21) 0.00
+(137,22) 0.00
+(137,23) 1.33
+(137,27) 0.00
+(137,28) 0.00
+(137,29) -8.67
+(137,42) 0.00
+(137,43) 0.00
+(137,44) 1.33
+(137,51) 0.00
+(137,52) 0.00
+(137,53) 1.33
+(137,60) 0.00
+(137,61) 0.00
+(137,62) -8.67
+(137,72) 0.00
+(137,73) 0.00
+(137,74) 1.33
+(137,108) 0.00
+(137,109) 0.00
+(137,110) -1.89
+(137,117) 0.00
+(137,118) 0.00
+(137,119) -13.33
+(137,123) 0.00
+(137,124) 0.00
+(137,125) -3.44
+(137,129) 0.00
+(137,130) 0.00
+(137,131) -3.44
+(137,135) 0.00
+(137,136) 0.00
+(137,138) 0.00
+(137,139) 0.00
+(137,140) -1.89
+(137,141) 0.00
+(137,142) 0.00
+(137,143) 20.44
+(137,144) 0.00
+(137,145) 0.00
+(137,146) 23.56
+(137,147) 0.00
+(137,148) 0.00
+(137,149) 5.33
+(137,150) 0.00
+(137,151) 0.00
+(137,152) 23.56
+(137,153) 0.00
+(137,154) 0.00
+(137,155) -1.89
+(137,156) 0.00
+(137,157) 0.00
+(137,158) 5.33
+(137,159) 0.00
+(137,160) 0.00
+(137,161) -13.33
+(137,162) 0.00
+(137,163) 0.00
+(137,164) -3.44
+(137,168) 0.00
+(137,169) 0.00
+(137,170) -3.44
+(137,174) 0.00
+(137,175) 0.00
+(137,176) -1.89
+(137,177) 0.00
+(137,178) 0.00
+(137,179) 20.44
+(137,180) 0.00
+(137,181) 0.00
+(137,182) 5.33
+(137,183) 0.00
+(137,184) 0.00
+(137,185) 5.33
+(138,138) 46.98
+(138,21) 8.41
+(138,22) 0.00
+(138,23) 0.00
+(138,27) 3.97
+(138,28) 0.00
+(138,29) 0.00
+(138,117) -2.46
+(138,118) 0.00
+(138,119) 0.00
+(138,123) 3.81
+(138,124) 0.00
+(138,125) 0.00
+(138,135) -1.35
+(138,136) 0.00
+(138,137) 0.00
+(138,139) 0.00
+(138,140) 0.00
+(138,141) -14.60
+(138,142) 0.00
+(138,143) 0.00
+(138,144) 1.59
+(138,145) 0.00
+(138,146) 0.00
+(138,147) 20.32
+(138,148) 0.00
+(138,149) 0.00
+(139,139) 56.38
+(139,21) 0.00
+(139,22) 10.10
+(139,23) 0.00
+(139,27) 0.00
+(139,28) 4.76
+(139,29) 0.00
+(139,117) 0.00
+(139,118) -2.95
+(139,119) 0.00
+(139,123) 0.00
+(139,124) 4.57
+(139,125) 0.00
+(139,135) 0.00
+(139,136) -1.62
+(139,137) 0.00
+(139,138) 0.00
+(139,140) 0.00
+(139,141) 0.00
+(139,142) -17.52
+(139,143) 0.00
+(139,144) 0.00
+(139,145) 1.90
+(139,146) 0.00
+(139,147) 0.00
+(139,148) 24.38
+(139,149) 0.00
+(140,140) 65.78
+(140,21) 0.00
+(140,22) 0.00
+(140,23) 11.78
+(140,27) 0.00
+(140,28) 0.00
+(140,29) 5.56
+(140,117) 0.00
+(140,118) 0.00
+(140,119) -3.44
+(140,123) 0.00
+(140,124) 0.00
+(140,125) 5.33
+(140,135) 0.00
+(140,136) 0.00
+(140,137) -1.89
+(140,138) 0.00
+(140,139) 0.00
+(140,141) 0.00
+(140,142) 0.00
+(140,143) -20.44
+(140,144) 0.00
+(140,145) 0.00
+(140,146) 2.22
+(140,147) 0.00
+(140,148) 0.00
+(140,149) 28.44
+(141,141) 147.30
+(141,21) -2.46
+(141,22) 0.00
+(141,23) 0.00
+(141,27) -1.35
+(141,28) 0.00
+(141,29) 0.00
+(141,51) -2.46
+(141,52) 0.00
+(141,53) 0.00
+(141,60) -1.35
+(141,61) 0.00
+(141,62) 0.00
+(141,117) 23.49
+(141,118) 0.00
+(141,119) 0.00
+(141,123) 6.03
+(141,124) 0.00
+(141,125) 0.00
+(141,129) 6.03
+(141,130) 0.00
+(141,131) 0.00
+(141,135) 14.60
+(141,136) 0.00
+(141,137) 0.00
+(141,138) -14.60
+(141,139) 0.00
+(141,140) 0.00
+(141,142) 0.00
+(141,143) 0.00
+(141,144) 3.81
+(141,145) 0.00
+(141,146) 0.00
+(141,147) 38.10
+(141,148) 0.00
+(141,149) 0.00
+(141,150) 3.81
+(141,151) 0.00
+(141,152) 0.00
+(141,153) -14.60
+(141,154) 0.00
+(141,155) 0.00
+(141,156) 38.10
+(141,157) 0.00
+(141,158) 0.00
+(142,142) 176.76
+(142,21) 0.00
+(142,22) -2.95
+(142,23) 0.00
+(142,27) 0.00
+(142,28) -1.62
+(142,29) 0.00
+(142,51) 0.00
+(142,52) -2.95
+(142,53) 0.00
+(142,60) 0.00
+(142,61) -1.62
+(142,62) 0.00
+(142,117) 0.00
+(142,118) 28.19
+(142,119) 0.00
+(142,123) 0.00
+(142,124) 7.24
+(142,125) 0.00
+(142,129) 0.00
+(142,130) 7.24
+(142,131) 0.00
+(142,135) 0.00
+(142,136) 17.52
+(142,137) 0.00
+(142,138) 0.00
+(142,139) -17.52
+(142,140) 0.00
+(142,141) 0.00
+(142,143) 0.00
+(142,144) 0.00
+(142,145) 4.57
+(142,146) 0.00
+(142,147) 0.00
+(142,148) 45.71
+(142,149) 0.00
+(142,150) 0.00
+(142,151) 4.57
+(142,152) 0.00
+(142,153) 0.00
+(142,154) -17.52
+(142,155) 0.00
+(142,156) 0.00
+(142,157) 45.71
+(142,158) 0.00
+(143,143) 206.22
+(143,21) 0.00
+(143,22) 0.00
+(143,23) -3.44
+(143,27) 0.00
+(143,28) 0.00
+(143,29) -1.89
+(143,51) 0.00
+(143,52) 0.00
+(143,53) -3.44
+(143,60) 0.00
+(143,61) 0.00
+(143,62) -1.89
+(143,117) 0.00
+(143,118) 0.00
+(143,119) 32.89
+(143,123) 0.00
+(143,124) 0.00
+(143,125) 8.44
+(143,129) 0.00
+(143,130) 0.00
+(143,131) 8.44
+(143,135) 0.00
+(143,136) 0.00
+(143,137) 20.44
+(143,138) 0.00
+(143,139) 0.00
+(143,140) -20.44
+(143,141) 0.00
+(143,142) 0.00
+(143,144) 0.00
+(143,145) 0.00
+(143,146) 5.33
+(143,147) 0.00
+(143,148) 0.00
+(143,149) 53.33
+(143,150) 0.00
+(143,151) 0.00
+(143,152) 5.33
+(143,153) 0.00
+(143,154) 0.00
+(143,155) -20.44
+(143,156) 0.00
+(143,157) 0.00
+(143,158) 53.33
+(144,144) 93.97
+(144,21) -1.35
+(144,22) 0.00
+(144,23) 0.00
+(144,27) 7.94
+(144,28) 0.00
+(144,29) 0.00
+(144,42) -1.35
+(144,43) 0.00
+(144,44) 0.00
+(144,117) -2.46
+(144,118) 0.00
+(144,119) 0.00
+(144,123) -14.60
+(144,124) 0.00
+(144,125) 0.00
+(144,135) 16.83
+(144,136) 0.00
+(144,137) 0.00
+(144,138) 1.59
+(144,139) 0.00
+(144,140) 0.00
+(144,141) 3.81
+(144,142) 0.00
+(144,143) 0.00
+(144,145) 0.00
+(144,146) 0.00
+(144,147) 20.32
+(144,148) 0.00
+(144,149) 0.00
+(144,159) -2.46
+(144,160) 0.00
+(144,161) 0.00
+(144,162) -14.60
+(144,163) 0.00
+(144,164) 0.00
+(144,174) 1.59
+(144,175) 0.00
+(144,176) 0.00
+(144,177) 3.81
+(144,178) 0.00
+(144,179) 0.00
+(144,180) 20.32
+(144,181) 0.00
+(144,182) 0.00
+(145,145) 112.76
+(145,21) 0.00
+(145,22) -1.62
+(145,23) 0.00
+(145,27) 0.00
+(145,28) 9.52
+(145,29) 0.00
+(145,42) 0.00
+(145,43) -1.62
+(145,44) 0.00
+(145,117) 0.00
+(145,118) -2.95
+(145,119) 0.00
+(145,123) 0.00
+(145,124) -17.52
+(145,125) 0.00
+(145,135) 0.00
+(145,136) 20.19
+(145,137) 0.00
+(145,138) 0.00
+(145,139) 1.90
+(145,140) 0.00
+(145,141) 0.00
+(145,142) 4.57
+(145,143) 0.00
+(145,144) 0.00
+(145,146) 0.00
+(145,147) 0.00
+(145,148) 24.38
+(145,149) 0.00
+(145,159) 0.00
+(145,160) -2.95
+(145,161) 0.00
+(145,162) 0.00
+(145,163) -17.52
+(145,164) 0.00
+(145,174) 0.00
+(145,175) 1.90
+(145,176) 0.00
+(145,177) 0.00
+(145,178) 4.57
+(145,179) 0.00
+(145,180) 0.00
+(145,181) 24.38
+(145,182) 0.00
+(146,146) 131.56
+(146,21) 0.00
+(146,22) 0.00
+(146,23) -1.89
+(146,27) 0.00
+(146,28) 0.00
+(146,29) 11.11
+(146,42) 0.00
+(146,43) 0.00
+(146,44) -1.89
+(146,117) 0.00
+(146,118) 0.00
+(146,119) -3.44
+(146,123) 0.00
+(146,124) 0.00
+(146,125) -20.44
+(146,135) 0.00
+(146,136) 0.00
+(146,137) 23.56
+(146,138) 0.00
+(146,139) 0.00
+(146,140) 2.22
+(146,141) 0.00
+(146,142) 0.00
+(146,143) 5.33
+(146,144) 0.00
+(146,145) 0.00
+(146,147) 0.00
+(146,148) 0.00
+(146,149) 28.44
+(146,159) 0.00
+(146,160) 0.00
+(146,161) -3.44
+(146,162) 0.00
+(146,163) 0.00
+(146,164) -20.44
+(146,174) 0.00
+(146,175) 0.00
+(146,176) 2.22
+(146,177) 0.00
+(146,178) 0.00
+(146,179) 5.33
+(146,180) 0.00
+(146,181) 0.00
+(146,182) 28.44
+(147,147) 223.49
+(147,21) 3.81
+(147,22) 0.00
+(147,23) 0.00
+(147,27) 1.59
+(147,28) 0.00
+(147,29) 0.00
+(147,117) 6.03
+(147,118) 0.00
+(147,119) 0.00
+(147,123) 38.10
+(147,124) 0.00
+(147,125) 0.00
+(147,135) 3.81
+(147,136) 0.00
+(147,137) 0.00
+(147,138) 20.32
+(147,139) 0.00
+(147,140) 0.00
+(147,141) 38.10
+(147,142) 0.00
+(147,143) 0.00
+(147,144) 20.32
+(147,145) 0.00
+(147,146) 0.00
+(147,148) 0.00
+(147,149) 0.00
+(148,148) 268.19
+(148,21) 0.00
+(148,22) 4.57
+(148,23) 0.00
+(148,27) 0.00
+(148,28) 1.90
+(148,29) 0.00
+(148,117) 0.00
