]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Update step-38. 6518/head
authorDavid Wells <drwells@vt.edu>
Mon, 7 May 2018 22:32:07 +0000 (18:32 -0400)
committerDavid Wells <drwells@vt.edu>
Mon, 7 May 2018 22:33:48 +0000 (18:33 -0400)
examples/step-38/doc/intro.dox
examples/step-38/doc/results.dox
examples/step-38/step-38.cc

index 8ff7796b1e3ee612c2845a421b2e2edb546a2d61..6794746c27ab3394bc26c74fa979550a347955a8 100644 (file)
@@ -30,7 +30,7 @@ variable, while here we actually have to investigate what it means to take
 derivatives of a function only defined on a (possibly curved) surface.
 
 In order to define the above operator, we start by introducing some notations.
-Let $\mathbf x_S:\hat S \rightarrow S$ be a parametrization of
+Let $\mathbf x_S:\hat S \rightarrow S$ be a parameterization of
 a surface $S$ from a reference element $\hat S \subset \mathbb R^2$,
 i.e. each point $\hat{\mathbf x}\in\hat S$ induces a point ${\mathbf
   x}_S(\hat{\mathbf x}) \in S$. Then let
index 51b3e2d3f6a747a4f52bda3e9b500615d4c10490..b3cf133c69a7f82a7cc88f540fc2a9560b446d70 100644 (file)
@@ -111,15 +111,13 @@ above, this would look as follows:
 template <int spacedim>
 void LaplaceBeltrami<spacedim>::make_grid_and_dofs ()
 {
-  static SphericalManifold<dim,spacedim> surface_description;
-  triangulation.set_manifold (0, surface_description);
+  triangulation.set_manifold (0, SphericalManifold<dim,spacedim>());
 
   {
-    SphericalManifold<spacedim> boundary_description;
     Triangulation<spacedim> volume_mesh;
     GridGenerator::half_hyper_ball(volume_mesh);
 
-    volume_mesh.set_manifold (0, boundary_description);
+    volume_mesh.set_manifold (0, SphericalManifold<spacedim>);
     volume_mesh.refine_global (4);
 
     std::set<types::boundary_id> boundary_ids;
@@ -136,8 +134,8 @@ void LaplaceBeltrami<spacedim>::make_grid_and_dofs ()
   }
 
   std::cout << "Surface mesh has " << triangulation.n_active_cells()
-           << " cells."
-           << std::endl;
+            << " cells."
+            << std::endl;
 
   ...
 @endcode
index a23d29090fa5968324f6f946a4c2fdc0df86861d..e8ed60460e1825da13e99f138dd09cca642589c0 100644 (file)
@@ -306,10 +306,7 @@ namespace Step38
   // polygon) but not when, as here, the manifold has curvature. So for things
   // to work properly, we need to attach a manifold object to our (surface)
   // triangulation, in much the same way as we've already done in 1d for the
-  // boundary. We create such an object (with indefinite, <code>static</code>,
-  // lifetime) at the top of the function and attach it to the triangulation
-  // for all cells with boundary indicator zero that will be created
-  // henceforth.
+  // boundary. We create such an object and attach it to the triangulation.
   //
   // The final step in creating the mesh is to refine it a number of
   // times. The rest of the function is the same as in previous tutorial
@@ -317,8 +314,6 @@ namespace Step38
   template <int spacedim>
   void LaplaceBeltramiProblem<spacedim>::make_grid_and_dofs ()
   {
-    static SphericalManifold<dim,spacedim> surface_description;
-
     {
       Triangulation<spacedim> volume_mesh;
       GridGenerator::half_hyper_ball(volume_mesh);
@@ -330,7 +325,7 @@ namespace Step38
                                             boundary_ids);
     }
     triangulation.set_all_manifold_ids(0);
-    triangulation.set_manifold (0, surface_description);
+    triangulation.set_manifold (0, SphericalManifold<dim,spacedim>());
 
     triangulation.refine_global(4);
 

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.