+(148,118) 7.24
+(148,119) 0.00
+(148,123) 0.00
+(148,124) 45.71
+(148,125) 0.00
+(148,135) 0.00
+(148,136) 4.57
+(148,137) 0.00
+(148,138) 0.00
+(148,139) 24.38
+(148,140) 0.00
+(148,141) 0.00
+(148,142) 45.71
+(148,143) 0.00
+(148,144) 0.00
+(148,145) 24.38
+(148,146) 0.00
+(148,147) 0.00
+(148,149) 0.00
+(149,149) 312.89
+(149,21) 0.00
+(149,22) 0.00
+(149,23) 5.33
+(149,27) 0.00
+(149,28) 0.00
+(149,29) 2.22
+(149,117) 0.00
+(149,118) 0.00
+(149,119) 8.44
+(149,123) 0.00
+(149,124) 0.00
+(149,125) 53.33
+(149,135) 0.00
+(149,136) 0.00
+(149,137) 5.33
+(149,138) 0.00
+(149,139) 0.00
+(149,140) 28.44
+(149,141) 0.00
+(149,142) 0.00
+(149,143) 53.33
+(149,144) 0.00
+(149,145) 0.00
+(149,146) 28.44
+(149,147) 0.00
+(149,148) 0.00
+(150,150) 93.97
+(150,51) -1.35
+(150,52) 0.00
+(150,53) 0.00
+(150,60) 7.94
+(150,61) 0.00
+(150,62) 0.00
+(150,72) -1.35
+(150,73) 0.00
+(150,74) 0.00
+(150,108) 1.59
+(150,109) 0.00
+(150,110) 0.00
+(150,117) -2.46
+(150,118) 0.00
+(150,119) 0.00
+(150,129) -14.60
+(150,130) 0.00
+(150,131) 0.00
+(150,135) 16.83
+(150,136) 0.00
+(150,137) 0.00
+(150,141) 3.81
+(150,142) 0.00
+(150,143) 0.00
+(150,151) 0.00
+(150,152) 0.00
+(150,153) 1.59
+(150,154) 0.00
+(150,155) 0.00
+(150,156) 20.32
+(150,157) 0.00
+(150,158) 0.00
+(150,159) -2.46
+(150,160) 0.00
+(150,161) 0.00
+(150,168) -14.60
+(150,169) 0.00
+(150,170) 0.00
+(150,177) 3.81
+(150,178) 0.00
+(150,179) 0.00
+(150,183) 20.32
+(150,184) 0.00
+(150,185) 0.00
+(151,151) 112.76
+(151,51) 0.00
+(151,52) -1.62
+(151,53) 0.00
+(151,60) 0.00
+(151,61) 9.52
+(151,62) 0.00
+(151,72) 0.00
+(151,73) -1.62
+(151,74) 0.00
+(151,108) 0.00
+(151,109) 1.90
+(151,110) 0.00
+(151,117) 0.00
+(151,118) -2.95
+(151,119) 0.00
+(151,129) 0.00
+(151,130) -17.52
+(151,131) 0.00
+(151,135) 0.00
+(151,136) 20.19
+(151,137) 0.00
+(151,141) 0.00
+(151,142) 4.57
+(151,143) 0.00
+(151,150) 0.00
+(151,152) 0.00
+(151,153) 0.00
+(151,154) 1.90
+(151,155) 0.00
+(151,156) 0.00
+(151,157) 24.38
+(151,158) 0.00
+(151,159) 0.00
+(151,160) -2.95
+(151,161) 0.00
+(151,168) 0.00
+(151,169) -17.52
+(151,170) 0.00
+(151,177) 0.00
+(151,178) 4.57
+(151,179) 0.00
+(151,183) 0.00
+(151,184) 24.38
+(151,185) 0.00
+(152,152) 131.56
+(152,51) 0.00
+(152,52) 0.00
+(152,53) -1.89
+(152,60) 0.00
+(152,61) 0.00
+(152,62) 11.11
+(152,72) 0.00
+(152,73) 0.00
+(152,74) -1.89
+(152,108) 0.00
+(152,109) 0.00
+(152,110) 2.22
+(152,117) 0.00
+(152,118) 0.00
+(152,119) -3.44
+(152,129) 0.00
+(152,130) 0.00
+(152,131) -20.44
+(152,135) 0.00
+(152,136) 0.00
+(152,137) 23.56
+(152,141) 0.00
+(152,142) 0.00
+(152,143) 5.33
+(152,150) 0.00
+(152,151) 0.00
+(152,153) 0.00
+(152,154) 0.00
+(152,155) 2.22
+(152,156) 0.00
+(152,157) 0.00
+(152,158) 28.44
+(152,159) 0.00
+(152,160) 0.00
+(152,161) -3.44
+(152,168) 0.00
+(152,169) 0.00
+(152,170) -20.44
+(152,177) 0.00
+(152,178) 0.00
+(152,179) 5.33
+(152,183) 0.00
+(152,184) 0.00
+(152,185) 28.44
+(153,153) 46.98
+(153,51) 8.41
+(153,52) 0.00
+(153,53) 0.00
+(153,60) 3.97
+(153,61) 0.00
+(153,62) 0.00
+(153,117) -2.46
+(153,118) 0.00
+(153,119) 0.00
+(153,129) 3.81
+(153,130) 0.00
+(153,131) 0.00
+(153,135) -1.35
+(153,136) 0.00
+(153,137) 0.00
+(153,141) -14.60
+(153,142) 0.00
+(153,143) 0.00
+(153,150) 1.59
+(153,151) 0.00
+(153,152) 0.00
+(153,154) 0.00
+(153,155) 0.00
+(153,156) 20.32
+(153,157) 0.00
+(153,158) 0.00
+(154,154) 56.38
+(154,51) 0.00
+(154,52) 10.10
+(154,53) 0.00
+(154,60) 0.00
+(154,61) 4.76
+(154,62) 0.00
+(154,117) 0.00
+(154,118) -2.95
+(154,119) 0.00
+(154,129) 0.00
+(154,130) 4.57
+(154,131) 0.00
+(154,135) 0.00
+(154,136) -1.62
+(154,137) 0.00
+(154,141) 0.00
+(154,142) -17.52
+(154,143) 0.00
+(154,150) 0.00
+(154,151) 1.90
+(154,152) 0.00
+(154,153) 0.00
+(154,155) 0.00
+(154,156) 0.00
+(154,157) 24.38
+(154,158) 0.00
+(155,155) 65.78
+(155,51) 0.00
+(155,52) 0.00
+(155,53) 11.78
+(155,60) 0.00
+(155,61) 0.00
+(155,62) 5.56
+(155,117) 0.00
+(155,118) 0.00
+(155,119) -3.44
+(155,129) 0.00
+(155,130) 0.00
+(155,131) 5.33
+(155,135) 0.00
+(155,136) 0.00
+(155,137) -1.89
+(155,141) 0.00
+(155,142) 0.00
+(155,143) -20.44
+(155,150) 0.00
+(155,151) 0.00
+(155,152) 2.22
+(155,153) 0.00
+(155,154) 0.00
+(155,156) 0.00
+(155,157) 0.00
+(155,158) 28.44
+(156,156) 223.49
+(156,51) 3.81
+(156,52) 0.00
+(156,53) 0.00
+(156,60) 1.59
+(156,61) 0.00
+(156,62) 0.00
+(156,117) 6.03
+(156,118) 0.00
+(156,119) 0.00
+(156,129) 38.10
+(156,130) 0.00
+(156,131) 0.00
+(156,135) 3.81
+(156,136) 0.00
+(156,137) 0.00
+(156,141) 38.10
+(156,142) 0.00
+(156,143) 0.00
+(156,150) 20.32
+(156,151) 0.00
+(156,152) 0.00
+(156,153) 20.32
+(156,154) 0.00
+(156,155) 0.00
+(156,157) 0.00
+(156,158) 0.00
+(157,157) 268.19
+(157,51) 0.00
+(157,52) 4.57
+(157,53) 0.00
+(157,60) 0.00
+(157,61) 1.90
+(157,62) 0.00
+(157,117) 0.00
+(157,118) 7.24
+(157,119) 0.00
+(157,129) 0.00
+(157,130) 45.71
+(157,131) 0.00
+(157,135) 0.00
+(157,136) 4.57
+(157,137) 0.00
+(157,141) 0.00
+(157,142) 45.71
+(157,143) 0.00
+(157,150) 0.00
+(157,151) 24.38
+(157,152) 0.00
+(157,153) 0.00
+(157,154) 24.38
+(157,155) 0.00
+(157,156) 0.00
+(157,158) 0.00
+(158,158) 312.89
+(158,51) 0.00
+(158,52) 0.00
+(158,53) 5.33
+(158,60) 0.00
+(158,61) 0.00
+(158,62) 2.22
+(158,117) 0.00
+(158,118) 0.00
+(158,119) 8.44
+(158,129) 0.00
+(158,130) 0.00
+(158,131) 53.33
+(158,135) 0.00
+(158,136) 0.00
+(158,137) 5.33
+(158,141) 0.00
+(158,142) 0.00
+(158,143) 53.33
+(158,150) 0.00
+(158,151) 0.00
+(158,152) 28.44
+(158,153) 0.00
+(158,154) 0.00
+(158,155) 28.44
+(158,156) 0.00
+(158,157) 0.00
+(159,159) 68.57
+(159,27) 0.95
+(159,28) 0.00
+(159,29) 0.00
+(159,42) -9.52
+(159,43) 0.00
+(159,44) 0.00
+(159,60) 0.95
+(159,61) 0.00
+(159,62) 0.00
+(159,66) 0.95
+(159,67) 0.00
+(159,68) 0.00
+(159,72) -9.52
+(159,73) 0.00
+(159,74) 0.00
+(159,78) -2.46
+(159,79) 0.00
+(159,80) 0.00
+(159,108) -2.46
+(159,109) 0.00
+(159,110) 0.00
+(159,135) -9.52
+(159,136) 0.00
+(159,137) 0.00
+(159,144) -2.46
+(159,145) 0.00
+(159,146) 0.00
+(159,150) -2.46
+(159,151) 0.00
+(159,152) 0.00
+(159,160) 0.00
+(159,161) 0.00
+(159,162) 23.49
+(159,163) 0.00
+(159,164) 0.00
+(159,165) -2.46
+(159,166) 0.00
+(159,167) 0.00
+(159,168) 23.49
+(159,169) 0.00
+(159,170) 0.00
+(159,171) 6.03
+(159,172) 0.00
+(159,173) 0.00
+(159,174) -2.46
+(159,175) 0.00
+(159,176) 0.00
+(159,177) 23.49
+(159,178) 0.00
+(159,179) 0.00
+(159,180) 6.03
+(159,181) 0.00
+(159,182) 0.00
+(159,183) 6.03
+(159,184) 0.00
+(159,185) 0.00
+(160,160) 82.29
+(160,27) 0.00
+(160,28) 1.14
+(160,29) 0.00
+(160,42) 0.00
+(160,43) -11.43
+(160,44) 0.00
+(160,60) 0.00
+(160,61) 1.14
+(160,62) 0.00
+(160,66) 0.00
+(160,67) 1.14
+(160,68) 0.00
+(160,72) 0.00
+(160,73) -11.43
+(160,74) 0.00
+(160,78) 0.00
+(160,79) -2.95
+(160,80) 0.00
+(160,108) 0.00
+(160,109) -2.95
+(160,110) 0.00
+(160,135) 0.00
+(160,136) -11.43
+(160,137) 0.00
+(160,144) 0.00
+(160,145) -2.95
+(160,146) 0.00
+(160,150) 0.00
+(160,151) -2.95
+(160,152) 0.00
+(160,159) 0.00
+(160,161) 0.00
+(160,162) 0.00
+(160,163) 28.19
+(160,164) 0.00
+(160,165) 0.00
+(160,166) -2.95
+(160,167) 0.00
+(160,168) 0.00
+(160,169) 28.19
+(160,170) 0.00
+(160,171) 0.00
+(160,172) 7.24
+(160,173) 0.00
+(160,174) 0.00
+(160,175) -2.95
+(160,176) 0.00
+(160,177) 0.00
+(160,178) 28.19
+(160,179) 0.00
+(160,180) 0.00
+(160,181) 7.24
+(160,182) 0.00
+(160,183) 0.00
+(160,184) 7.24
+(160,185) 0.00
+(161,161) 96.00
+(161,27) 0.00
+(161,28) 0.00
+(161,29) 1.33
+(161,42) 0.00
+(161,43) 0.00
+(161,44) -13.33
+(161,60) 0.00
+(161,61) 0.00
+(161,62) 1.33
+(161,66) 0.00
+(161,67) 0.00
+(161,68) 1.33
+(161,72) 0.00
+(161,73) 0.00
+(161,74) -13.33
+(161,78) 0.00
+(161,79) 0.00
+(161,80) -3.44
+(161,108) 0.00
+(161,109) 0.00
+(161,110) -3.44
+(161,135) 0.00
+(161,136) 0.00
+(161,137) -13.33
+(161,144) 0.00
+(161,145) 0.00
+(161,146) -3.44
+(161,150) 0.00
+(161,151) 0.00
+(161,152) -3.44
+(161,159) 0.00
+(161,160) 0.00
+(161,162) 0.00
+(161,163) 0.00
+(161,164) 32.89
+(161,165) 0.00
+(161,166) 0.00
+(161,167) -3.44
+(161,168) 0.00
+(161,169) 0.00
+(161,170) 32.89
+(161,171) 0.00
+(161,172) 0.00
+(161,173) 8.44
+(161,174) 0.00
+(161,175) 0.00
+(161,176) -3.44
+(161,177) 0.00
+(161,178) 0.00
+(161,179) 32.89
+(161,180) 0.00
+(161,181) 0.00
+(161,182) 8.44
+(161,183) 0.00
+(161,184) 0.00
+(161,185) 8.44
+(162,162) 147.30
+(162,27) -1.35
+(162,28) 0.00
+(162,29) 0.00
+(162,42) 14.60
+(162,43) 0.00
+(162,44) 0.00
+(162,66) -1.35
+(162,67) 0.00
+(162,68) 0.00
+(162,72) -2.46
+(162,73) 0.00
+(162,74) 0.00
+(162,78) -14.60
+(162,79) 0.00
+(162,80) 0.00
+(162,135) -2.46
+(162,136) 0.00
+(162,137) 0.00
+(162,144) -14.60
+(162,145) 0.00
+(162,146) 0.00
+(162,159) 23.49
+(162,160) 0.00
+(162,161) 0.00
+(162,163) 0.00
+(162,164) 0.00
+(162,165) 3.81
+(162,166) 0.00
+(162,167) 0.00
+(162,168) 6.03
+(162,169) 0.00
+(162,170) 0.00
+(162,171) 38.10
+(162,172) 0.00
+(162,173) 0.00
+(162,174) 3.81
+(162,175) 0.00
+(162,176) 0.00
+(162,177) 6.03
+(162,178) 0.00
+(162,179) 0.00
+(162,180) 38.10
+(162,181) 0.00
+(162,182) 0.00
+(163,163) 176.76
+(163,27) 0.00
+(163,28) -1.62
+(163,29) 0.00
+(163,42) 0.00
+(163,43) 17.52
+(163,44) 0.00
+(163,66) 0.00
+(163,67) -1.62
+(163,68) 0.00
+(163,72) 0.00
+(163,73) -2.95
+(163,74) 0.00
+(163,78) 0.00
+(163,79) -17.52
+(163,80) 0.00
+(163,135) 0.00
+(163,136) -2.95
+(163,137) 0.00
+(163,144) 0.00
+(163,145) -17.52
+(163,146) 0.00
+(163,159) 0.00
+(163,160) 28.19
+(163,161) 0.00
+(163,162) 0.00
+(163,164) 0.00
+(163,165) 0.00
+(163,166) 4.57
+(163,167) 0.00
+(163,168) 0.00
+(163,169) 7.24
+(163,170) 0.00
+(163,171) 0.00
+(163,172) 45.71
+(163,173) 0.00
+(163,174) 0.00
+(163,175) 4.57
+(163,176) 0.00
+(163,177) 0.00
+(163,178) 7.24
+(163,179) 0.00
+(163,180) 0.00
+(163,181) 45.71
+(163,182) 0.00
+(164,164) 206.22
+(164,27) 0.00
+(164,28) 0.00
+(164,29) -1.89
+(164,42) 0.00
+(164,43) 0.00
+(164,44) 20.44
+(164,66) 0.00
+(164,67) 0.00
+(164,68) -1.89
+(164,72) 0.00
+(164,73) 0.00
+(164,74) -3.44
+(164,78) 0.00
+(164,79) 0.00
+(164,80) -20.44
+(164,135) 0.00
+(164,136) 0.00
+(164,137) -3.44
+(164,144) 0.00
+(164,145) 0.00
+(164,146) -20.44
+(164,159) 0.00
+(164,160) 0.00
+(164,161) 32.89
+(164,162) 0.00
+(164,163) 0.00
+(164,165) 0.00
+(164,166) 0.00
+(164,167) 5.33
+(164,168) 0.00
+(164,169) 0.00
+(164,170) 8.44
+(164,171) 0.00
+(164,172) 0.00
+(164,173) 53.33
+(164,174) 0.00
+(164,175) 0.00
+(164,176) 5.33
+(164,177) 0.00
+(164,178) 0.00
+(164,179) 8.44
+(164,180) 0.00
+(164,181) 0.00
+(164,182) 53.33
+(165,165) 46.98
+(165,42) 8.41
+(165,43) 0.00
+(165,44) 0.00
+(165,66) 3.97
+(165,67) 0.00
+(165,68) 0.00
+(165,72) -1.35
+(165,73) 0.00
+(165,74) 0.00
+(165,78) 1.59
+(165,79) 0.00
+(165,80) 0.00
+(165,159) -2.46
+(165,160) 0.00
+(165,161) 0.00
+(165,162) 3.81
+(165,163) 0.00
+(165,164) 0.00
+(165,166) 0.00
+(165,167) 0.00
+(165,168) -14.60
+(165,169) 0.00
+(165,170) 0.00
+(165,171) 20.32
+(165,172) 0.00
+(165,173) 0.00
+(166,166) 56.38
+(166,42) 0.00
+(166,43) 10.10
+(166,44) 0.00
+(166,66) 0.00
+(166,67) 4.76
+(166,68) 0.00
+(166,72) 0.00
+(166,73) -1.62
+(166,74) 0.00
+(166,78) 0.00
+(166,79) 1.90
+(166,80) 0.00
+(166,159) 0.00
+(166,160) -2.95
+(166,161) 0.00
+(166,162) 0.00
+(166,163) 4.57
+(166,164) 0.00
+(166,165) 0.00
+(166,167) 0.00
+(166,168) 0.00
+(166,169) -17.52
+(166,170) 0.00
+(166,171) 0.00
+(166,172) 24.38
+(166,173) 0.00
+(167,167) 65.78
+(167,42) 0.00
+(167,43) 0.00
+(167,44) 11.78
+(167,66) 0.00
+(167,67) 0.00
+(167,68) 5.56
+(167,72) 0.00
+(167,73) 0.00
+(167,74) -1.89
+(167,78) 0.00
+(167,79) 0.00
+(167,80) 2.22
+(167,159) 0.00
+(167,160) 0.00
+(167,161) -3.44
+(167,162) 0.00
+(167,163) 0.00
+(167,164) 5.33
+(167,165) 0.00
+(167,166) 0.00
+(167,168) 0.00
+(167,169) 0.00
+(167,170) -20.44
+(167,171) 0.00
+(167,172) 0.00
+(167,173) 28.44
+(168,168) 147.30
+(168,42) -2.46
+(168,43) 0.00
+(168,44) 0.00
+(168,60) -1.35
+(168,61) 0.00
+(168,62) 0.00
+(168,66) -1.35
+(168,67) 0.00
+(168,68) 0.00
+(168,72) 14.60
+(168,73) 0.00
+(168,74) 0.00
+(168,78) 3.81
+(168,79) 0.00
+(168,80) 0.00
+(168,108) 3.81
+(168,109) 0.00
+(168,110) 0.00
+(168,135) -2.46
+(168,136) 0.00
+(168,137) 0.00
+(168,150) -14.60
+(168,151) 0.00
+(168,152) 0.00
+(168,159) 23.49
+(168,160) 0.00
+(168,161) 0.00
+(168,162) 6.03
+(168,163) 0.00
+(168,164) 0.00
+(168,165) -14.60
+(168,166) 0.00
+(168,167) 0.00
+(168,169) 0.00
+(168,170) 0.00
+(168,171) 38.10
+(168,172) 0.00
+(168,173) 0.00
+(168,177) 6.03
+(168,178) 0.00
+(168,179) 0.00
+(168,183) 38.10
+(168,184) 0.00
+(168,185) 0.00
+(169,169) 176.76
+(169,42) 0.00
+(169,43) -2.95
+(169,44) 0.00
+(169,60) 0.00
+(169,61) -1.62
+(169,62) 0.00
+(169,66) 0.00
+(169,67) -1.62
+(169,68) 0.00
+(169,72) 0.00
+(169,73) 17.52
+(169,74) 0.00
+(169,78) 0.00
+(169,79) 4.57
+(169,80) 0.00
+(169,108) 0.00
+(169,109) 4.57
+(169,110) 0.00
+(169,135) 0.00
+(169,136) -2.95
+(169,137) 0.00
+(169,150) 0.00
+(169,151) -17.52
+(169,152) 0.00
+(169,159) 0.00
+(169,160) 28.19
+(169,161) 0.00
+(169,162) 0.00
+(169,163) 7.24
+(169,164) 0.00
+(169,165) 0.00
+(169,166) -17.52
+(169,167) 0.00
+(169,168) 0.00
+(169,170) 0.00
+(169,171) 0.00
+(169,172) 45.71
+(169,173) 0.00
+(169,177) 0.00
+(169,178) 7.24
+(169,179) 0.00
+(169,183) 0.00
+(169,184) 45.71
+(169,185) 0.00
+(170,170) 206.22
+(170,42) 0.00
+(170,43) 0.00
+(170,44) -3.44
+(170,60) 0.00
+(170,61) 0.00
+(170,62) -1.89
+(170,66) 0.00
+(170,67) 0.00
+(170,68) -1.89
+(170,72) 0.00
+(170,73) 0.00
+(170,74) 20.44
+(170,78) 0.00
+(170,79) 0.00
+(170,80) 5.33
+(170,108) 0.00
+(170,109) 0.00
+(170,110) 5.33
+(170,135) 0.00
+(170,136) 0.00
+(170,137) -3.44
+(170,150) 0.00
+(170,151) 0.00
+(170,152) -20.44
+(170,159) 0.00
+(170,160) 0.00
+(170,161) 32.89
+(170,162) 0.00
+(170,163) 0.00
+(170,164) 8.44
+(170,165) 0.00
+(170,166) 0.00
+(170,167) -20.44
+(170,168) 0.00
+(170,169) 0.00
+(170,171) 0.00
+(170,172) 0.00
+(170,173) 53.33
+(170,177) 0.00
+(170,178) 0.00
+(170,179) 8.44
+(170,183) 0.00
+(170,184) 0.00
+(170,185) 53.33
+(171,171) 223.49
+(171,42) 3.81
+(171,43) 0.00
+(171,44) 0.00
+(171,66) 1.59
+(171,67) 0.00
+(171,68) 0.00
+(171,72) 3.81
+(171,73) 0.00
+(171,74) 0.00
+(171,78) 20.32
+(171,79) 0.00
+(171,80) 0.00
+(171,159) 6.03
+(171,160) 0.00
+(171,161) 0.00
+(171,162) 38.10
+(171,163) 0.00
+(171,164) 0.00
+(171,165) 20.32
+(171,166) 0.00
+(171,167) 0.00
+(171,168) 38.10
+(171,169) 0.00
+(171,170) 0.00
+(171,172) 0.00
+(171,173) 0.00
+(172,172) 268.19
+(172,42) 0.00
+(172,43) 4.57
+(172,44) 0.00
+(172,66) 0.00
+(172,67) 1.90
+(172,68) 0.00
+(172,72) 0.00
+(172,73) 4.57
+(172,74) 0.00
+(172,78) 0.00
+(172,79) 24.38
+(172,80) 0.00
+(172,159) 0.00
+(172,160) 7.24
+(172,161) 0.00
+(172,162) 0.00
+(172,163) 45.71
+(172,164) 0.00
+(172,165) 0.00
+(172,166) 24.38
+(172,167) 0.00
+(172,168) 0.00
+(172,169) 45.71
+(172,170) 0.00
+(172,171) 0.00
+(172,173) 0.00
+(173,173) 312.89
+(173,42) 0.00
+(173,43) 0.00
+(173,44) 5.33
+(173,66) 0.00
+(173,67) 0.00
+(173,68) 2.22
+(173,72) 0.00
+(173,73) 0.00
+(173,74) 5.33
+(173,78) 0.00
+(173,79) 0.00
+(173,80) 28.44
+(173,159) 0.00
+(173,160) 0.00
+(173,161) 8.44
+(173,162) 0.00
+(173,163) 0.00
+(173,164) 53.33
+(173,165) 0.00
+(173,166) 0.00
+(173,167) 28.44
+(173,168) 0.00
+(173,169) 0.00
+(173,170) 53.33
+(173,171) 0.00
+(173,172) 0.00
+(174,174) 46.98
+(174,27) 3.97
+(174,28) 0.00
+(174,29) 0.00
+(174,42) 8.41
+(174,43) 0.00
+(174,44) 0.00
+(174,135) -1.35
+(174,136) 0.00
+(174,137) 0.00
+(174,144) 1.59
+(174,145) 0.00
+(174,146) 0.00
+(174,159) -2.46
+(174,160) 0.00
+(174,161) 0.00
+(174,162) 3.81
+(174,163) 0.00
+(174,164) 0.00
+(174,175) 0.00
+(174,176) 0.00
+(174,177) -14.60
+(174,178) 0.00
+(174,179) 0.00
+(174,180) 20.32
+(174,181) 0.00
+(174,182) 0.00
+(175,175) 56.38
+(175,27) 0.00
+(175,28) 4.76
+(175,29) 0.00
+(175,42) 0.00
+(175,43) 10.10
+(175,44) 0.00
+(175,135) 0.00
+(175,136) -1.62
+(175,137) 0.00
+(175,144) 0.00
+(175,145) 1.90
+(175,146) 0.00
+(175,159) 0.00
+(175,160) -2.95
+(175,161) 0.00
+(175,162) 0.00
+(175,163) 4.57
+(175,164) 0.00
+(175,174) 0.00
+(175,176) 0.00
+(175,177) 0.00
+(175,178) -17.52
+(175,179) 0.00
+(175,180) 0.00
+(175,181) 24.38
+(175,182) 0.00
+(176,176) 65.78
+(176,27) 0.00
+(176,28) 0.00
+(176,29) 5.56
+(176,42) 0.00
+(176,43) 0.00
+(176,44) 11.78
+(176,135) 0.00
+(176,136) 0.00
+(176,137) -1.89
+(176,144) 0.00
+(176,145) 0.00
+(176,146) 2.22
+(176,159) 0.00
+(176,160) 0.00
+(176,161) -3.44
+(176,162) 0.00
+(176,163) 0.00
+(176,164) 5.33
+(176,174) 0.00
+(176,175) 0.00
+(176,177) 0.00
+(176,178) 0.00
+(176,179) -20.44
+(176,180) 0.00
+(176,181) 0.00
+(176,182) 28.44
+(177,177) 147.30
+(177,27) -1.35
+(177,28) 0.00
+(177,29) 0.00
+(177,42) -2.46
+(177,43) 0.00
+(177,44) 0.00
+(177,60) -1.35
+(177,61) 0.00
+(177,62) 0.00
+(177,72) -2.46
+(177,73) 0.00
+(177,74) 0.00
+(177,108) -14.60
+(177,109) 0.00
+(177,110) 0.00
+(177,135) 14.60
+(177,136) 0.00
+(177,137) 0.00
+(177,144) 3.81
+(177,145) 0.00
+(177,146) 0.00
+(177,150) 3.81
+(177,151) 0.00
+(177,152) 0.00
+(177,159) 23.49
+(177,160) 0.00
+(177,161) 0.00
+(177,162) 6.03
+(177,163) 0.00
+(177,164) 0.00
+(177,168) 6.03
+(177,169) 0.00
+(177,170) 0.00
+(177,174) -14.60
+(177,175) 0.00
+(177,176) 0.00
+(177,178) 0.00
+(177,179) 0.00
+(177,180) 38.10
+(177,181) 0.00
+(177,182) 0.00
+(177,183) 38.10
+(177,184) 0.00
+(177,185) 0.00
+(178,178) 176.76
+(178,27) 0.00
+(178,28) -1.62
+(178,29) 0.00
+(178,42) 0.00
+(178,43) -2.95
+(178,44) 0.00
+(178,60) 0.00
+(178,61) -1.62
+(178,62) 0.00
+(178,72) 0.00
+(178,73) -2.95
+(178,74) 0.00
+(178,108) 0.00
+(178,109) -17.52
+(178,110) 0.00
+(178,135) 0.00
+(178,136) 17.52
+(178,137) 0.00
+(178,144) 0.00
+(178,145) 4.57
+(178,146) 0.00
+(178,150) 0.00
+(178,151) 4.57
+(178,152) 0.00
+(178,159) 0.00
+(178,160) 28.19
+(178,161) 0.00
+(178,162) 0.00
+(178,163) 7.24
+(178,164) 0.00
+(178,168) 0.00
+(178,169) 7.24
+(178,170) 0.00
+(178,174) 0.00
+(178,175) -17.52
+(178,176) 0.00
+(178,177) 0.00
+(178,179) 0.00
+(178,180) 0.00
+(178,181) 45.71
+(178,182) 0.00
+(178,183) 0.00
+(178,184) 45.71
+(178,185) 0.00
+(179,179) 206.22
+(179,27) 0.00
+(179,28) 0.00
+(179,29) -1.89
+(179,42) 0.00
+(179,43) 0.00
+(179,44) -3.44
+(179,60) 0.00
+(179,61) 0.00
+(179,62) -1.89
+(179,72) 0.00
+(179,73) 0.00
+(179,74) -3.44
+(179,108) 0.00
+(179,109) 0.00
+(179,110) -20.44
+(179,135) 0.00
+(179,136) 0.00
+(179,137) 20.44
+(179,144) 0.00
+(179,145) 0.00
+(179,146) 5.33
+(179,150) 0.00
+(179,151) 0.00
+(179,152) 5.33
+(179,159) 0.00
+(179,160) 0.00
+(179,161) 32.89
+(179,162) 0.00
+(179,163) 0.00
+(179,164) 8.44
+(179,168) 0.00
+(179,169) 0.00
+(179,170) 8.44
+(179,174) 0.00
+(179,175) 0.00
+(179,176) -20.44
+(179,177) 0.00
+(179,178) 0.00
+(179,180) 0.00
+(179,181) 0.00
+(179,182) 53.33
+(179,183) 0.00
+(179,184) 0.00
+(179,185) 53.33
+(180,180) 223.49
+(180,27) 1.59
+(180,28) 0.00
+(180,29) 0.00
+(180,42) 3.81
+(180,43) 0.00
+(180,44) 0.00
+(180,135) 3.81
+(180,136) 0.00
+(180,137) 0.00
+(180,144) 20.32
+(180,145) 0.00
+(180,146) 0.00
+(180,159) 6.03
+(180,160) 0.00
+(180,161) 0.00
+(180,162) 38.10
+(180,163) 0.00
+(180,164) 0.00
+(180,174) 20.32
+(180,175) 0.00
+(180,176) 0.00
+(180,177) 38.10
+(180,178) 0.00
+(180,179) 0.00
+(180,181) 0.00
+(180,182) 0.00
+(181,181) 268.19
+(181,27) 0.00
+(181,28) 1.90
+(181,29) 0.00
+(181,42) 0.00
+(181,43) 4.57
+(181,44) 0.00
+(181,135) 0.00
+(181,136) 4.57
+(181,137) 0.00
+(181,144) 0.00
+(181,145) 24.38
+(181,146) 0.00
+(181,159) 0.00
+(181,160) 7.24
+(181,161) 0.00
+(181,162) 0.00
+(181,163) 45.71
+(181,164) 0.00
+(181,174) 0.00
+(181,175) 24.38
+(181,176) 0.00
+(181,177) 0.00
+(181,178) 45.71
+(181,179) 0.00
+(181,180) 0.00
+(181,182) 0.00
+(182,182) 312.89
+(182,27) 0.00
+(182,28) 0.00
+(182,29) 2.22
+(182,42) 0.00
+(182,43) 0.00
+(182,44) 5.33
+(182,135) 0.00
+(182,136) 0.00
+(182,137) 5.33
+(182,144) 0.00
+(182,145) 0.00
+(182,146) 28.44
+(182,159) 0.00
+(182,160) 0.00
+(182,161) 8.44
+(182,162) 0.00
+(182,163) 0.00
+(182,164) 53.33
+(182,174) 0.00
+(182,175) 0.00
+(182,176) 28.44
+(182,177) 0.00
+(182,178) 0.00
+(182,179) 53.33
+(182,180) 0.00
+(182,181) 0.00
+(183,183) 223.49
+(183,60) 1.59
+(183,61) 0.00
+(183,62) 0.00
+(183,72) 3.81
+(183,73) 0.00
+(183,74) 0.00
+(183,108) 20.32
+(183,109) 0.00
+(183,110) 0.00
+(183,135) 3.81
+(183,136) 0.00
+(183,137) 0.00
+(183,150) 20.32
+(183,151) 0.00
+(183,152) 0.00
+(183,159) 6.03
+(183,160) 0.00
+(183,161) 0.00
+(183,168) 38.10
+(183,169) 0.00
+(183,170) 0.00
+(183,177) 38.10
+(183,178) 0.00
+(183,179) 0.00
+(183,184) 0.00
+(183,185) 0.00
+(184,184) 268.19
+(184,60) 0.00
+(184,61) 1.90
+(184,62) 0.00
+(184,72) 0.00
+(184,73) 4.57
+(184,74) 0.00
+(184,108) 0.00
+(184,109) 24.38
+(184,110) 0.00
+(184,135) 0.00
+(184,136) 4.57
+(184,137) 0.00
+(184,150) 0.00
+(184,151) 24.38
+(184,152) 0.00
+(184,159) 0.00
+(184,160) 7.24
+(184,161) 0.00
+(184,168) 0.00
+(184,169) 45.71
+(184,170) 0.00
+(184,177) 0.00
+(184,178) 45.71
+(184,179) 0.00
+(184,183) 0.00
+(184,185) 0.00
+(185,185) 312.89
+(185,60) 0.00
+(185,61) 0.00
+(185,62) 2.22
+(185,72) 0.00
+(185,73) 0.00
+(185,74) 5.33
+(185,108) 0.00
+(185,109) 0.00
+(185,110) 28.44
+(185,135) 0.00
+(185,136) 0.00
+(185,137) 5.33
+(185,150) 0.00
+(185,151) 0.00
+(185,152) 28.44
+(185,159) 0.00
+(185,160) 0.00
+(185,161) 8.44
+(185,168) 0.00
+(185,169) 0.00
+(185,170) 53.33
+(185,177) 0.00
+(185,178) 0.00
+(185,179) 53.33
+(185,183) 0.00
+(185,184) 0.00
+(186,186) 261.63
+(186,187) -0.83
+(186,188) -0.83
+(186,189) 0.00
+(187,187) 218.33
+(187,186) -0.83
+(187,188) 0.00
+(187,189) -0.83
+(188,188) 218.33
+(188,186) -0.83
+(188,187) 0.00
+(188,189) -0.83
+(189,189) 175.03
+(189,186) 0.00
+(189,187) -0.83
+(189,188) -0.83
+(190,190) 523.27
+(190,191) -1.67
+(190,192) -1.67
+(190,193) 0.00
+(191,191) 436.67
+(191,190) -1.67
+(191,192) 0.00
+(191,193) -1.67
+(192,192) 436.67
+(192,190) -1.67
+(192,191) 0.00
+(192,193) -1.67
+(193,193) 350.06
+(193,190) 0.00
+(193,191) -1.67
+(193,192) -1.67
+(194,194) 784.90
+(194,195) -2.50
+(194,196) -2.50
+(194,197) 0.00
+(195,195) 655.00
+(195,194) -2.50
+(195,196) 0.00
+(195,197) -2.50
+(196,196) 655.00
+(196,194) -2.50
+(196,195) 0.00
+(196,197) -2.50
+(197,197) 525.10
+(197,194) 0.00
+(197,195) -2.50
+(197,196) -2.50
+(198,198) 53.47
+(198,199) 0.00
+(198,200) 0.00
+(198,201) 11.98
+(198,202) 0.00
+(198,203) 0.00
+(198,204) 25.69
+(198,205) 0.00
+(198,206) 0.00
+(198,207) 5.73
+(198,208) 0.00
+(198,209) 0.00
+(198,210) 11.98
+(198,211) 0.00
+(198,212) 0.00
+(198,213) 5.73
+(198,214) 0.00
+(198,215) 0.00
+(199,199) 64.17
+(199,198) 0.00
+(199,200) 0.00
+(199,201) 0.00
+(199,202) 14.37
+(199,203) 0.00
+(199,204) 0.00
+(199,205) 30.83
+(199,206) 0.00
+(199,207) 0.00
+(199,208) 6.87
+(199,209) 0.00
+(199,210) 0.00
+(199,211) 14.37
+(199,212) 0.00
+(199,213) 0.00
+(199,214) 6.87
+(199,215) 0.00
+(200,200) 74.86
+(200,198) 0.00
+(200,199) 0.00
+(200,201) 0.00
+(200,202) 0.00
+(200,203) 16.77
+(200,204) 0.00
+(200,205) 0.00
+(200,206) 35.97
+(200,207) 0.00
+(200,208) 0.00
+(200,209) 8.02
+(200,210) 0.00
+(200,211) 0.00
+(200,212) 16.77
+(200,213) 0.00
+(200,214) 0.00
+(200,215) 8.02
+(201,201) 21.53
+(201,198) 11.98
+(201,199) 0.00
+(201,200) 0.00
+(201,202) 0.00
+(201,203) 0.00
+(201,204) 5.73
+(201,205) 0.00
+(201,206) 0.00
+(201,207) 10.24
+(201,208) 0.00
+(201,209) 0.00
+(202,202) 25.83
+(202,198) 0.00
+(202,199) 14.37
+(202,200) 0.00
+(202,201) 0.00
+(202,203) 0.00
+(202,204) 0.00
+(202,205) 6.87
+(202,206) 0.00
+(202,207) 0.00
+(202,208) 12.29
+(202,209) 0.00
+(203,203) 30.14
+(203,198) 0.00
+(203,199) 0.00
+(203,200) 16.77
+(203,201) 0.00
+(203,202) 0.00
+(203,204) 0.00
+(203,205) 0.00
+(203,206) 8.02
+(203,207) 0.00
+(203,208) 0.00
+(203,209) 14.34
+(204,204) 50.00
+(204,198) 25.69
+(204,199) 0.00
+(204,200) 0.00
+(204,201) 5.73
+(204,202) 0.00
+(204,203) 0.00
+(204,205) 0.00
+(204,206) 0.00
+(204,207) 11.11
+(204,208) 0.00
+(204,209) 0.00
+(204,210) 5.73
+(204,211) 0.00
+(204,212) 0.00
+(204,213) 11.11
+(204,214) 0.00
+(204,215) 0.00
+(205,205) 60.00
+(205,198) 0.00
+(205,199) 30.83
+(205,200) 0.00
+(205,201) 0.00
+(205,202) 6.87
+(205,203) 0.00
+(205,204) 0.00
+(205,206) 0.00
+(205,207) 0.00
+(205,208) 13.33
+(205,209) 0.00
+(205,210) 0.00
+(205,211) 6.87
+(205,212) 0.00
+(205,213) 0.00
+(205,214) 13.33
+(205,215) 0.00
+(206,206) 70.00
+(206,198) 0.00
+(206,199) 0.00
+(206,200) 35.97
+(206,201) 0.00
+(206,202) 0.00
+(206,203) 8.02
+(206,204) 0.00
+(206,205) 0.00
+(206,207) 0.00
+(206,208) 0.00
+(206,209) 15.56
+(206,210) 0.00
+(206,211) 0.00
+(206,212) 8.02
+(206,213) 0.00
+(206,214) 0.00
+(206,215) 15.56
+(207,207) 22.47
+(207,90) -0.61
+(207,91) 0.00
+(207,92) 0.00
+(207,198) 5.73
+(207,199) 0.00
+(207,200) 0.00
+(207,201) 10.24
+(207,202) 0.00
+(207,203) 0.00
+(207,204) 11.11
+(207,205) 0.00
+(207,206) 0.00
+(207,208) 0.00
+(207,209) 0.00
+(207,236) -0.71
+(207,237) 0.00
+(207,238) 0.00
+(207,239) 0.16
+(207,240) 0.00
+(207,241) 0.00
+(207,242) 1.29
+(207,243) 0.00
+(207,244) 0.00
+(207,245) -0.29
+(207,246) 0.00
+(207,247) 0.00
+(207,248) -0.36
+(207,249) 0.00
+(207,250) 0.00
+(207,251) 1.36
+(207,252) 0.00
+(207,253) 0.00
+(207,254) 0.65
+(207,255) 0.00
+(207,256) 0.00
+(208,208) 26.96
+(208,90) 0.00
+(208,91) -0.73
+(208,92) 0.00
+(208,198) 0.00
+(208,199) 6.87
+(208,200) 0.00
+(208,201) 0.00
+(208,202) 12.29
+(208,203) 0.00
+(208,204) 0.00
+(208,205) 13.33
+(208,206) 0.00
+(208,207) 0.00
+(208,209) 0.00
+(208,236) 0.00
+(208,237) -0.86
+(208,238) 0.00
+(208,239) 0.00
+(208,240) 0.20
+(208,241) 0.00
+(208,242) 0.00
+(208,243) 1.55
+(208,244) 0.00
+(208,245) 0.00
+(208,246) -0.35
+(208,247) 0.00
+(208,248) 0.00
+(208,249) -0.43
+(208,250) 0.00
+(208,251) 0.00
+(208,252) 1.63
+(208,253) 0.00
+(208,254) 0.00
+(208,255) 0.79
+(208,256) 0.00
+(209,209) 31.46
+(209,90) 0.00
+(209,91) 0.00
+(209,92) -0.85
+(209,198) 0.00
+(209,199) 0.00
+(209,200) 8.02
+(209,201) 0.00
+(209,202) 0.00
+(209,203) 14.34
+(209,204) 0.00
+(209,205) 0.00
+(209,206) 15.56
+(209,207) 0.00
+(209,208) 0.00
+(209,236) 0.00
+(209,237) 0.00
+(209,238) -1.00
+(209,239) 0.00
+(209,240) 0.00
+(209,241) 0.23
+(209,242) 0.00
+(209,243) 0.00
+(209,244) 1.81
+(209,245) 0.00
+(209,246) 0.00
+(209,247) -0.41
+(209,248) 0.00
+(209,249) 0.00
+(209,250) -0.51
+(209,251) 0.00
+(209,252) 0.00
+(209,253) 1.90
+(209,254) 0.00
+(209,255) 0.00
+(209,256) 0.92
+(210,210) 61.11
+(210,12) 5.73
+(210,13) 0.00
+(210,14) 0.00
+(210,30) 3.99
+(210,31) 0.00
+(210,32) 0.00
+(210,198) 11.98
+(210,199) 0.00
+(210,200) 0.00
+(210,204) 5.73
+(210,205) 0.00
+(210,206) 0.00
+(210,211) 0.00
+(210,212) 0.00
+(210,213) 18.75
+(210,214) 0.00
+(210,215) 0.00
+(210,216) 11.98
+(210,217) 0.00
+(210,218) 0.00
+(210,225) 18.75
+(210,226) 0.00
+(210,227) 0.00
+(211,211) 73.33
+(211,12) 0.00
+(211,13) 6.87
+(211,14) 0.00
+(211,30) 0.00
+(211,31) 4.79
+(211,32) 0.00
+(211,198) 0.00
+(211,199) 14.37
+(211,200) 0.00
+(211,204) 0.00
+(211,205) 6.87
+(211,206) 0.00
+(211,210) 0.00
+(211,212) 0.00
+(211,213) 0.00
+(211,214) 22.50
+(211,215) 0.00
+(211,216) 0.00
+(211,217) 14.37
+(211,218) 0.00
+(211,225) 0.00
+(211,226) 22.50
+(211,227) 0.00
+(212,212) 85.56
+(212,12) 0.00
+(212,13) 0.00
+(212,14) 8.02
+(212,30) 0.00
+(212,31) 0.00
+(212,32) 5.59
+(212,198) 0.00
+(212,199) 0.00
+(212,200) 16.77
+(212,204) 0.00
+(212,205) 0.00
+(212,206) 8.02
+(212,210) 0.00
+(212,211) 0.00
+(212,213) 0.00
+(212,214) 0.00
+(212,215) 26.25
+(212,216) 0.00
+(212,217) 0.00
+(212,218) 16.77
+(212,225) 0.00
+(212,226) 0.00
+(212,227) 26.25
+(213,213) 36.11
+(213,30) 7.64
+(213,31) 0.00
+(213,32) 0.00
+(213,198) 5.73
+(213,199) 0.00
+(213,200) 0.00
+(213,204) 11.11
+(213,205) 0.00
+(213,206) 0.00
+(213,210) 18.75
+(213,211) 0.00
+(213,212) 0.00
+(213,214) 0.00
+(213,215) 0.00
+(213,225) 3.99
+(213,226) 0.00
+(213,227) 0.00
+(214,214) 43.33
+(214,30) 0.00
+(214,31) 9.17
+(214,32) 0.00
+(214,198) 0.00
+(214,199) 6.87
+(214,200) 0.00
+(214,204) 0.00
+(214,205) 13.33
+(214,206) 0.00
+(214,210) 0.00
+(214,211) 22.50
+(214,212) 0.00
+(214,213) 0.00
+(214,215) 0.00
+(214,225) 0.00
+(214,226) 4.79
+(214,227) 0.00
+(215,215) 50.56
+(215,30) 0.00
+(215,31) 0.00
+(215,32) 10.69
+(215,198) 0.00
+(215,199) 0.00
+(215,200) 8.02
+(215,204) 0.00
+(215,205) 0.00
+(215,206) 15.56
+(215,210) 0.00
+(215,211) 0.00
+(215,212) 26.25
+(215,213) 0.00
+(215,214) 0.00
+(215,225) 0.00
+(215,226) 0.00
+(215,227) 5.59
+(216,216) 53.47
+(216,12) 25.69
+(216,13) 0.00
+(216,14) 0.00
+(216,210) 11.98
+(216,211) 0.00
+(216,212) 0.00
+(216,217) 0.00
+(216,218) 0.00
+(216,219) 11.98
+(216,220) 0.00
+(216,221) 0.00
+(216,222) 5.73
+(216,223) 0.00
+(216,224) 0.00
+(216,225) 5.73
+(216,226) 0.00
+(216,227) 0.00
+(217,217) 64.17
+(217,12) 0.00
+(217,13) 30.83
+(217,14) 0.00
+(217,210) 0.00
+(217,211) 14.37
+(217,212) 0.00
+(217,216) 0.00
+(217,218) 0.00
+(217,219) 0.00
+(217,220) 14.37
+(217,221) 0.00
+(217,222) 0.00
+(217,223) 6.87
+(217,224) 0.00
+(217,225) 0.00
+(217,226) 6.87
+(217,227) 0.00
+(218,218) 74.86
+(218,12) 0.00
+(218,13) 0.00
+(218,14) 35.97
+(218,210) 0.00
+(218,211) 0.00
+(218,212) 16.77
+(218,216) 0.00
+(218,217) 0.00
+(218,219) 0.00
+(218,220) 0.00
+(218,221) 16.77
+(218,222) 0.00
+(218,223) 0.00
+(218,224) 8.02
+(218,225) 0.00
+(218,226) 0.00
+(218,227) 8.02
+(219,219) 21.53
+(219,12) 5.73
+(219,13) 0.00
+(219,14) 0.00
+(219,216) 11.98
+(219,217) 0.00
+(219,218) 0.00
+(219,220) 0.00
+(219,221) 0.00
+(219,222) 10.24
+(219,223) 0.00
+(219,224) 0.00
+(220,220) 25.83
+(220,12) 0.00
+(220,13) 6.87
+(220,14) 0.00
+(220,216) 0.00
+(220,217) 14.37
+(220,218) 0.00
+(220,219) 0.00
+(220,221) 0.00
+(220,222) 0.00
+(220,223) 12.29
+(220,224) 0.00
+(221,221) 30.14
+(221,12) 0.00
+(221,13) 0.00
+(221,14) 8.02
+(221,216) 0.00
+(221,217) 0.00
+(221,218) 16.77
+(221,219) 0.00
+(221,220) 0.00
+(221,222) 0.00
+(221,223) 0.00
+(221,224) 14.34
+(222,222) 19.79
+(222,12) 11.11
+(222,13) 0.00
+(222,14) 0.00
+(222,216) 5.73
+(222,217) 0.00
+(222,218) 0.00
+(222,219) 10.24
+(222,220) 0.00
+(222,221) 0.00
+(222,223) 0.00
+(222,224) 0.00
+(223,223) 23.75
+(223,12) 0.00
+(223,13) 13.33
+(223,14) 0.00
+(223,216) 0.00
+(223,217) 6.87
+(223,218) 0.00
+(223,219) 0.00
+(223,220) 12.29
+(223,221) 0.00
+(223,222) 0.00
+(223,224) 0.00
+(224,224) 27.71
+(224,12) 0.00
+(224,13) 0.00
+(224,14) 15.56
+(224,216) 0.00
+(224,217) 0.00
+(224,218) 8.02
+(224,219) 0.00
+(224,220) 0.00
+(224,221) 14.34
+(224,222) 0.00
+(224,223) 0.00
+(225,225) 36.11
+(225,12) 11.11
+(225,13) 0.00
+(225,14) 0.00
+(225,30) 7.64
+(225,31) 0.00
+(225,32) 0.00
+(225,210) 18.75
+(225,211) 0.00
+(225,212) 0.00
+(225,213) 3.99
+(225,214) 0.00
+(225,215) 0.00
+(225,216) 5.73
+(225,217) 0.00
+(225,218) 0.00
+(225,226) 0.00
+(225,227) 0.00
+(226,226) 43.33
+(226,12) 0.00
+(226,13) 13.33
+(226,14) 0.00
+(226,30) 0.00
+(226,31) 9.17
+(226,32) 0.00
+(226,210) 0.00
+(226,211) 22.50
+(226,212) 0.00
+(226,213) 0.00
+(226,214) 4.79
+(226,215) 0.00
+(226,216) 0.00
+(226,217) 6.87
+(226,218) 0.00
+(226,225) 0.00
+(226,227) 0.00
+(227,227) 50.56
+(227,12) 0.00
+(227,13) 0.00
+(227,14) 15.56
+(227,30) 0.00
+(227,31) 0.00
+(227,32) 10.69
+(227,210) 0.00
+(227,211) 0.00
+(227,212) 26.25
+(227,213) 0.00
+(227,214) 0.00
+(227,215) 5.59
+(227,216) 0.00
+(227,217) 0.00
+(227,218) 8.02
+(227,225) 0.00
+(227,226) 0.00
+(228,228) 197.20
+(228,229) -0.83
+(228,230) -0.83
+(228,231) 0.00
+(229,229) 153.90
+(229,228) -0.83
+(229,230) 0.00
+(229,231) -0.83
+(230,230) 182.77
+(230,228) -0.83
+(230,229) 0.00
+(230,231) -0.83
+(231,231) 139.47
+(231,228) 0.00
+(231,229) -0.83
+(231,230) -0.83
+(232,232) 394.40
+(232,233) -1.67
+(232,234) -1.67
+(232,235) 0.00
+(233,233) 365.53
+(233,232) -1.67
+(233,234) 0.00
+(233,235) -1.67
+(234,234) 307.80
+(234,232) -1.67
+(234,233) 0.00
+(234,235) -1.67
+(235,235) 278.93
+(235,232) 0.00
+(235,233) -1.67
+(235,234) -1.67
+(236,236) 3.10
+(236,90) 0.16
+(236,91) 0.00
+(236,92) 0.00
+(236,207) -0.71
+(236,208) 0.00
+(236,209) 0.00
+(236,237) 0.00
+(236,238) 0.00
+(236,239) -0.71
+(236,240) 0.00
+(236,241) 0.00
+(236,242) 1.57
+(236,243) 0.00
+(236,244) 0.00
+(236,245) -0.36
+(236,246) 0.00
+(236,247) 0.00
+(236,248) 1.57
+(236,249) 0.00
+(236,250) 0.00
+(236,251) -0.36
+(236,252) 0.00
+(236,253) 0.00
+(236,254) 0.79
+(236,255) 0.00
+(236,256) 0.00
+(237,237) 3.71
+(237,90) 0.00
+(237,91) 0.20
+(237,92) 0.00
+(237,207) 0.00
+(237,208) -0.86
+(237,209) 0.00
+(237,236) 0.00
+(237,238) 0.00
+(237,239) 0.00
+(237,240) -0.86
+(237,241) 0.00
+(237,242) 0.00
+(237,243) 1.88
+(237,244) 0.00
+(237,245) 0.00
+(237,246) -0.43
+(237,247) 0.00
+(237,248) 0.00
+(237,249) 1.88
+(237,250) 0.00
+(237,251) 0.00
+(237,252) -0.43
+(237,253) 0.00
+(237,254) 0.00
+(237,255) 0.95
+(237,256) 0.00
+(238,238) 4.33
+(238,90) 0.00
+(238,91) 0.00
+(238,92) 0.23
+(238,207) 0.00
+(238,208) 0.00
+(238,209) -1.00
+(238,236) 0.00
+(238,237) 0.00
+(238,239) 0.00
+(238,240) 0.00
+(238,241) -1.00
+(238,242) 0.00
+(238,243) 0.00
+(238,244) 2.19
+(238,245) 0.00
+(238,246) 0.00
+(238,247) -0.51
+(238,248) 0.00
+(238,249) 0.00
+(238,250) 2.19
+(238,251) 0.00
+(238,252) 0.00
+(238,253) -0.51
+(238,254) 0.00
+(238,255) 0.00
+(238,256) 1.11
+(239,239) 2.68
+(239,90) -0.61
+(239,91) 0.00
+(239,92) 0.00
+(239,207) 0.16
+(239,208) 0.00
+(239,209) 0.00
+(239,236) -0.71
+(239,237) 0.00
+(239,238) 0.00
+(239,240) 0.00
+(239,241) 0.00
+(239,242) -0.36
+(239,243) 0.00
+(239,244) 0.00
+(239,245) 1.36
+(239,246) 0.00
+(239,247) 0.00
+(239,248) 1.29
+(239,249) 0.00
+(239,250) 0.00
+(239,251) -0.29
+(239,252) 0.00
+(239,253) 0.00
+(239,254) 0.65
+(239,255) 0.00
+(239,256) 0.00
+(240,240) 3.21
+(240,90) 0.00
+(240,91) -0.73
+(240,92) 0.00
+(240,207) 0.00
+(240,208) 0.20
+(240,209) 0.00
+(240,236) 0.00
+(240,237) -0.86
+(240,238) 0.00
+(240,239) 0.00
+(240,241) 0.00
+(240,242) 0.00
+(240,243) -0.43
+(240,244) 0.00
+(240,245) 0.00
+(240,246) 1.63
+(240,247) 0.00
+(240,248) 0.00
+(240,249) 1.55
+(240,250) 0.00
+(240,251) 0.00
+(240,252) -0.35
+(240,253) 0.00
+(240,254) 0.00
+(240,255) 0.79
+(240,256) 0.00
+(241,241) 3.75
+(241,90) 0.00
+(241,91) 0.00
+(241,92) -0.85
+(241,207) 0.00
+(241,208) 0.00
+(241,209) 0.23
+(241,236) 0.00
+(241,237) 0.00
+(241,238) -1.00
+(241,239) 0.00
+(241,240) 0.00
+(241,242) 0.00
+(241,243) 0.00
+(241,244) -0.51
+(241,245) 0.00
+(241,246) 0.00
+(241,247) 1.90
+(241,248) 0.00
+(241,249) 0.00
+(241,250) 1.81
+(241,251) 0.00
+(241,252) 0.00
+(241,253) -0.41
+(241,254) 0.00
+(241,255) 0.00
+(241,256) 0.92
+(242,242) 11.27
+(242,90) -0.29
+(242,91) 0.00
+(242,92) 0.00
+(242,207) 1.29
+(242,208) 0.00
+(242,209) 0.00
+(242,236) 1.57
+(242,237) 0.00
+(242,238) 0.00
+(242,239) -0.36
+(242,240) 0.00
+(242,241) 0.00
+(242,243) 0.00
+(242,244) 0.00
+(242,245) -2.58
+(242,246) 0.00
+(242,247) 0.00
+(242,248) 0.79
+(242,249) 0.00
+(242,250) 0.00
+(242,251) 0.65
+(242,252) 0.00
+(242,253) 0.00
+(242,254) 5.71
+(242,255) 0.00
+(242,256) 0.00
+(243,243) 13.52
+(243,90) 0.00
+(243,91) -0.35
+(243,92) 0.00
+(243,207) 0.00
+(243,208) 1.55
+(243,209) 0.00
+(243,236) 0.00
+(243,237) 1.88
+(243,238) 0.00
+(243,239) 0.00
+(243,240) -0.43
+(243,241) 0.00
+(243,242) 0.00
+(243,244) 0.00
+(243,245) 0.00
+(243,246) -3.10
+(243,247) 0.00
+(243,248) 0.00
+(243,249) 0.95
+(243,250) 0.00
+(243,251) 0.00
+(243,252) 0.79
+(243,253) 0.00
+(243,254) 0.00
+(243,255) 6.86
+(243,256) 0.00
+(244,244) 15.78
+(244,90) 0.00
+(244,91) 0.00
+(244,92) -0.41
+(244,207) 0.00
+(244,208) 0.00
+(244,209) 1.81
+(244,236) 0.00
+(244,237) 0.00
+(244,238) 2.19
+(244,239) 0.00
+(244,240) 0.00
+(244,241) -0.51
+(244,242) 0.00
+(244,243) 0.00
+(244,245) 0.00
+(244,246) 0.00
+(244,247) -3.61
+(244,248) 0.00
+(244,249) 0.00
+(244,250) 1.11
+(244,251) 0.00
+(244,252) 0.00
+(244,253) 0.92
+(244,254) 0.00
+(244,255) 0.00
+(244,256) 8.00
+(245,245) 9.60
+(245,90) 1.08
+(245,91) 0.00
+(245,92) 0.00
+(245,207) -0.29
+(245,208) 0.00
+(245,209) 0.00
+(245,236) -0.36
+(245,237) 0.00
+(245,238) 0.00
+(245,239) 1.36
+(245,240) 0.00
+(245,241) 0.00
+(245,242) -2.58
+(245,243) 0.00
+(245,244) 0.00
+(245,246) 0.00
+(245,247) 0.00
+(245,248) 0.65
+(245,249) 0.00
+(245,250) 0.00
+(245,251) 0.52
+(245,252) 0.00
+(245,253) 0.00
+(245,254) 4.60
+(245,255) 0.00
+(245,256) 0.00
+(246,246) 11.52
+(246,90) 0.00
+(246,91) 1.30
+(246,92) 0.00
+(246,207) 0.00
+(246,208) -0.35
+(246,209) 0.00
+(246,236) 0.00
+(246,237) -0.43
+(246,238) 0.00
+(246,239) 0.00
+(246,240) 1.63
+(246,241) 0.00
+(246,242) 0.00
+(246,243) -3.10
+(246,244) 0.00
+(246,245) 0.00
+(246,247) 0.00
+(246,248) 0.00
+(246,249) 0.79
+(246,250) 0.00
+(246,251) 0.00
+(246,252) 0.62
+(246,253) 0.00
+(246,254) 0.00
+(246,255) 5.52
+(246,256) 0.00
+(247,247) 13.44
+(247,90) 0.00
+(247,91) 0.00
+(247,92) 1.51
+(247,207) 0.00
+(247,208) 0.00
+(247,209) -0.41
+(247,236) 0.00
+(247,237) 0.00
+(247,238) -0.51
+(247,239) 0.00
+(247,240) 0.00
+(247,241) 1.90
+(247,242) 0.00
+(247,243) 0.00
+(247,244) -3.61
+(247,245) 0.00
+(247,246) 0.00
+(247,248) 0.00
+(247,249) 0.00
+(247,250) 0.92
+(247,251) 0.00
+(247,252) 0.00
+(247,253) 0.72
+(247,254) 0.00
+(247,255) 0.00
+(247,256) 6.44
+(248,248) 11.27
+(248,90) -0.29
+(248,91) 0.00
+(248,92) 0.00
+(248,207) -0.36
+(248,208) 0.00
+(248,209) 0.00
+(248,236) 1.57
+(248,237) 0.00
+(248,238) 0.00
+(248,239) 1.29
+(248,240) 0.00
+(248,241) 0.00
+(248,242) 0.79
+(248,243) 0.00
+(248,244) 0.00
+(248,245) 0.65
+(248,246) 0.00
+(248,247) 0.00
+(248,249) 0.00
+(248,250) 0.00
+(248,251) -2.58
+(248,252) 0.00
+(248,253) 0.00
+(248,254) 5.71
+(248,255) 0.00
+(248,256) 0.00
+(249,249) 13.52
+(249,90) 0.00
+(249,91) -0.35
+(249,92) 0.00
+(249,207) 0.00
+(249,208) -0.43
+(249,209) 0.00
+(249,236) 0.00
+(249,237) 1.88
+(249,238) 0.00
+(249,239) 0.00
+(249,240) 1.55
+(249,241) 0.00
+(249,242) 0.00
+(249,243) 0.95
+(249,244) 0.00
+(249,245) 0.00
+(249,246) 0.79
+(249,247) 0.00
+(249,248) 0.00
+(249,250) 0.00
+(249,251) 0.00
+(249,252) -3.10
+(249,253) 0.00
+(249,254) 0.00
+(249,255) 6.86
+(249,256) 0.00
+(250,250) 15.78
+(250,90) 0.00
+(250,91) 0.00
+(250,92) -0.41
+(250,207) 0.00
+(250,208) 0.00
+(250,209) -0.51
+(250,236) 0.00
+(250,237) 0.00
+(250,238) 2.19
+(250,239) 0.00
+(250,240) 0.00
+(250,241) 1.81
+(250,242) 0.00
+(250,243) 0.00
+(250,244) 1.11
+(250,245) 0.00
+(250,246) 0.00
+(250,247) 0.92
+(250,248) 0.00
+(250,249) 0.00
+(250,251) 0.00
+(250,252) 0.00
+(250,253) -3.61
+(250,254) 0.00
+(250,255) 0.00
+(250,256) 8.00
+(251,251) 9.60
+(251,90) 1.08
+(251,91) 0.00
+(251,92) 0.00
+(251,207) 1.36
+(251,208) 0.00
+(251,209) 0.00
+(251,236) -0.36
+(251,237) 0.00
+(251,238) 0.00
+(251,239) -0.29
+(251,240) 0.00
+(251,241) 0.00
+(251,242) 0.65
+(251,243) 0.00
+(251,244) 0.00
+(251,245) 0.52
+(251,246) 0.00
+(251,247) 0.00
+(251,248) -2.58
+(251,249) 0.00
+(251,250) 0.00
+(251,252) 0.00
+(251,253) 0.00
+(251,254) 4.60
+(251,255) 0.00
+(251,256) 0.00
+(252,252) 11.52
+(252,90) 0.00
+(252,91) 1.30
+(252,92) 0.00
+(252,207) 0.00
+(252,208) 1.63
+(252,209) 0.00
+(252,236) 0.00
+(252,237) -0.43
+(252,238) 0.00
+(252,239) 0.00
+(252,240) -0.35
+(252,241) 0.00
+(252,242) 0.00
+(252,243) 0.79
+(252,244) 0.00
+(252,245) 0.00
+(252,246) 0.62
+(252,247) 0.00
+(252,248) 0.00
+(252,249) -3.10
+(252,250) 0.00
+(252,251) 0.00
+(252,253) 0.00
+(252,254) 0.00
+(252,255) 5.52
+(252,256) 0.00
+(253,253) 13.44
+(253,90) 0.00
+(253,91) 0.00
+(253,92) 1.51
+(253,207) 0.00
+(253,208) 0.00
+(253,209) 1.90
+(253,236) 0.00
+(253,237) 0.00
+(253,238) -0.51
+(253,239) 0.00
+(253,240) 0.00
+(253,241) -0.41
+(253,242) 0.00
+(253,243) 0.00
+(253,244) 0.92
+(253,245) 0.00
+(253,246) 0.00
+(253,247) 0.72
+(253,248) 0.00
+(253,249) 0.00
+(253,250) -3.61
+(253,251) 0.00
+(253,252) 0.00
+(253,254) 0.00
+(253,255) 0.00
+(253,256) 6.44
+(254,254) 40.63
+(254,90) 0.52
+(254,91) 0.00
+(254,92) 0.00
+(254,207) 0.65
+(254,208) 0.00
+(254,209) 0.00
+(254,236) 0.79
+(254,237) 0.00
+(254,238) 0.00
+(254,239) 0.65
+(254,240) 0.00
+(254,241) 0.00
+(254,242) 5.71
+(254,243) 0.00
+(254,244) 0.00
+(254,245) 4.60
+(254,246) 0.00
+(254,247) 0.00
+(254,248) 5.71
+(254,249) 0.00
+(254,250) 0.00
+(254,251) 4.60
+(254,252) 0.00
+(254,253) 0.00
+(254,255) 0.00
+(254,256) 0.00
+(255,255) 48.76
+(255,90) 0.00
+(255,91) 0.62
+(255,92) 0.00
+(255,207) 0.00
+(255,208) 0.79
+(255,209) 0.00
+(255,236) 0.00
+(255,237) 0.95
+(255,238) 0.00
+(255,239) 0.00
+(255,240) 0.79
+(255,241) 0.00
+(255,242) 0.00
+(255,243) 6.86
+(255,244) 0.00
+(255,245) 0.00
+(255,246) 5.52
+(255,247) 0.00
+(255,248) 0.00
+(255,249) 6.86
+(255,250) 0.00
+(255,251) 0.00
+(255,252) 5.52
+(255,253) 0.00
+(255,254) 0.00
+(255,256) 0.00
+(256,256) 56.89
+(256,90) 0.00
+(256,91) 0.00
+(256,92) 0.72
+(256,207) 0.00
+(256,208) 0.00
+(256,209) 0.92
+(256,236) 0.00
+(256,237) 0.00
+(256,238) 1.11
+(256,239) 0.00
+(256,240) 0.00
+(256,241) 0.92
+(256,242) 0.00
+(256,243) 0.00
+(256,244) 8.00
+(256,245) 0.00
+(256,246) 0.00
+(256,247) 6.44
+(256,248) 0.00
+(256,249) 0.00
+(256,250) 8.00
+(256,251) 0.00
+(256,252) 0.00
+(256,253) 6.44
+(256,254) 0.00
+(256,255) 0.00
+(257,257) 132.77
+(257,258) -0.83
+(257,259) -0.83
+(257,260) 0.00
+(258,258) 118.33
+(258,257) -0.83
+(258,259) 0.00
+(258,260) -0.83
+(259,259) 118.33
+(259,257) -0.83
+(259,258) 0.00
+(259,260) -0.83
+(260,260) 103.90
+(260,257) 0.00
+(260,258) -0.83
+(260,259) -0.83
diff --git a/tests/hp/flux_sparsity.cc b/tests/hp/flux_sparsity.cc
new file mode 100644 (file)
index 0000000..3fcb746
--- /dev/null
@@ -0,0 +1,136 @@
+// ---------------------------------------------------------------------
+//
+// Copyright (C) 2017 by the deal.II authors
+//
+// This file is part of the deal.II library.
+//
+// The deal.II library is free software; you can use it, redistribute
+// it, and/or modify it under the terms of the GNU Lesser General
+// Public License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+// The full text of the license can be found in the file LICENSE at
+// the top level of the deal.II distribution.
+//
+// ---------------------------------------------------------------------
+
+// A test that checks make_flux_sparsity_pattern
+// with vector-valued hp objects and coupling masks
+
+#include "../tests.h"
+#include <deal.II/grid/tria.h>
+#include <deal.II/grid/grid_generator.h>
+#include <deal.II/grid/grid_refinement.h>
+#include <deal.II/grid/tria_accessor.h>
+#include <deal.II/grid/tria_iterator.h>
+#include <deal.II/dofs/dof_accessor.h>
+#include <deal.II/dofs/dof_renumbering.h>
+#include <deal.II/dofs/dof_tools.h>
+#include <deal.II/fe/fe_dgq.h>
+#include <deal.II/fe/fe_nothing.h>
+#include <deal.II/fe/fe_q.h>
+#include <deal.II/fe/fe_raviart_thomas.h>
+#include <deal.II/fe/fe_system.h>
+#include <deal.II/hp/fe_values.h>
+#include <deal.II/hp/dof_handler.h>
+#include <deal.II/hp/fe_collection.h>
+#include <deal.II/lac/dynamic_sparsity_pattern.h>
+#include <iostream>
+#include <vector>
+
+
+
+template <int dim>
+void
+check ()
+{
+  Triangulation<dim>   triangulation;
+  std::vector<unsigned int> subdivisions(dim, 1U);
+  subdivisions[0] = 2;
+  Point<dim> p1,p2;
+  switch (dim)
+    {
+    case 2:
+      p1[0] = p1[1] = 0.0;
+      p2[0] = 2.0;
+      p2[1] = 1.0;
+      break;
+    case 3:
+      p1[0] = p1[1] = p1[2] = 0.0;
+      p2[0] = 2.0;
+      p2[1] = p2[2] = 1.0;
+      break;
+    default:
+      Assert(false, ExcNotImplemented());
+    }
+
+  GridGenerator::subdivided_hyper_rectangle (triangulation,
+                                             subdivisions,
+                                             p1, p2);
+
+  // Create FE Collection and insert two FE objects
+  // (RT0 - DGQ0 - Q1 ^ dim) and (Nothing - Nothing - Q2 ^ dim)
+  hp::FECollection<dim> fe_collection;
+  fe_collection.push_back(FESystem<dim>(FE_Nothing<dim>(dim),1,
+                                        FE_Nothing<dim>(),1,
+                                        FE_Q<dim>(2),dim));
+  fe_collection.push_back(FESystem<dim>(FE_RaviartThomasNodal<dim>(0),1,
+                                        FE_DGQ<dim>(0),1,
+                                        FE_Nothing<dim>(),dim));
+
+  hp::DoFHandler<dim> dof_handler(triangulation);
+  dof_handler.begin_active()->set_active_fe_index(1);
+  dof_handler.distribute_dofs(fe_collection);
+
+  // Create sparsity pattern allowing cell couplings of
+  // RT-RT, RT-DGQ, DGQ-RT and Q-Q spaces,
+  // and face coupling of
+  // RT and Q
+  DynamicSparsityPattern dsp(dof_handler.n_dofs(),
+                             dof_handler.n_dofs());
+
+  Table<2, DoFTools::Coupling> cell_coupling(fe_collection.n_components(),
+                                             fe_collection.n_components());
+  Table<2, DoFTools::Coupling> face_coupling(fe_collection.n_components(),
+                                             fe_collection.n_components());
+
+  for (unsigned int c=0; c<fe_collection.n_components(); ++c)
+    for (unsigned int d=0; d<fe_collection.n_components(); ++d)
+      {
+        // RT-RT, RT-DGQ and DGQ-RT
+        if ((c<dim+1 && d<dim+1) && !((c==dim) && (d==dim)))
+          cell_coupling[c][d] = DoFTools::always;
+
+        // Q-Q
+        if (c>=dim+1 && d>=dim+1)
+          cell_coupling[c][d] = DoFTools::always;
+
+        // RT-Q
+        if (c<dim && d>=dim+1)
+          face_coupling[c][d] = DoFTools::always;
+      }
+
+  DoFTools::make_flux_sparsity_pattern (dof_handler, dsp,
+                                        cell_coupling, face_coupling);
+  dsp.compress();
+
+  // Print sparsity pattern
+  dsp.print(deallog.get_file_stream());
+}
+
+
+
+int main()
+{
+  std::ofstream logfile ("output");
+  deallog.attach(logfile);
+
+  deallog.push ("2d");
+  check<2> ();
+  deallog.pop ();
+  deallog.push ("3d");
+  check<3> ();
+  deallog.pop ();
+}
+
+
+
diff --git a/tests/hp/flux_sparsity.output b/tests/hp/flux_sparsity.output
new file mode 100644 (file)
index 0000000..7817e46
--- /dev/null
@@ -0,0 +1,112 @@
+
+[0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[2,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[3,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[4,0,1,2,3]
+[5,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[6,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[7,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[8,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[9,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[10,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[11,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[12,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[13,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[14,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[15,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[16,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[17,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[18,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[19,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[20,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[21,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[22,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
+[0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[2,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[3,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[4,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[5,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[6,0,1,2,3,4,5]
+[7,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[8,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[9,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[10,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[11,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[12,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[13,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[14,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[15,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[16,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[17,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[18,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[19,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[20,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[21,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[22,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[23,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[24,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[25,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[26,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[27,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[28,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[29,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[30,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[31,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[32,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[33,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[34,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[35,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[36,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[37,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[38,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[39,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[40,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[41,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[42,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[43,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[44,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[45,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[46,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[47,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[48,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[49,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[50,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[51,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[52,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[53,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[54,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[55,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[56,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[57,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[58,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[59,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[60,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[61,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[62,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[63,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[64,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[65,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[66,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[67,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[68,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[69,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[70,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[71,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[72,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[73,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[74,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[75,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[76,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[77,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[78,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[79,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[80,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[81,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[82,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[83,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[84,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[85,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[86,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]
+[87,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.